| INSTITUTEE | FOR | NUCLEAR | PHYSICS OF | THE | SIBERIAN | BRANCH |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OF | THE | ACADEMY | OF | SCIENCES | OF | THE USSR |

CERN LIBRARIES, GENEVA

CM-P00100520

Preprint

THE ITMITS FOR PROTON CURRENTS IN AN ACCELTRATOR TUBE UITH STRONG FOCUSING
by

R.A. Abramyan, V.V. Vecheslavov, V.I. Kononov

Novosibirsk - 1967
Translated at CERN by E. Fischer
(Original : Russian)
(CERN Trans. 67-4)

Geneva

July, 1967

ABSTRACT

The motion of an intense proton beam in an accelerator tube with strong focusing quadrupole lenses has been studied.

The maximum current $I_{\max }$ passing through the tube is calculated as function of the phase space volume V_{n} occupied by the beam. Furthermore are calculated the conditions for injection into the tube necessary in order to realize the maximum current.

The basic method used for the investigation is that of random search.

The results can be used for chosing the working conditions of a tube, of the proton injector and of the ion-optical matching system.

The maximum proton currents accelerated up to an energy of several MeV with accelerators of a new type as, for instance, the transformer type accelerator (Ref. 1), are determined to a large degree by the electrical stability and the focusing properties of the accelerating tubes. It became, therefore, necessary to calculate the limit transmission characteristics for given focusing conditions and for concrete accelerating tubes and to calculate, furthermore, the injection conditions necessary for the acceleration of those limit currents.

When investigating the motion of an intense proton beam in an accelerator tube most authors limit themselves to the construction of the trajectories of "border" particles of the beam while the initial conditions at the entrance into the tube are chosen on the basis of the performance of the proton injector (Ref. 2).

It has been shown in Ref. 3 that the trajectory of a "border" particle coincides with the envelope of the beam only if the phase space volume is zero, that is if the defocusing influence of the thermal velocities are neglected. This neglection and with it the hypothesis of linearity are inadmissible for the treatment of real proton beams.

The maximum bean current $I_{\max }$ captured into acceleration depends on the phase space volume V_{n} of the beam. For the choice of the working conditions and of the injector parameters one must at first determine the transmission characteristics of the tube $I_{\max }=f\left(V_{n}\right)$.

Actually, in order to reach the maximum possible current one must, furthermore, determine the exact conditions for the injection of the beam into the tube. The knowledge of these conditions is essential for the choice of the injector optic and for the design of a beam matching system.

In the present investigation a proton accelerator tube is considered with strong focusing magnetic quadrupole lenses (the use of electrostatic quadrupole lenses in the tube is described in Ref. 1). Strong focusing is very useful, because it allows the acceleration of intense proton beams (Refs. 1, 2) and prevents the formation of electron avalanches, which can reduce considerably the electrical stability of the tube (Ref. 3).

An essential feature of the operation of such tubes is the high energy increase of the accelerated particles over the length of one element of periodicity of the strong focusing channel. This feature makes it imperative to use mainly numerical methods for the solution of the equations of motion.

We use the following system of relative units (see, for instance, Ref. 4):
a) The unit of the length is an arbitrary linear dimension $\ell_{0}(\mathrm{~m}):$

$$
\begin{gather*}
y_{1}=\frac{y}{\ell_{0}}, \quad y_{2}=y_{1}^{\prime}, \quad y_{3}=\frac{y}{\ell_{0}}, \quad y_{4}=y \frac{1}{3}, s=\frac{z}{l_{0}} \tag{1}\\
(), \equiv \frac{d}{d s}() ;
\end{gather*}
$$

x, y, z are the Cartesian co-ordinates of the trajectory of a particle. z is measured along the axis of the tube and the com ordinate of the entrance into the tube is $z=0$.
b) The unit of the potential is:

$$
\begin{equation*}
\varphi_{0}=\frac{m_{0} c^{2}}{e}(V), \quad \varphi(s)=-\frac{J(s)}{\varphi_{0}} ; \tag{2}
\end{equation*}
$$

$U(s)$ is the accelerating potential on the tube axis. For protons $e=1.6 \times 10^{-19} \mathrm{Cb}$ and $\varphi_{0}=9.38 \times 10^{8} \mathrm{~V}$. The potential of the emitter is chosen to be zero.
c) The unit of the current is:

$$
\begin{equation*}
I_{0}=4 \pi c \varepsilon_{0} \varphi_{0}(\mathrm{~A}), \quad J=\frac{I}{I_{0}} ; \tag{3}
\end{equation*}
$$

