CERN LIBRARIES, GENEVA

INVESTIGATON OF \triangle BEAM OT CHERGED PARTICIES BY MENS OR PTCK-UP ELECIRODES
by
L.I. Gol'din

Translated at CTRRN from
Pribory i Tekhnika Eksperimenta 1966
No. 4, pp. 18-21
by E . Fischer
(Original : Russian)
(CERN/Trans. 66-6)

October, 1966

Abstract

A theoretical investigatior has been carried cat on the problem of the measurement of the different characteristic values of a beam of charged particles with the help of pick-up electrodes. Recommendations are given on the cho ce of the form of the electrodes.

For the observation of beams of charged particles in accelerators usually pick-up electrodes are being used. In the general case these electrodes are a system of conductinध bodies isolated from ground and from each other. Under the influence of the electrical field of the beam potential differences appear between the electrodes. It is of some interest to clarify which are the characteristic values of a beam one can study with the help of pick-up electrodes and which form one should give to the electrodes. In agreement with the usually appliod technique, we assume that the directly measured values are the potential differences between two pick-up electrodes.

It is convenient to start the calculations from the following formula, the deduction of which is given in the appendix.

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=\int \varphi(x, y, z) \rho(x, y, z) d x d y d z \tag{1}
\end{equation*}
$$

where φ_{A} and φ_{B} are the potontials which appear on the conductors A and B if charges are brought in whic are distributed in space with the density $\rho(x, y, z)$ and $\varphi(x, y, z)$ is the potential of the point (x, y, z), appearing if a positive unit charce is brought onto the conductor A and the negative unit charge on the conductor B.

1. Two-dimensional field

Let us consider first the case of a two-dimensional field whero the charged distribution and the geometry of the rroblem do not depend on z. The triple integral in eq. (1) goes then over into a double one, ρ is then the two-
dimensional charge density and on the electrodes A and B one must bring unit charges per centimetre length. If charges are brought onto the electrodes A and B, the field distribution in any region which does not envelope the electrodes (I), is described by a function $\varphi(x, y)$ which fulfils in this region the Laplace equation. Any such function can be written in the form of a series:

$$
\begin{equation*}
\varphi(r, \alpha)=\sum_{m}\left(a_{m} r^{m} \cos m \alpha+b_{m} r^{m} \sin m \alpha\right) \tag{2}
\end{equation*}
$$

Substituting eq. (2) into eq. (1) we find:

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=\sum_{m=0}^{\infty} a_{m} I_{1, m}+\sum_{m=1}^{\infty} b_{m} I_{2, m} \tag{3}
\end{equation*}
$$

where:

$$
\left.\begin{array}{l}
\left.I_{1, m}=\iint r^{m+I_{\rho}(r, \alpha) \cos m \alpha d r d \alpha=\operatorname{Re} \int W^{m} \rho(W) d S}\right\} \tag{4}\\
I_{2, m}=\iint r_{m}+I_{\rho}(r, \alpha) \text { sic } m \alpha d r d \alpha=\operatorname{Im} \int W_{\rho}(W) d S
\end{array}\right\}
$$

$W=x+i y, d S$ the surface element in the plane x, y. The values of the coefficients a_{m} and b_{m} dopend on the form of clectrodes. If one wants, one can arrange that all coefficients except one are zero (see the end of this section). Consequently, each of the integrals $I_{1, m}$ and $I_{2, m}$ can be measured independently.

However, certain parameters of the beam can not be measured by no matter what system of pick-up clectrodes. Let us consider for instance a bearn in the cross-section of which the particles are homogeneously distributed on a circle of the radius R with its centre in the origin of the coordinate system. In this case, as it is easy to see, all integrals $I_{1, m}, I_{2, m}$ are equal to zero, with tho oxcoption of the integral $I_{1,0}=\pi R^{2} \rho=Q$. The full charge is therefore the only parametor of the beam
(1) Here, and in what follows, is assumod that the electrodes aro outside the region occupied by the beam.
that can be measured with the help of pick-up electrodes; the other important parameter the radius oi the beam \mathbb{R} is impossible to be measured.

Some Systems of Fick-Up Electrodes

a) The measurement of the beam charge.

