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ABSTRACT

The motion of an intense proton beam in an accelerator

tube with strong focusing quadrupole lenses has been studied.

The maximum current ImaX passing through the tube is cal-
culated as function of the phase space volume Vn occupied by
the beam. Furthermore are calculated the conditions for injection

into the tube necesgssary in order to realize the maximum current.

The basic method used for the investigation is that of
random seaxrch.

The results can be used for chosing the working conditions
of a tube, of the proton injector and of the ion-optical matching

system,
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The maximum proton currents accelerated up to an energy of
several MeV with accelerators of a new type as, for instance, the
transformer type accelerator (Ref., 1), are determined to a large
degree by the electrical stability and the focusing properties of
the accelerating tubes. It became, therefore, necessary to cal-
culate the limit transmission characteristics for given focusing
conditions and for concrete accelerating tubes and to calcula te,
furth ermore, the injection conditions necessary for the accele-

ration of those limit currents.

When investigating the motion of an intense proton beam in
an accelerator tube most authors limit themselves to the construc-
tion of the trajectories of "border" particles of the beam while
the initial conditions at the entrance into the tube are chosen

on the basis of the performance of the proton injector (Ref. 2).

It has been shown in Ref., 3 that the trajectory of a "border"
particle coincides with the envelope of the beam only if the phase
space volume is zero, that is if the defocusing influence of the
thermal velocities are neglected. Thig neglection and with it the
hypothesis of linearity are inadmissible for the treatment of

real proton beams,

The maximum beam current Imax captured into acceleration

" depends on the phase gpace volume Vn of the beam. For the choice

of the working conditions and of the injector parameters one must
at first determine the transmission characteristics of the tube

Toox = f(Vn).

Actually, in order to reach the maximum possible current
one must, furthermore, determine the exact conditions for the
injection of the beam into the tube. The knowledge of these con-
ditions is essential for the choice of the injector optic and for

the design of a beam matching system.
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.In the present investigation a proton accelerator tube is
considered with strong focusing magnetic quadrupole lenses (the
use of electrostatic quadrupole lenges in the tube is described
in Ref, 1). Strong focusing is very useful, because it allows the
acceleration of intense proton beams (Refs. 1, 2) and prevents the
formation of electron avalanches, which can reduce considerably

the electrical stability of the tube (Ref. 3).

An esgential feature of the operation of such tubes ig the
high energy increase of the accelerated particles over the length
of one element of periodicity of the strong focusing channel. Thigs
feature makes it imperative to use mainly numerical methods for the

golution of the equations of motion,

Ve use the following system of relative units (see, for

instance, Ref. 4):

a) The unit of the length is an arbitrary linear dimension

£o(m):
= - = ! ol RS- o 2
y»] 'eo b yz y1 ’ yB 'eo b y4 y3 H S 'eo 3

(1)

"X, Yy, Z are the Cartesian co~ordinates of the trajectory of a

PS/6060

particle. z is measured along the axis of the tube and the co=~

ordinate of the entrance into the tube is z = 0.
b) The unit of the potential is:

) | |
6o =~ (1), gls) - - Leby @

o - € :
c?O

U(s) is the accelerating potential on the tube axis. For protons
e = 1.6 X 10_19 Cb and ¢ _ = 9.38 x 108 V. The potential of the

emitter is chosen to be zero.



¢) The unit of the current is:
I =4nc € () , J===; (3)
0 o %o ’ IO ’

£, = 10_9/56 n (F/m). For protons I, = 3.14 X 107 4.

d) The unit of the field gradient of the electromagnetic

quadrupole lenses is:

G, - %—- (/2) , als) = Eed s (@)

e) The unit of the momentum is:

P, =mpe (eV sec/m) , SD(S) = Eéﬁl = Vo(2+9¢) 3 (5)

If thege units are used, the differential equations for the
co~ordinates y1 and y5 of the trajectory of a particle of an
intense, non-relativistic (9 €< 1) ion beam accelerated in a tube
with electromagnetic quadrupole lenses have in linear approximation

the form:

rqg ) N y
ya’+y1'—d-zn@+" S+9—‘-’-‘1y1= 2 J L

CP5/2 'Y1(Y1+-Y3§ ?

