
CERN LIBRARIES, GENEVA 

CM-P00100520 

INSTITUTE FOR NUCLEAR PHYSICS OF THE SIBERIAN BRANCH 
OF THE ACADEMY OF SCIENCES OF THE USSR 

P r e p r i n t 

THE LIMITS FOR PROTON CURRENTS IN AN 
ACCELERATOR TUBE WITH STRONG FOCUSING 

by 

E.A. Abramyan, V.V. Vecheslavov, V.I. Kononov 

Novosibirsk - 1967 

Translated at CERN by E. Fischer 

(Original : Russian) 

(CERN Trans. 67-4) 

Geneva 

July, 1967 

PS/6060 



A B S T R A C T 

The motion of an intense proton beam in an accelerator 
tube with strong focusing quadrupole lenses has been studied. 

The maximum current Imax passing through the tube is cal¬ 
culated as function of the phase space volume Vn occupied by 
the beam. Furthermore are calculated the conditions for injection 
into the tube necessary in order to realize the maximum current. 

The basic method used for the investigation is that of 
random search. 

The results can be used for chosing the working conditions 
of a tube, of the proton injector and of the ion-optical matching 
system. 

PS/6060 



- 1 -

The maximum proton currents accelerated up to an energy of 
several MeV with accelerators of a new type as, for instance, the 
transformer type accelerator (Ref. 1), are determined to a large 
degree by the electrical stability and the focusing properties of 
the accelerating tubes. It became, therefore, necessary to cal­
culate the limit transmission characteristics for given focusing 
conditions and for concrete accelerating tubes and to calculate, 
furthermore, the injection conditions necessary for the accele­
ration of those limit currents. 

When investigating the motion of an intense proton beam in 
an accelerator tube most authors limit themselves to the construc­
tion of the trajectories of "border" particles of the beam while 
the initial conditions at the entrance into the tube are chosen 
on the basis of the performance of the proton injector (Ref. 2). 

It has been shown in Ref. 3 that the trajectory of a "border" 
particle coincides with the envelope of the beam only if the phase 
space volume is zero, that is if the defocusing influence of the 
thermal velocities are neglected. This neglection and with it the 
hypothesis of linearity are inadmissible for the treatment of 
real proton beams. 

The maximum beam current Imax captured into acceleration 
depends on the phase space volume Vn of the beam. For the choice 
of the working conditions and of the injector parameters one must 
at first determine the transmission characteristics of the tube 

Imax = f(Vn). 

Actually, in order to reach the maximum possible current 
one must, furthermore, determine the exact conditions for the 
injection of the beam into the tube. The knowledge of these con­
ditions is essential for the choice of the injector optic and for 
the design of a beam matching system. 
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In the present investigation a proton accelerator tube is 
considered with strong focusing magnetic quadrupole lenses (the 
use of electrostatic quadrupole lenses in the tube is described 
in Ref. 1 ) . Strong focusing is very useful, because it allows the 
acceleration of intense proton beams (Refs. 1, 2) and prevents the 
formation of electron avalanches, which can reduce considerably 
the electrical stability of the tube (Ref. 3)· 

An essential feature of the operation of such tubes is the 
high energy increase of the accelerated particles over the length 
of one element of periodicity of the strong focusing channel. This 
feature makes it imperative to use mainly numerical methods for the 
solution of the equations of motion. 

We use the following system of relative units (see, for 
instance, Ref. 4): 

a) The unit of the length is an arbitrary linear dimension 
ℓo(m): 

y1 = y , y 2 = y'1, y3 = y , y4 = y ' 3 , s = z 
, y1 = 

ℓo 
, y 2 = y'1, y3 = 

ℓo 
, y4 = y ' 3 , s = 

ℓo 
, 

(1) 
()' ≡ 

d (); ()' ≡ ds (); 

x, y, z are the Cartesian co-ordinates of the trajectory of a. 
particle. z is measured along the axis of the tube and the co­
ordinate of the entrance into the tube is z = 0. 

b) The unit of the potential is: 

φo = 
moc2 

( V ) , φ(s) = - U(s) ; φo = e ( V ) , φ(s) = -
φo 

; (2) 