Let us consider electrodes for which all the coefficionts a_{i}, b_{i}, are zero, with the exception of a_{0}. As can be seen from eqs. (3) and (4), such electrodes measure $I_{1,0}$ that is the charge of the beam. Esq. (2) shows that in the rogion that is not occupied by the beam the following equation must hold:

$$
\begin{equation*}
\varphi(r, a)=a_{0}=\text { const. } \tag{5}
\end{equation*}
$$

This condition is fulfilled in the region which is inside of a conductor. The second conductor must envelope the first one. The constant in eq. (5) is equal to the potential of the inner electrodes which appears if a unit charge is brought onto it, namely:

$$
a_{0}=1 / c_{4}
$$

where C is the specific capacity of the inner elcctrode with respect to the outer one.

By this way:

$$
\begin{equation*}
\varphi_{A}-\varphi_{D}=\omega / C \tag{6}
\end{equation*}
$$

b) Measurement of the beam displacement (first momenta)

If a_{1} is difforent from zero the single olectrodes measure:

$$
\begin{equation*}
I_{1,1}=\operatorname{Re} \int W \rho d S=\int x \cdot \rho d S=\langle x\rangle \varepsilon \tag{7}
\end{equation*}
$$

The potential distribution is describod by the formula:

$$
\begin{equation*}
\varphi(r, a)=a_{1} x \tag{8}
\end{equation*}
$$

Such field is created by an endless flat condcnsor, the plates of which are vertically positioned. Howevor, one should not make the condensor plates higher than necessary. In fact if one increases the height of the plates towards infinity, their spccific capacity with respect to each other (as well as their capacity with respect to the shield) goes to infinity too, and, consequently, the sensitivity of the system approaches zero. With the help of eq. (1) it is not difficult to find the relationshio between the potential distance of the electrodes and the capacity C(Fig. 1):

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=Q\langle x\rangle / i d . \tag{9}
\end{equation*}
$$

Under capacity we understand here (and evorywhere) a value which is the inverse of the potential difference appearing between the electrodes if unit specific charges are brought onto them in the real geometry of the experiment, that is in presence of a shield, of amplifier tubes to which the electrodes are connected and so on.

The height of the electrodes is detormincd by the accuracy with which one wants to suppress the contribution of torms of higher order.

The case in which not a_{1} is difforent from zcro, but b_{1} is different from the considered one by a rot tion by $\pi / 2$. In this case the electrodes measure the displacoments of the boam with respect to the y-axis.
c) The measurement of quadrupole noments.

If a_{2} is different from zero, the single electrodes measure:

$$
\begin{equation*}
I_{1,2}=\operatorname{Re} \int w^{2} \rho d S=\int\left(x^{2}-y^{2}\right) \rho d s=Q\left[\left\langle x^{2}\right\rangle-\left\langle y^{2}\right\rangle\right] . \tag{10}
\end{equation*}
$$

The single electrodes must be connected in pairs and must have a hyperboliCll shape (Fig. 2):

$$
\begin{equation*}
x^{2}-y^{2}= \pm d^{2} / 4 \tag{11}
\end{equation*}
$$

The potential difference between the olectrodes is determined by the formula:

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=\frac{2}{c} \frac{\left\langle x^{2}\right\rangle-\left\langle y^{2}\right\rangle}{d^{2}} Q, \tag{12}
\end{equation*}
$$

where C is the capacity of the systom, and is detcmined in the same way as in the foregoing case. By choosing the points where the hyperbolae breaks off one must again keep in mind that an increase in the electrode size (for a given d) not only the contribution of higher moment is being suppressed, but that also the sonsitivity of the system goes down.

The case where not a_{2} but b_{2} is different from zero is different from the considered case by a rotation by the angle $\pi / 4$.

Consequently, the simplest (after the beam displacement) characteristic value of the beam which can be measurod with the help of single electrodes is the average value $x^{2}-y^{2}$. This value characterizes the asymmotry of the beam distribution. It is zero for rotationally symmetrical
beam and has a maximum for a ribbon-shaped bean with one of the two diametors much sealler than the other one. In the case of a beam of negligibly small vortical dimension the electrodes moasure $\left\langle x^{2}\right\rangle=\left\langle\lambda^{2}+\left\langle\langle\Delta)^{2}\right\rangle\right.$. In the absence of the bean displacement this value describes the horizontal root mean square beam width. In tho general case for the deterrination of $\left\langle(\Delta x)^{2}\right\rangle$ one must measure as well $\langle x\rangle^{2}$ as $\langle x\rangle$. If the bean has a small horizontal width, the same electrodes measurc its sverage vertical extension (and give a signal of the opposite sign). If one tries to measuro the ribbon-shaped beam, which is inclined by an ancle of 45° with respect to the x-axis, the electrodes under consideration don't show anything, and it is necessary then to use electrodes which are rotated by an angle of $\pi / 4$ (the case $\mathrm{b}_{2} \neq$ zero). The electrodes can in this way observe the loss of beam stability in one dimension, if one oí the beam dimensions is blowing up, e.g. due to a parameter instability of the betatron oscillation.