(6)

" g €y _ als) _ o - VEWJ I3

Here Y1(s), Y3<S> describe the beam envelope. The expressions
on the right hand side of the Bgs. (6) describe the action of the
"self-matching field" of the beam (Ref. %).

Instead of the vector y = (yW, Ypr Tz y4) we introduce a

new vector x = (x1, X5y X by using the following relation-

X
| 30 Xy)
ships:
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The expressions (7) couple also the envelopes of the x
and y motions, making it possible, in particular,‘to calculate
from the vector Y(o) =[Y1(o), Y2(o) = Y%(o), Yj(o), Y4(o) = Y%(o)]at
the entrance into the tube the corresponding vector
%(0) =[x, (0), X,(0) = X3(0), %5(0), X,(0) = Xi(o)].

If the ion current is symmetrical with respect to the two
pairs of phase co~ordinates Yqr Yo and yB, y4 the‘surface areas
of the two phase ellipses are equal and propotional to the

emittence of the beam at a cross-section with the co-ordinate s:

1 {' 1
tls) == {dy, (s 8) = = £ s) .
5,(s) =% (a5,() ary(e) = 1 (ayy(e) apy(e) . ()
It is easy‘to obtain with the help of the Egs. (7) the
corresponding phase ellipses in the planes Xy X, and XB"X4'
Also here the two surface areas arc the gsame, do not depend on s

and are equal to = Ey(o) = const .
From Eqs. (6) and (7) we find:

27 [P X
R O RSNCI  I JI
*3 { TS T ey L5

(9)

— ' Fs——————1 x

- \ ,
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.3 R 16qJ *X5 0 wa)xgx(m%)
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The solutions of the system of Ggs,(9) can be written in

the form:

(I
v — N . . IR, B — e
X (3) = S GV(S) exp L ‘f@(s) + 0.0. VM= 1,3 (10)
with the usual normslization:
—r DR g ~

If the ellipses of the quadrupole channel (the equations
of which can be obtained from the cuxpressions X\)(S) and Xb (s)
by eliminating the phasge T&ﬂs)) coincide with the phase ellipses

in the planesg XQ:xb , the relationship holds (see Ref. 3%):

X(s) = \/’Ey<o)‘ o(s), lop) ? - B (o) (11)

Here is G(s) = [ﬁq(s), GE(S) = (=), crz(s), GZ(S) = Gré(s)]
the vector of the modules of the solution Bg. (10).

The equation for O (s) can be obtained from the Eqs., (9) by

taking into account the Bgs. (11):

- 5 (00\2 ] T
G'n +! gi_s_)_ + e (.(P_'.) | 6 - 1 = = J 1 ;
1 '\‘,/EZ; 16 \ o P CT,? Ey(o) \/(p(o) P 3t o3
r 2 — (12)
Zi5 ! 1 J 2 1 1
6«" -l 2 - .é.. (9——) G7 - = \/ L — .
3 \//5(; 16 @ __g 5 Gg Ey(o) CP(O) o \J1+ 0“5

A system of equations of the type of Eqs. (12) has also be
obtained in Ref. 3% and has been carefully studied for the case of
long chammels described by 4il ferential equatlons with periodical
coefficients. Here the optimal (matched) transmission of the beam
through the channels is granted if & (s) coincides with the vector

of the modules of the Floquet function: @(s) = g (s).
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The system of Bas.(9) hag in general no solutions of
IMoguetls form. Because of the acceleration the coefficients of
the equation of motion are essentially non-periodical, For the
determination of the transmisgion characteristic of a tube and
of the matched injection conditions it is convenlent to use a

search method made possible by electronic computers,

Concrete values of the ratio m = J/Ev<o) and the injection
o
vector &°(o) = A determine the solution é?(s,77, A) of the system
of the Egs. (12). With Eqs. (11) and (7) one can find the maximum
values of the functions Y1(s)/\JEy(o)jand YB(S)/\/EyZO) within
the limits of the tube.

A scalar function Q(A) is constructed by taking - while A

is varied - alwayse the bigger one of those two values
max — 1
Q) = o M, {Ex1<s>/\/ny<o>]max, N E N (19

where L is the full length oi the tube.

The aim of the search is to find for every fixed wvalue 77
* * T . . . -
such an injection vector A = G (o) which gives the minimum value

Q(A*) = Q. of Eq. (13).