$\varepsilon_{0}=10^{-9} / 36 \pi(\mathrm{H} / \mathrm{m})$. For protons $I_{0}=3.14 \times 10^{7} \mathrm{~A}$.
d) The unit of the field gradient of the electromagnetic quadrupole lenses is:

$$
\begin{equation*}
G_{0}=\frac{\varphi_{0}}{\ell_{0}^{2}}(\mathbb{T} / \mathrm{m}), \quad g(s)=\frac{G(s)}{G_{0}} \tag{4}
\end{equation*}
$$

e) The unit of the momentum is:

$$
\begin{equation*}
P_{0}=m_{0} c(\mathrm{eV} \mathrm{sec} / \mathrm{m}), \quad \mathcal{P}(\mathrm{s})=\frac{P(\mathrm{~s})}{P_{0}}=\sqrt{\varphi(2+\varphi)} ; \tag{5}
\end{equation*}
$$

If these units are used, the differential equations for the co-ordinates y_{1} and y_{3} of the trajectory of a particle of an intense, non-relativistic ($\varphi \ll 1$) ion beam accelerated in a tube with electromagnetic quadrupole lenses have in linear approximation the form:

$$
\begin{align*}
& y_{1}^{\prime \prime}+y_{1}^{\prime} \frac{d}{d s} \ln \mathcal{S}+\left[\frac{g(s)}{\sqrt{2 \varphi}}+\frac{\varphi^{\prime \prime}}{4 \varphi}\right] y_{1}=\frac{\sqrt{2} J}{\varphi^{3 / 2}} \frac{y_{1}}{Y_{1}\left(Y_{1}+Y_{3}\right)} ; \tag{6}\\
& y_{3}^{\prime \prime}+y_{3}^{\prime} \frac{d}{d s} \ln \mathcal{S}-\left[\frac{g(s)}{\sqrt{2 \varphi}}-\frac{\varphi^{\prime \prime}}{4 \varphi}\right] y_{3}=\frac{\sqrt{2} J}{\varphi^{3 / 2}} \frac{y_{3}}{Y_{3}\left(Y_{1}+Y_{3}\right)}
\end{align*}
$$

Here $Y_{1}(s), Y_{3}(s)$ describe the beam envelope. The expressions on the right hand side of the Eqs. (6) describe the action of the "self-matching field" of the beam (Ref. 3).

Instead of the vector $y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ we introduce a new vector $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by using the following relationships:

$$
\begin{align*}
& x_{1}(s)=y_{1}(s)\left[\frac{\rho(s)}{\rho(0)}\right]^{1 / 2}=y_{1}(s)\left[\frac{p(s)}{\varphi(0)}\right]^{1 / 4} ; \\
& x_{2}(s)=x_{1}^{\prime}(s)=\left[y_{2}(s)+\frac{y_{1}(s)}{4} \frac{q^{\prime}(s)}{\rho(s)}\right] \times\left[\frac{\varphi(s)}{\varphi(0)}\right]^{1 / 4} ; \\
& x_{3}(s)=y_{3}(s)\left[\frac{p(s)}{\varphi(0)}\right]^{1 / 4} ; \tag{7}\\
& x_{4}(s)=x_{3}^{\prime}(s)=\left[y_{4}(s)+\frac{y_{3}(s)}{4} \frac{\varphi^{\prime}(s)}{\varphi(s)}\right] \times\left[\frac{\varphi(s)}{\rho(0)}\right]^{1 / 4} .
\end{align*}
$$

The expressions (7) couple also the envelopes of the x and y motions, making it possible, in particular, to calculate from the vector $Y(0)=\left[Y_{1}(0), Y_{2}(0)=Y_{1}(0), Y_{3}(0), Y_{4}(0)=Y_{3}(0)\right]$ at the entrance into the tube the corresponding vector $X(0)=\left[X_{1}(0), X_{2}(0)=X_{1}(0), X_{3}(0), X_{4}(0)=X_{3}(0)\right]$.

If the ion current is symmetrical with respect to the two pairs of phase co-ordinates y_{1}, y_{2} and y_{3}, y_{4} the surface areas of the two phase ellipses are equal and propotional to the emittence of the beam at a cross-section with the co-ordinate s:

$$
\begin{equation*}
\mathbb{E}_{y}(s)=\frac{1}{\pi} \int d y_{1}(s) d y_{2}(s)=\frac{1}{\pi} \int d y_{3}(s) d y_{4}(s) \tag{8}
\end{equation*}
$$

It is easy to obtain with the help of the Eqs. (7) the correspondine phase ellipses in the planes x_{1}, x_{2} and x_{3}, x_{4}. Also here the two surface areas are the same, do not depend on s and are equal to $\pi \mathrm{E}_{\mathrm{y}}(0)=$ const.