U(s) is the accelerating potential on the tube axis. For protons 
e = 1.6 × 10-19 Cb and φo = 9.38 × 108 V. The potential of the 
emitter is chosen to be zero. 
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c) The unit of the current is: 

Io = 4π c εo φo (A), J = I ; Io = 4π c εo φo (A), J = Io 
; (3) 

εo = 10-9/36 π (F/m). For protons Io = 3.14 × 107 A. 

d) The unit of the field gradient of the electromagnetic 
quadrupole lenses is: 

Go = φo (T/m), g(s) = G(s) ; Go = 
ℓ2oc 

(T/m), g(s) = Gο 
; (4) 

e) The unit of the momentum is: 

Ρo = moc (eV sec/m), P(s) = P(s) = √ φ ( 2 + φ ) ; Ρo = moc (eV sec/m), P(s) = Ρo = √ φ ( 2 + φ ) ; (5) 

If these units are used, the differential equations for the 
co-ordinates y1 and y3 of the trajectory of a particle of an 
intense, non-relativistic (φ << 1) ion beam accelerated in a tube 
with electromagnetic quadrupole lenses have in linear approximation 
the forms 

y"1 + y'1 
d ℓn P + [ g(s) + φ" ]y1 = √2 J 

y1 ; y"1 + y'1 ds ℓn P + [ √2φ + 4φ ]y1 = 
φ3/2 Y1(Y1 + Y3) ; 

(6) 
y"3 + y'3 d ℓn P - [ g(s) - φ" ]y3 = √2 J 

y 3 
. y"3 + y'3 ds ℓn P - [ √2φ 

- 4φ ]y3 = 
φ3/2 Y3(Y1 Y3) . 

Here Y1(s), Y3(s) describe the beam envelope. The expressions 
on the right hand side of the Eqs. (6) describe the action of the 
"self-matching field" of the beam (Ref. 3). 

Instead of the vector y = (y1, y2, y3, y4) we introduce a 
new vector x = (x1, x2, x3, x4) by using the following relation­
ships: 
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x1(s) = y1(s)[ 
p(S) ]1/2 = y1(s) [ φ(s) ] 1 / 4 ; 

x1(s) = y1(s)[ 

P(o) ]1/2 = y1(s) [ φ(o) 
] 1 / 4 ; 

x2(s) = x'1(s) = [y2(s) + 
y1(s) φ'(s) 

] × [ 
φ(s) ]1/4; x2(s) = x'1(s) = [y2(s) + 4 φ(s) ] × [ φ(o) 

]1/4; 

(7) 

x3(s) = y3(s) [ 
φ ( s ) ]1/4; x3(s) = y3(s) [ φ(o) 

]1/4; 

x4(s) = x'3(s) = [y4(s) + 
y3(s) φ'(s) ] × [ φ(s) ] 1 / 4 • x4(s) = x'3(s) = [y4(s) + 4 φ(s) 

] × [ φ(o) ] 1 / 4 • 

The expressions (7) couple also the envelopes of the x  
and y motions, making it possible, in particular, to calculate 
from the vector Y(o) =[Y1 (ο), Υ2(ο) = Y'1(o), Y3(o), Y4(ο) = Y'3(o)]at 
the entrance into the tube the corresponding vector 
X(o) = [X1(o), X2(o) = X'1(o), X3(o), X4(o) = X'3(o)]. 

If the ion current is symmetrical with respect to the two 
pairs of phase co-ordinates y1, y2 and y3, y4 the surface areas 
of the two phase ellipses are equal and propotional to the 
emittence of the beam at a cross-section with the co-ordinate s: 

Εy(s) = 1 ∫ dy1(s) dy2(s) = 1 ∫ dy3(s) dy4(s). Εy(s) = π ∫ dy1(s) dy2(s) = π ∫ dy3(s) dy4(s). (8) 

It is easy to obtain with the help of the Eqs. (7) the 
corresponding phase ellipses in the planes x1, x2 and x3, x4. 
Also here the two surface areas are the same, do not depend on s 
and are equal to π Ey(o) = const. 