One can, in order to reach this aim, regard the components
of the vector A as four independently variable paramcters and
apply the method of random éearch, as described in Ref., 5. The
programmation of the latter for the given case isg identical with

the one described in Ref, 6..

We call T the maximum radius of the ohanngliwhioh can be
reached by incoherent beam oscillations. The value Qmin allows
then the calculation of the injeotion eni ttence Ey(o) of the
beam, of the current J, of the phase space volume Vn of the beam

and of the phasc space density j :
9

r 2
(@) = (7)) 7 a0 T s B o) 66, 5y = (10

(.
J Inin ? n

4
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Apart from this, the vector A% = CT(O) corresponding to a
given Qmin presents for the values J and Vn calculated from
Eq. (14) the matched injection conditions: any deviation from
these conditions results in an increase of the diameter of the

beam within the tube.

Let us add the remark that in the particular case of a long-
periodical chamnel and for ¥ = 0 the gearch produces as solution
¢”(s) of Eq. (9), the vector of Floquet's modules p (s) of the

channel.,

Let us assume, we are asked to determine the transmission
characterigtic of a tube for the acceleration of protons from an

injection energy of 100 keV to a final energy of 1.65 MeV.

A schematic drawing of the acceleration and focusing system
of the tube is shown in Fig. 1, which is analogous %to a figure
in Ref. 2. The protons are focused by 16 guadrupole lenses and
by axially symmetrical electrositatic lenses formed by non-magnetic
metallic cylinders. The aperture radius of every lens is
T, = 2.5 cm, the length of a lens is Eg = 5.2 cm, the pattern
formula of the system ig FODO with all =traight sections of the
same length and with the periocd SO = 1%, . cm. The accelerating
cylinders are mechanically connected to the lenses and have an
inner radius T, = 2.% cm and a length lc = 5,6 cm., The section
of the entrance into the tube has been given the co-ordinate

s = 0, and the section of the exit the co-ordinate s = L,

As unit of Ilength and unit of field gradient of the lenses

have been chosen zo = 0,01 m and Go = 3,15 X 104 T/m, regspectively.

Baged on the materials presented in Ref. 7 it ig possible to
calculate the gradient distribution along the tube axis of a singlc

lens with the »ntio 2rz/; = 1 (daghoed curves in Mg, 1):

n
A
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g c,
Il ot ~ 4 .
o) = T PENS . e (19)
8] e}
1+
4b
Here is n the order number of o lensy n = 1,2 ... 163 5, < L Gm/GO

ig the gradicent of the centre of the lens.

If scveral lenses are combined and if the screcning offect
is small, thc gradicnt distridbution can be obtainced from a super-
position of the distributions of the single lenses (sce Fig., 1).
For a rough cstimate it is oven possible to replace it by a sinu-
soldal curve with the amplitude a = 0.8 i%ﬁ"

The elcctrostatic potentials of the electrodes arc indicated

in FPig. 1 and the variation of the potential from the centre of

one cylinder to another is given by (sce Ref, &

() T T r £y ) So?]
p(s) = = + - th $1.315 == |5 = (n-1) == | > (16)
29, 29, L r, L 2 _J

where n, Un arc the ordcer number and the potential of the left

hand side cylinder of a pairy; n = 1.2 ... 16,

In some cases it is practical to usc guadrupolc lenscs made
of pcrmancnt magnets (see Ref. 2). For the dimensions as indicated
above one can easily obtain in the centre of the lenses a field
gradient G, of about 10 T/m, and by using special magnetic materials

even higher gradients can be obtained.

Below a system of identical lenses is considered with a gra-

dient G = 9.1 T/m.

Vithout acceleration and without current ¢! = 0, J = 0 the
focusing channel of the tube can be described by the sysitem of
Igs. (12) with periodical coefficients. There is in this case a
Floguet solution ¢ (s) = g (8). The phase chift of incoherent oscil-

lations over one element of periodicity So of the channel is in
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this case by = 0.482 and the maximun of Floquet!s module is

Crox = 6.38, With the help of the theory developed in Ref. 3
one can calculate from these parameters the limit current Ilim
for ¢! = O
2 z
T = EQ fﬁ —EE;KZ~ T . (17)
lim 2 ﬂo o 2 0
o Fmax

Taking r, = 1.5 cm we obtain from Bqg. (17) Ilim = 84 mh,
while the application of the described search procedure for

9! = 0 and Vn = 0 produces the value 82 mA.