The Form of the Elcctrodes

Let us consider the problem of finding the form of electrodes creating a field for which all the coefficients a_{i}, b_{i} are zero, except $a_{n}\left(o r b_{n}\right.$). The electricai field of tinis type is described by one term of the formula (2), e.g.:

$$
\begin{equation*}
\varphi(r, a)=a_{n} r^{n} \cos n \alpha . \tag{13}
\end{equation*}
$$

The electrodes are equipotential planes of the field and must follow a curve $\varphi(r, \alpha)=$ constant, e.g. fulfil the equations:

$$
\begin{align*}
& r_{1}^{n} \cos n \alpha_{1}=c \\
& r_{2}^{n} \cos n \alpha_{2}=a
\end{align*}
$$

where c and d are arbitrary constants.

The equations (14') and (14'') have in general several branches (Fig. 2). The electrodes placed on all the branches of one equation must be electrically connected. The constants c and d can be chosen arbitrarily. If $c=-d$, the electrodes are placed symmetrically with respect to the origin of the coordinate systom.

In some cases it can be useful to add to the surfacos of the single electrodes according to (14') and (14'1) a surface:

$$
r_{3}^{n} \cos n \alpha_{3}=0
$$

which must be connected to the shield. In the case considered on Fig. 2, such a surface is the line kk. Tho system of single electrodes has in this case not two, but only one hyperbolicel electrodes of either sign, and tho screen includes one half of the cylindricel surfacc shown on Fig. 2 and the surface kk.

2. Three-Dimensional Ficlds

When trying to calculate the potential districution in a threedimensional case, onc encounters serious mathematical difficulties. Usually it is simpler to choose the form of the electrodes by an empirical method. We limit ourselves therefore to some remarks of a general character:
a) Equation (1) shows that the sensitivity of the systen is proportional to $\varphi(x, y, z)$, e.g. inversely proportional to the capacity of the electrodes (capacity must here be understood in the same sonse as explained in suction 1.b);
b) The stray fiolds on the edges of the pick-up electrodes have not the same distribution as the field between the clectrodes. The contribution of the undesirable component depends therefore strongly on the contribution of the stray fields to the integral of eq. (1). It is better to work with electrodes the length of which is considerabl bigger than the transverse dimensions;
c) In most of the practical problems the dependence of the field of the electrodes on z is much stronger than the depondence of ρ on z ("long" beam). Assuming that in the region in which $\varphi \neq 0, \rho$ is independent of z, we find from eq. (1):

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=\int d x d y \rho(x, y) \int \varphi(x, y, z) d z \tag{15}
\end{equation*}
$$

where the intcgration has to be carried out over the region in which φ is essentially different from zero.

The integral field distribution:

$$
\begin{equation*}
\Phi(x, y)=\int \varphi(x, y, z) d z \tag{16}
\end{equation*}
$$

fulfils the two-dimensional Laplace equation and can be expressed in the form of a series according to eq. (2). The experimentally measurable value $\varphi_{A}-\varphi_{B}$ is defined by this series expression. One obtains the result leading to important practical conclusions. Let us consider, for instance, the measurement of the beam displacement. As it has already been said (see section 1.b) in the region which is occupied by the beam the field of the electrodes should be expressed by the formula $\varphi=a \mathrm{x}$.

The necessary properties has a field which is enclosed in a square, as is shown on Fig. 3, if the potential on tho dotted border line varies from - to + according to a linear law. In the case of two flat electrodes, this
condition is fulfillod only by the fiold of an infinitely large flat condensor. A field with the requived properties on be crented by the electrodes as shown on Fig. 4. Fore a field of the nocessery configuretion can be obteinod with considerably smallur capacity of the system. An analogous method can be applied for the improvement of tho electrodes of Fig. 2 .