From Eqs. (6) and (7) wo find:

$$
\begin{align*}
& x_{1}^{\prime \prime}+\left[\frac{g(s)}{\sqrt{2 \varphi}}+\frac{3}{16}\left(\frac{\varphi}{\varphi}\right)^{2}\right] x_{1}=\frac{J}{\varphi} \sqrt{\frac{2}{\varphi(0)}} \frac{x_{1}}{x_{1}\left(x_{1}+x_{3}\right)} ; \\
& x_{3}^{\prime \prime}-\left[\frac{g(s)}{\sqrt{2 \varphi}}-\frac{3}{16}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{2}\right] x_{3}=\frac{J}{\varphi} \sqrt{\frac{2}{\varphi(0)}} \frac{x_{3}}{x_{3}\left(x_{1}+x_{3}\right)} \tag{9}
\end{align*}
$$

The solutions of the system of 2 qs . (9) can be written in the fom:

$$
\begin{equation*}
x_{v}(s)=\frac{c_{v}}{2} \sigma_{\nu}(s) \exp i H_{v}(s)+0.0 . \quad \nu=1,3 ; \tag{10}
\end{equation*}
$$

with the usual nomalizations

$$
\sigma_{\nu}\left(\sigma_{0}^{*}-i v_{\nu}^{\prime} \sigma_{\nu}^{*}-C_{0} C_{0}=-2 i .\right.
$$

If the ellipses of the quadrupole chamel (the equations of which can bo obtained from the expressions $x \nu(s)$ and $x y(s)$ by eliminating tho phase $Y_{\mathcal{V}}(s)$) coincide with the phase ellipses in the plenes x, ν_{V}^{t}, the relationship holds (seo Ref. 3):

$$
\begin{equation*}
X(s)=\sqrt{E_{y}(0)} \sigma(s), \quad\left|C_{\nu}\right|^{2}=E_{y}(0): \tag{11}
\end{equation*}
$$

Here is $\sigma(s)=\left[\sigma_{1}(s), \sigma_{2}(s)=\sigma_{1}(s), \sigma_{3}(s), \sigma_{4}(s)=\sigma_{3}(s)\right]$ the vector of the modules of the solution Bq. (10).

The equation for $\sigma(s)$ can be obtained from the Eqs. (9) by taking into account the Eqs. (11):

$$
\begin{align*}
& \sigma_{1}^{\prime \prime}+\left[\frac{q(s)}{\sqrt{2 \varphi}}+\frac{3}{16}\left(\frac{\varphi}{\varphi}\right)^{2}\right] \sigma_{1}-\frac{1}{\sigma_{1}^{3}}=\frac{J}{E_{y}(0)} \sqrt{\frac{2}{\varphi(0)}} \frac{1}{\varphi} \frac{1}{\sigma_{1}+\sigma_{3}} \\
& \sigma_{3}^{\prime \prime}-\left[\frac{\tilde{m}(s)}{\sqrt{2 \varphi}}-\frac{3}{16}\left(\frac{\varphi}{\varphi}\right)^{2}\right] \sigma_{3}-\frac{1}{\sigma_{3}^{3}}=\frac{J}{E_{y}(0)} \sqrt{\frac{2}{\varphi(0)}} \frac{1}{\varphi} \frac{1}{\sigma_{1}+\sigma_{3}} \tag{12}
\end{align*}
$$

A system of equations of the type of Eqs. (12) has also be obtained in Ref. 3 and has been carefully studied for the case of lone channels described by dir ferential equations with periodical coeificients. Here the optinal (matched) transmission of the beam through the channels is granted if $\sigma(s)$ coincides with the vector of the modules of the Floquet function: $\sigma(s) \equiv p(s)$.

The system of Bqs. (9) has in general no solutions of Floquet's fom. Becauso of the acceleration the coefficients of the equation of motion are essentially non-periodical. For the determination of the transnission characteristic of a tube and of the matched injection conditions it is convenient to use a search method made possible by electronic computers.