For the determination of the limit transmission characterig-
tic in presence of acceleration with ¢! # O the search method has

been applied for the following values of the parameter‘w = J/Ey(o):
03 1.25 X 10’7; 1,98 X 10’7; 3,75 % 10'7; 9.35 X 1071,

Figure 2a shows ag the result the maximum current Imax
transmitted by the given tube as function of the phase space area

Vn of the beam and for an amplitude of the incoherent oscillations
of T, = 1.5 cm. The calculated points agree well with the relation-

ship found in Ref. 3¢

T Vn‘z‘“
Imax - Ilim L1 - Vﬁ) ; (18>
. O.
3 A=Y=l — % - Q 3
if one talkes I1im = %50 mA, VO = 0,93 cm nrad,

It can be seen from TFig, 2a that acceleration of currents

close to Ilim = 350 mA is coupled with high phasc spnace densities
.'jCP = Iqu/Vv1 (see Ref. 3). Obviously, in our case it is difficult
to obtain Imax > 300 mA. This would mean that the necessary phase

space density would be higher than 1 A/cm mrad, a valuce which is

close to the limit of the best existing proton sources (see Ref. 9).
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As already mentioned, tegether with the limit current and
the phase space volume the matched injection conditions have been
calculated, which are necessary for reaching these values. I a
TV of

()

it

working point has been chosen on the limit curve Ima*
I'ig., 2a, the injection conditions can be found from Fig. 2b, where
the initial dimension x, y and the slopes x', y'! ol the beanm
envelopes at the entrance are plotted in Cartesian co-ordinates
according to Ig. (1). The working region which would require a
phase space density larger than 1 A/cu mrod sre ghaded in both

fige. 20 and 2b.

By comparing the values I,, from Lgs. (17) and (18) equal

1i
to 84 mA and 350 mA,respectively, one recognizes the increasec of
the transmission characteristic of the tube, due to the presence

of acceleration ¢! £ 0,

It should he noted that the electrostatic forces appearing
from ¢" £ 0 increase the limit current very little: an acceleration
in a homogencous ficld with ¢! = const, 9" = 0 would lead to

= mA I £ = %50 n m 15q. 8)e
I,;p = 325 mA instead of I, = 350 mA from lig (18)

The acceleration of beams larger than 300 mA in a tube of the
described design would require stronger focusing, which is possible
only by abandoning permancnt magnets and by using electro-magnets
for the gquadrupole lenses. ‘

In Fig. 3a the transmission characteristic has been plotted

for such a case with a field gradient of Gm = 25 T/m in the centre

of the lens. This curve can also be described by Eq. (18) if one

assumes Ilim = 1.0 &, v, = 1.97 cn mrad, Por overy point of this
curve one can find from iz, 3%b the corresponding matched injection

.

conditions. Phase space densities j_ > 1 A/cm nrad (the shaded
areas. in Pigs. 3%a and Bb) correspond to o limit current higher than

0.8 A.
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The 1imit currents transmitted through the ftube in absence
of acceleration (¢! = 0), have been calculated with the help of
Bq. (17) for the parameters b, =1.42 and p_ = 4.97 by applying
the search method. The values which have been found are 409 mA and

433 mA, respectively.

The authors are gratefully indebted to B.V, Chirikov for the

discussion of the present paper and his interest in it.
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Figure captions

Fig,., 1

Fig. 2

fig. 3

Scheme of the accelerating tube,

The bagic characteristics of an accelerating tube with
guadrupole lenseg formed by permanent magnets with a
field gradient of Gf = 9.1 T/m in the centre of the

lenses,

a) dependence of the maximum accelerated current
T (in mA) on the phase space volume of the beam V
max n
(in cm mrad).

b) the matched values of the dimension %, y (in cm) and
the slopes x', y' (dimensionless) of the beam envelope

at the entrance into the tube.

The basic characteristicg of an accelerating tube with
electro~-magnet quadrupole lenses with a field gradient of

Gm= 25 T/m in the centre of the lenscs,

a) the dependence of the maximum accelcrated currcent
I (in A) on the phase spacce volume of the beam V
max : n
(in cm mrad).

b) the matched values of the dimension x, y (in cm) and

the slopes x!', y' (dimensionlcss) of the beam envelope

at the entrance into the tube.
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