From Eqs. (6) and (7) we finds; 

x"1 +[ g(s) + 
3 ( φ' )2]x1 = J 

√ 
2 x1 

; x"1 +[ √2φ 
+ 16 

( 

φ )2]x1 = φ 

√ 

φ(o) X1 (X1 + X3) 
; 

(9) 

x"3 -[ 
g(s) - 3 

( 
φ' 

)2]x3 = J √ 2 x3 . 
x"3 -[ √2φ 

- 16 ( φ 
)2]x3 = 

φ √ φ(o) X3(X1 + X3) . 
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The solutions of the system of Eqs.(9) can he written in 
the form: 

xν (s) = Cν σν(s) exp i ψν(s) + C.C. ν = 1,3; xν (s) = 2 σν(s) exp i ψν(s) + C.C. ν = 1,3; (10) 

with the usual normalisation: 

σν(σ*ν - iψνσ*ν) - C.C. = -2i. 

If the ellipses of the quadrupole channel (the equations 
of which can be obtained from the expressions xν(s) and x'ν(s) 
by eliminating the phase ψν(s)) coincide with the phase ellipses 
in the planes x νx' ν, the relationship holds (see Ref. 3): 

X(s) = √Ey(o) σ(s), | c ν | 2 = E y ( o ) ; (11) 

Here is σ(s) = [σ(s), σ2(s) = σ'1(s), σ3(s), σ4(s) = σ'3(s)] 
the vector of the modules of the solution Eq. (10). 

The equation for σ(s) can be obtained from the Eqs. (9) by 
taking into account the Eqs. (11): 

σ"1 + g(s) + 3 
( 
φ' )2] σ1 -1 = J √ 2 1 1 ; σ"1 + 

√2φ 
+ 16 ( φ )2] σ1 -σ31 = Εy(ο) √ φ(ο) φ σ1 + σ3 

; 

(12) 
σ"3 -[ g(s) - 3 

( 
φ' )2]σ3 - 1 = J √ 2 1 1 . σ"3 -[ √2φ - 16 ( φ 
)2]σ3 -

σ33 
= Εy(ο) √ φ(ο) φ σ1 + σ3 . 

A system of equations of the type of Eqs. (12) has also be 
obtained in Ref. 3 and has been carefully studied for the case of 
long channels described by differential equations with periodical 
coefficients. Here the optimal (matched) transmission of the beam 
through the channels is granted if σ(s) coincides with the vector 
of the modules of the Floquet functions σ(s) = ρ(s). 
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The system of Eqs. (9) has in general no solutions of 
Floquet's form. Because of the acceleration the coefficients of 
the equation of motion are essentially non-periodical. For the 
determination of the transmission characteristic of a tuba and 
of the matched injection conditions it is convenient to use a 
search method made possible by electronic computers. 

Concrete values of the ratio η = J/Ey(o) and the injection 
vector σ(o) = A determine the solution σ(s, η, A) of the system 
of the Eqs. (12). With Eqs. (11) and (7) one can find the maximum 
values of the functions Y1(s)/ √Ey(o) and Y3(s)/√Ey(o) within 
the limits of the tube. 

A scalar function Q(A) is constructed by talcing - while A 
is varied - always the bigger one of those two values 

Q(A) = max 
{[Y1(s)/√Ey(o)]max, [Y3(s)/√Ey(o)]max} (13) Q(A) = ο ≤ s ≤ L {[Y1(s)/√Ey(o)]max, [Y3(s)/√Ey(o)]max} (13) 

where L is the full length ox the tube. 

The aim of the search is to find for every fixed value η 
such an injection vector A* = σ*(o) which gives the minimum value 
Q(A*) = Qmin of Eq. (13). 

One can, in order to reach this aim, regard the components 
of the vector A as four independently variable parameters and 
apply the method of random search, as described in Ref. 5. The 
programmation of the latter for the given case is identical with 
the one described in Ref. 6. 

We call rn the maximum radius of the channel which can be 
reached by incoherent beam oscillations. The value Qmin allows 
then the calculation of the injection emittence Εy(ο) of the 
beam, of the current J, of the phase space volume Vn of the beam 
and of the phase space density jφ: 

Ey(o) = ( rn )2, J = ηEy(o), Vn = Ey(o) β(ο), jφ = J . (14) Ey(o) = ( Qmin )2, J = ηEy(o), Vn = Ey(o) β(ο), jφ = Vn . (14) 
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Apart from this, the vector A* = σ(ο) corresponding to a 
given Qmin presents for the values J and Vn calculated from 
Eq. (14) the matched injection conditions: any deviation from 
these conditions results in an increase of the diameter of the 
beam within the tube. 