Concrete values of the ratio $\eta=J / \mathrm{E}_{\mathrm{y}}(0)$ and the injection vector $\sigma(0)=A$ determine the solution $\sigma(s, \eta$, A) of the system of the Eqs. (12). With Dqs. (11) and (7) one can find the maximum values of the functions $Y_{1}(s) / \sqrt{E_{y}(0)}$ and $Y_{3}(s) / \sqrt{E_{y}(0)}$ within the limits of the tube.

A scalar function $Q(A)$ is constructed by taking - while A is varied - always the bigger one of those two values

$$
\begin{equation*}
Q(A)=0 \leq \max _{0 \leq L} \leq\left[\left[Y_{1}(s) / \sqrt{E_{y}(0)}\right]_{\max },\left[Y_{3}(s) / \sqrt{E_{y}(0)}\right]_{\max }\right\} \tag{13}
\end{equation*}
$$

where I is the full length of the tubc.
The aim of the search is to find for every fixed value η such an injection vector $A^{*}=\sigma^{*}(0)$ which gives the minimum value $Q\left(A^{*}\right)=Q_{\min }$ of Eq. (13).

One can, in order to reach this aim, rogard the components of the vector A as four independently variable parameters and apply the method of random search, as described in Ref. 5. The programation of the latter for the given case is identical with the one described in Ref. 6.

We call r_{n} the maximum radius of the channcl which can be reached by incolncrent bcami oscillations. The value $\Omega_{\text {min }}$ allows then the calculation of the injection emittence $\mathrm{E}_{\mathrm{y}}(\mathrm{o})$ of the beam, of the current J, of the phase space volume V_{n} of the beam and of tho phasc space density j_{φ} :
$E_{y}(0)=\left(\frac{r_{n}}{Q_{\min }}\right)^{2}, \quad J=\eta_{y}(0), \quad V_{n}=E_{y}(0) \beta(0), \quad j_{\varphi}=\frac{J}{V_{n}}$.

Apart from this, the vector $A^{*}=\sigma(0)$ corresponding to a given $Q_{\min }$ presents for the values J and V_{n} calculated from Eq. (14) the matched injection conditions: any deviation from these conditions results in an increase of the diameter of the beam within the tube.

Let us add the remark that in the particular case of a longperiodical chanel and for $\eta=0$ the search produces as solution $\sigma(s)$ of Eq. (9), the vector of Floquet's modules $p(s)$ of the channel.

Let us assume, we are asked to determine the transmission characteristic of a tube for the acceleration of protons from an injection energy of 100 keV to a final energy of 1.65 MeV .

A schematic drawing of the acceleration and focusing system of the tube is shown in rig. 1, which is analogous to a figure in Ref. 2. The protons are focused by 16 quadrupole lenses and by axially symmetrical electrostatic lenses formed by non-magnetic metallic cylinders. The aperture radius of every lens is $r_{\ell}=2.5 \mathrm{~cm}$, the length of a lens is $\ell_{\ell}=5.2 \mathrm{~cm}$, the pattern formula of the systen is FODO with all atraight sections of the same length and with the period $S_{o}=1$., cm. The accelerating cylinders are mechanically connected to the lenses and have an inner radius $r_{c}=2.3$ cr and a length $\ell_{c}=5.6 \mathrm{~cm}$. The section of the entrance into the tube has been given the co-ordinate $s=0$, and the section of the exit the co-ordinate $s=L$.

As unit of loncth and unit of field gradient of the lenses have been chosen $\ell_{0}=0.01 \mathrm{~m}$ and $G_{0}=3.13 \times 10^{4} \mathrm{I} / \mathrm{m}$, respectivelyo

Based on the materials presented in Ref. 7 it is possible to calculate the gradient distribution along the tube axis of a singlc lens with the ratio $2 x_{\ell} / n_{\ell}=1^{\prime}($ dowhed curves in Jics. 1):

$$
\begin{equation*}
g(s)=\frac{g_{m}}{1+\left|\frac{\mathrm{S}_{0}(2 n-1)-4 s}{4 b}\right|^{a}}, \quad b \cong 1.5 \frac{\hat{\varepsilon}^{\prime}}{\ell_{0}}, \quad a=3.25 . \tag{15}
\end{equation*}
$$

Hore is n the oxder number of a lons; $n=1.2 \ldots 16 ; \delta_{\mathrm{m}}= \pm \mathrm{G}_{\mathrm{m}} / \mathrm{G}_{\mathrm{o}}$ is the gradient of the centre of the lons.