So far we discussed the problem from a pure clectrostatio point of vicw. It is easy to sce that the motion of the bonn does not change our formule as long as the difference betwoon the length of the beom and the length of the electrodes exceeds considembly the transverse dimensions of the system. Por ghort beoms the ralativistic field compression has to be token into account. This, however, is hardly of any proctical intorost.

The author is indobted to E.K. Trrasov and P.R. Zenkyevitch for tho discussion of the results.

$A P P E N D I X$

We want to prove the theory mentioned in the introduction. We make use of Green's equation (1) which is valid for any finite and contir ous functions φ_{1} and φ_{2} :

$$
\begin{equation*}
\int\left(\varphi_{2} \Delta \varphi_{1}-\varphi_{1} \Delta \varphi_{2}\right) d v=\oint\left(\varphi_{2} \frac{\partial \varphi_{1}}{n}-\varphi_{1} \frac{\partial \varphi_{2}}{\mathrm{n}}\right) d S . \tag{A.1}
\end{equation*}
$$

Let φ_{1} and φ_{2} be the potentials for two different charge distributions. Then is:

$$
\begin{array}{ll}
\Delta \varphi_{1}=-4 \pi \rho_{1} ; & \partial \varphi_{1} / \partial n=-E_{l n} \tag{A.2}\\
\Delta \varphi_{2}=-4 \pi \rho_{2} ; & \partial \varphi_{2} / \partial n=-E_{2 n}
\end{array}
$$

Therefore:

$$
\int\left(\varphi_{2} \rho_{1}-\varphi_{1} \rho_{2}\right) d v=\frac{1}{4 \pi} \oint\left(\varphi_{2} \mathrm{E}_{\ln }-\varphi_{1} \mathrm{E}_{2 \mathrm{n}}\right) \mathrm{dS}, \quad \text { (A.3) }
$$

where ρ_{1} and ρ_{2} are the charge distributions, and $E_{l n}$ and $E_{2 n}$ the normal components of the electrical field strength vector. The integral on the risht-hand side of eq. (A.3) is carried out over the surfaces of the electrodes, the screen (if the system has one) or an infinitely far remoted sphere. The integral over the infinitely far remoted sphere equals zero, because φ and E go both simultaneously to zero. ike integral over grounded screen is also zero, because $\psi=0$. On the surface oif conducting bodies, the potential does not depend on the coordinates and:

$$
\begin{equation*}
\oint_{n} d S=-4 \pi Q \tag{A,4}
\end{equation*}
$$

where Q is the charge of the body.

We obtain therefore from eq. (A.3):

$$
\begin{equation*}
\int\left(\varphi_{2} \rho_{1}-\varphi_{1} \rho_{2}\right) d v+\sum_{i}\left(\varphi_{2 i} Q_{1 i}-\varphi_{1 i} Q_{2 i}\right)=0, \tag{A.5}
\end{equation*}
$$

where the sum has to be taken over all conductors. Let us assume that in the first distribution a charge q is located on the point x, y, z and in the second distribution the charges +1 and -1 are located on the bodies A and B (the pick-up electrodes). We find then from eq. (A.5):

$$
\begin{equation*}
\varphi(x, y, z) q=\varphi_{A}-\varphi_{B} \tag{A.6}
\end{equation*}
$$

Equation (A.6) can be generalized for the case of a condinuous charge distribution:

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=\varphi(x, y, z) \rho(x, y, z) d v, \tag{A.7}
\end{equation*}
$$

where φ_{A} and φ_{B} are tho potentials of tho bodies A and B, which appear for a charge density distribution $\rho(x, y, z)$ and $\varphi(x, y, z)$ is the potential which appors on the point (x, y, z) if one brings a unit positive charge on to the body A and the negative unit charge onto the body B.

Reference:

(I) I.E. TAMM, Fundarientals of the Theory of Electricity, 1946, Gosteichisdat, Hoscor.

Tigure Cartions:

Fig. I Electrodes measuring the bcam displacement.

Fig. 2 Electrodes measuring $\left\langle x^{2}\right\rangle-\left\langle y^{2}\right\rangle$

Fig. 3

Fig. 4 Electrodes measuring the beam displacement.

Fig. 1

Fig. 2

$$
\text { Fij. } 3
$$