Let us add the remark that in the particular case of a long-periodical 
channel and for η = 0 the search produces as solution 
σ(s) of Eq. (9), the vector of Floquet's modules ρ(s) of the 
channel. 

Let us assume, we are asked to determine the transmission 
characteristic of a tube for the acceleration of protons from an 
injection energy of 100 keV to a final energy of 1.65 MeV. 

A schematic drawing of the acceleration and focusing system 
of the tube is shown in Fig. 1, which is analogous to a figure 
in Ref. 2. The protons are focused by 16 quadrupole lenses and 
by axially symmetrical electrostatic lenses formed by non-magnetic 
metallic cylinders. The aperture radius of every lens is 
xℓ = 2.5 cm, the length of a lens is ℓℓ = 5.2 cm, the pattern 
formula of the system is FODO with all straight sections of the 
same length and with the period So = 15 cm. The accelerating 
cylinders are mechanically connected to the lenses and have an 
inner radius rc =2.3 cm and a length ℓc = 5.6 cm. The section 
of the entrance into the tube has been given the co-ordinate 
s = 0, and the section of the exit the co-ordinate s = L. 

As unit of length and unit of field gradient of the lenses 
have been chosen ℓo - 0.01 m and Go = 3.13 × 104 Τ/m, respectively. 

Based on the materials presented in Ref. 7 it is possible to 
calculate the gradient distribution along the tube axis of a single 
lens with the ratio 2rℓ/ℓℓ = 1 (dashed curves in Fig. 1): 
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g(s) = gm , b 1.5 rℓ , α = 3.25. (15) g(s) = 
1 + | 

So (2n - 1) - 4s |α , b 1.5 
ℓo 

, α = 3.25. (15) g(s) = 
1 + | 4b 

|α , b 1.5 
ℓo 

, α = 3.25. (15) 

Here is η the order number of a lens; n = 1.2 ... 16; gm = ± Gm/Go  
is the gradient of the centre of the lens. 

If several lenses are combined and if the screening effect 
is small, the gradient distribution can be obtained from a super­
position of the distributions of the single lenses (see Fig. 1). 
For a rough estimate it is even possible to replace it by a sinu­
soidal curve with the amplitude a = 0.85|gm|. 

The electrostatic potentials of the electrodes are indicated 
in Fig. 1 and the variation of the potential from the centre of 
one cylinder to another is given by (see Ref. 8): 

φ(s) = 
Un+1 + Un 

+ 
Un+1 - Un 

th {1.315 ℓo [s - (n - 1) 
So ]} (16) φ(s) = 2φo + 2φο 

th {1.315 ro [s - (n - 1) 2 ]} (16) 

where n, Un are the order number and the potential of the left 
hand side cylinder of a pair; n = 1.2 ... 16. 

In some cases it is practical to use quadrupole lenses made 
of permanent magnets (see Ref. 2). For the dimensions as indicated 
above one can easily obtain in the centre of the lenses a field 
gradient Gm of about 10 T/m, and by using special magnetic materials 
even higher gradients can be obtained. 

Below a system of identical lenses is considered with a gra­
dient Gm =9.1 T/m. 

Without acceleration and without current φ' = 0 , J = 0 the 
focusing channel of the tube can be described by the system of 
Eqs. (12) with periodical coefficients. There is in this case a 
Floquet solution σ(s) - ρ(s). The phase shift of incoherent oscil­
lations over one element of periodicity So of the channel is in 
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this case μo = 0.482 and the maximum of Floquet's module is 
ρmax = 6.38. With the help of the theory developed in Ref. 3 
one can calculate from these parameters the limit current Ilim 
for φ' = 0: 

I l i m = 
µo 

r n2 β3γ3 Io. I l i m = 2 ℓo So ρ2
max 

Io. (17) 

Taking rn = 1.5 cm we obtain from Eq. (17) Ilim = 84 mA, 
while the application of the described search procedure for 
φ' = 0 and Vn = 0 produces the value 82 mA. 