If scveral lenses are combinod and if tho screcning offect is small, the gradiont distribution can bc obtaincd from a suporposition of the distributions of the single lonsos (see Fig. 1). For a rough ostinato it is oven possiblo to roplaco it by a sinusoidal curve with tho amplitude $a=0.85\left|o_{\mathrm{m}}\right|$.

The cloctrostatic potentials of the electrodes are indicated in Fig. 1 and the variation of the potential from the contre of one cylinder to another is given by (sec Ref. B) :
$\varphi(s)=\frac{U_{n+1}+U_{n}}{2 \varphi_{0}}+\frac{U_{n+1}-U_{n}}{2 \varphi_{0}} \operatorname{th}\left\{1.315 \frac{\ell_{0}}{r_{0}}\left[s-(n-1) \frac{S_{0}}{2}\right]\right\}$
where n, U_{n} are the order number and the potontial of tho loft hand side cylinder of a pair; $n=1.2 \ldots 16$.

In some cascs it is practical to usc quadrupolo lonsos mado of pormanont magnets (see Ref. 2). For the dimensions as indicated above one can easily obtain in the centre of the lenses a field gradient G_{m} of about $10 \mathrm{I} / \mathrm{m}$, and by usinc special magnetic materials even higher gradients can be obtained.

Below a system of identical lenses is considered with a gradient $G_{m}=9.1 \mathrm{~T} / \mathrm{m}$.

Without accelcration and Without current $\hat{y}^{\prime}=0, J=0$ the focusing channel of the tube can be described by the system of Eqs. (12) with periodical coefficients. There is in this case a Floquet solution $\sigma(s)=\rho(s)$. The phase ahift of incoherent oscillations over one element of periodicity S_{0} of the channel is in
this case $\mu_{0}=0.482$ and the maximun of Floquet's module is $P_{\text {max }}=6.33$. With the help of the theory developed in Ref. 3 one can calculate from these parameters the limit current $I_{\text {lim }}$ for $\varphi^{\prime}=0$:

$$
\begin{equation*}
I_{\lim }=\frac{\mu_{0}}{2} \frac{r_{n}}{l_{0}} \frac{\beta^{3} \gamma^{3}}{b_{0} \rho_{\max }^{2}} I_{0} . \tag{17}
\end{equation*}
$$

Taking $r_{n}=1.5 \mathrm{~cm}$ wo obtain from $\mathbb{Z q}$. (17) $I_{\text {lim }}=84 \mathrm{~mA}$, while the application of the described search procedure for $\varphi^{\prime}=0$ and $V_{n}=0$ produces the value 82 mA .

Por the determination of the limit transmission characteristic in presence of acceleration with $\varphi^{\prime} \neq 0$ the search method has been applied for the followins values of the parameter $\eta=J / E_{y}(0)$:

$$
0 ; \quad 1.25 \times 10^{-7} ; \quad 1.98 \times 10^{-7} ; \quad 3.75 \times 10^{-7} ; \quad 9.35 \times 10^{-7}
$$

Figure 2a shows as the result the maximum current $I_{\max }$ transmitted by the siven tube as function of the phase space area V_{n} of the beam and for an amplitude of the incoherent oscillations of $r_{n}=1.5 \mathrm{~cm}$. The calculated points agree woll with the relationship found in Ref. 3 !

$$
\begin{equation*}
I_{\max }=I_{\lim }\left[1-\left(\frac{V_{n}}{V_{0}}\right)^{2}\right] \tag{18}
\end{equation*}
$$

if one takes $I_{\text {lim }}=350 \mathrm{~mA}, V_{0}=0.93 \mathrm{~cm} \mathrm{mrad}$.
It can bo seen from Pie. 2a that acceleration of currents close to $I_{\text {lim }}=350 \mathrm{~mA}$ is coupled with high phasc space donsities $j_{\varphi}=I_{\text {max }} / V_{n}$ (see Ref. 3). Obviously, in our case it is difficult to obtain $I_{\max }>300 \mathrm{~mA}$. This would mean that the necessary phase space density would be higher than $1 \mathrm{~A} / \mathrm{cm}$ mrad, a value wich is close to the limit of the best existing proton sources (see Ref. 9).

As already mentioned, together with the limit current and the phase space volume the matched injection conditions have been calculated, which are necessary for reaching these values. If a working point has been chosen on the limit curve $I_{\text {max }}=f\left(V_{n}\right)$ of Fig. 2a, the injection conditions can be found from Hi . 2 b , where the initial dimension x, y and the slopes x^{\prime}, y^{\prime} of the beam envelopes at the entrance are plotted in Cartesian co-ordinates according to Eq. (1). Tho woming resion which would require a phase space density larer than $1 \mathrm{~A} / \mathrm{cn}$ accel are shaded in both riçs. $2 a$ and $2 b$.

By comparing the values $I_{\text {lim }}$ from Eqs. (17) and (18) equal to 84 mA and 350 mA , respectively, one recognizes the increasc of the transmission characteristic of the tube, due to the presence of acceleration $\varphi^{\prime} \neq 0$.

It should be noted that the electrostatic forces appearing from $\varphi^{\prime \prime} \neq 0$ increase the limit current very little: an acceleration in a homogencous ficld with $\varphi^{\prime}=$ const, $\varphi^{\prime \prime}=0$ would lead to $I_{\text {lim }}=325 \mathrm{~mA}$ instead of $I_{\text {lim }}=350 \mathrm{~mA}$ from Bq . (18).

The acceleration of beams larger than 300 mA in a tube of the described design would require stronger focusing, which is possible only by abandoning permanont magnets and by using electro-magnets for the quadrupole lenses.

In Fig. 3a the transmission characteristic has been plotted for such a case with a field gradient of $G_{m}=25 \mathrm{I} / \mathrm{m}$ in the centre of the lens. This curve can also be described by Eq. (18) if one assumes $I_{\text {lim }}=1.0 \mathrm{~A}, V_{0}=1.97 \mathrm{cram}$ mar overy point of this curve one can find from Fig. 36 the corresponding matched injection conditions. Phase space densities $j_{0}>1 \mathrm{~A} / \mathrm{cm}$ mad (the shedod areas. in Figs. $3 a$ and $3 b$) correspond to a limit current higher than 0.8 A .

The limit currents transmitted through the tube in absence of acceleration ($\varphi^{\prime}=0$), have ween calculated with the help of Eq. (17) for the parameters $\mu_{0}=1.42$ and $\rho_{\max }=4.97$ by applying the search method. The values which have been found are 409 mA and 438 mA , respectively.

The authors are gratefully indebted to B.V. Chirikov for the discussion of the present paper and his interest in it.

References

1. Abramyan E.A., Vecheslavov V.V., Acceleration of an intense proton beam by means of a transformator type accelerator (submitted to Atomnaya Energiya).
2. G. Burnot and Lafoucriere, Fucl.Instr. and Methods, 32, p. 287, 1965.
3. Kapchinskij I.M, Particle dynanics in linear Re accelerators, Moscow, Atomisdat, 1966.
4. Meshkov I.N., Chirikov B.V., zh. T.T. XXXV p. 2202, 1965.
5. Rastrigin I.A. in "Automatics and calculating techniques", Riga, Isd. A.IT. Latv. S.S.R. 6, 1963.
6. Vecheslavov V.V., Kononov V.I., Randon seach method for ionoptical matching (submitted to Zh. T.F.).
7. Pierre Grivet and Albert Septier, Nucl. Instr. and Methods 6, no 2, p. 126, 1960.
8. Zinchenko N.S., Lecture cours on electron optics (Kharlkov, 1961).
9. TepIyakov V.A., Derbilov V.I., Experimental investigation of an axially symnetrical ion beam (submitted to Radiotechnika i Electronika).

Figure captions

Fice. 1 Schene of the accelerating tube.

Fig. 2 The basic characteristics of an acceleratine tube with quadrupole lenses formed by permanent magnets with a field gradient of $G_{\mathrm{Ii}}=9.1 \mathrm{~T} / \mathrm{m}$ in the centre of the Ienses.
a) dependence of the maximum accelerated current $I_{\text {max }}$ (in $m A$) on the phase space volume of the beam V_{n} (in cm mrad).
b) the matched values of the dimension x, y (in cm) and the slopes x^{\prime}, y^{\prime} (dimensionless) of the beam envelope at the entrance into the tube.

Fig. 3 The basic characteristics of an accelcrating tube with electro-magnet quadrupole lenses with a field gradient of $G_{m}=25 \mathrm{~T} / \mathrm{m}$ in the contre of the lenses,
a) the dependence of the maximum accelcrated current $I_{\text {max }}$ (in A) on the phase space volune of the beam V_{n} (in cm mrad).
b) the matchod values of the dimension x, y (in cm) and the slopos x^{\prime}, y^{\prime} (dimensionloss) of the beam envolope at the entrance into the trabe.

Fig. 1

Fig. 2

Fig. 3