For the determination of the limit transmission characteris­
tic in presence of acceleration with φ' ≠ 0 the search method has 
been applied for the following values of the parameter η = J/Ey(o): 

0; 1.25 × 10-7; 1.98 × 10-7; 3.75 × 10-7; 9.35 × 10-7. 

Figure 2a shows as the result the maximum current Imax 
transmitted by the given tube as function of the phase space area 

Vn of the beam and for an amplitude of the incoherent oscillations 
of rn =1.5 cm. The calculated points agree well with the relation¬ 
ship found in Ref. 3: 

Imax = Ilim [1 - ( 
Vn )2]; Imax = Ilim [1 - ( Vo )2]; (18) 

if one takes Ilim = 350 mA, Vo = 0.93 cm mrad. 
It can bo seen from Fig. 2a that acceleration of currents 
close to Ilim = 350 mA is coupled with high phase space densities 
jφ = Imax/Vn (see Ref. 3). Obviously, in our case it is difficult 
to obtain Imax > 300 mA. This would mean that the necessary phase 
space density would be higher than 1 A/cm mrad, a value which is 
close to the limit of the best existing proton sources (see Ref. 9). 
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As already mentioned, together with the limit current and 
the phase space volume the matched injection conditions have been 
calculated, which are necessary for reaching these values. If a 
working point has been chosen on the limit curve Imax = f(Vn) of 
Fig. 2a, the injection conditions can be found from Fig. 2b, where 
the initial dimension x, y and the slopes x', y' of the beam 
envelopes at the entrance are plotted in Cartesian co-ordinates 
according to Eq. (1). The working region which would require a 
phase space density larger than 1 A/cm mrad are shaded in both 
Figs. 2a and 2b. 

By comparing the values Ilim. from Eqs. (17) and (18) equal 
to 84 mA and 350 mA, respectively, one recognizes the increase of 
the transmission characteristic of the tube, due to the presence 
of acceleration φ' ≠ 0. 

It should be noted that the electrostatic forces appearing 
from φ" ≠ 0 increase the limit current very little: an acceleration 
in a homogeneous field with φ' = const, φ" = 0 would lead to 
Ilim = 325 mA instead of Ilim = 350 mA from Eq. (18). 

The acceleration of beams larger than 300 mA in a tube of the 
described design would require stronger focusing, which is possible 
only by abandoning permanent magnets and by using electro-magnets 
for the quadrupole lenses. 

In Fig. 3a the transmission characteristic has been plotted 
for such a case with a field gradient of Gm = 25 T/m in the centre 
of the lens. This curve can also be described by Eq. (18) if one 
assumes Ilim = 1.0 A, Vo = 1.97 cm mrad. For every point of this 
curve one can find from Fig. 3b the corresponding matched injection 
conditions. Phase space densities jφ > 1 A/cm mrad (the shaded 
areas in Figs. 3a and 3b) correspond to a limit current higher than 
0.8 A. 
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The limit currents transmitted through the tube in absence 
of acceleration (φ' = 0), have been calculated with the help of 
Eq. (17) for the parameters μo = 1.42 and ρmax =4.97 by applying 
the search method. The values which have been found are 409 mA and 
438 mA, respectively. 

The authors are gratefully indebted to B.V. Chirikov for the 
discussion of the present paper and his interest in it. 
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Figure captions 

Fig. 1 Scheme of the accelerating tube. 

Fig. 2 The basic characteristics of an accelerating tube with 
quadrupole lenses formed by permanent magnets with a 
field gradient of Gm - 9.1 Τ/m in the centre of the 
lenses. 

a) dependence of the maximum accelerated current 
Imax (in mA) on the phase space volume of the beam Vn 

(in cm mrad). 

b) the matched values of the dimension x, y (in cm) and 
the slopes x', y' (dimensionless) of the beam envelope 
at the entrance into the tube. 

Fig. 3 The basic characteristics of an accelerating tube with 
electro-magnet quadrupole lenses with a field gradient of 
Gm = 25 Τ/m in the centre of the lenses, 

a) the dependence of the maximum accelerated current 
Imax (in A) on the phase space volume of the beam Vn 

(in cm mrad). 

b) the matched values of the dimension x, y (in cm) and 
the slopes x', y' (dimensionless) of the beam envelope 
at the entrance into the tube. 
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