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Abstract 

A theoretical investigation has been carried out on the problem 
of the measurement of the different characteristic values of a beam of 
charged particles with the help of pick-up electrodes. Recommendations 
are given on the choice of the form of the electrodes. 

For the observation of beams of charged particles in accelerators 
usually pick-up electrodes are being used. In the general case these elec
trodes are a system of conducting bodies isolated from ground and from each 
other. Under the influence of the electrical field of the beam potential 
differences appear between the electrodes. It is of some interest to clarify 
which are the characteristic values of a beam one can study with the help 
of pick-up electrodes and which form one should give to the electrodes. 
In agreement with the usually applied technique, we assume that the directly 
measured values are the potential differences between two pick-up electrodes. 

It is convenient to start the calculations from the following formula, 
the deduction of which is given in the appendix. 

φA - φΒ = ∫ φ (x,y,z) ρ (x,y,z) dx dy dz (1) 

where φA and φB are the potentials which appear on the conductors A and 
Β if charges are brought in which are distributed in space with the density 
ρ (x,y,z) and φ (x,y,z) is the potential of the point (x,y,z), appearing 
if a positive unit charge is brought onto the conductor A and the negative 
unit charge on the conductor B. 

1. Two-dimensional field 

Let us consider first the case of a two-dimensional field where the charged 
distribution and the geometry of the problem do not depend on z. The triple 
integral in eq. (1) goes then over into a double one, ρ is then the two-
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dimensional charge density and on the electrodes A and Β one must 
bring unit charges per centimetre length. If charges are brought onto 
the electrodes A and B, the field distribution in any region which 
does not envelope the electrodes(1), is described by a function φ(x,y) 
which fulfils in this region the Laplace equation. Any such function can 
be written in the form of a series: 

φ(r,α) = Σ (amrm cos mα + bmrm sin mα). (2) φ(r,α) = 
m 

(amrm cos mα + bmrm sin mα). (2) 

Substituting eq. (2) into eq. (1) we find: 

φA - φΒ = 
∞ 

amIl,m 
∞ 

bmI2,m, (3) φA - φΒ = Σ amIl,m Σ bmI2,m, (3) φA - φΒ = m=0 amIl,m m=1 bmI2,m, (3) 

where: 

I1,m = ∫∫ rm+1ρ(r,α) cos mαdrdα = Re∫Wmρ(W)dS 

I2,m = ∫∫ rm + lρ (r,α) sic mαdrdα = Im∫Wmρ(W)dS, (4) 

W = x + iy, dS the surface element in the plane x,y. 
The values of the coefficients am and bm depend on the form of electrodes. 

If one wants, one can arrange that all coefficients except one 
are zero (see the end of this section). Consequently, each of the integrals 
I1,m and I2,m can be measured independently. 

However, certain parameters of the beam can not be measured by no 
matter what system of pick-up electrodes. Let us consider for instance a 
beam in the cross-section of which the particles are homogeneously distri
buted on a circle of the radius R with its centre in the origin of the 
coordinate system. In this case, as it is easy to see, all integrals 
I 1 , m , I2,m are equal to zero, with the exception of the integral 

I1,0 = πR2ρ = Q. The full charge is therefore the only parameter of the beam 

(1) Here, and in what follows, is assumed that the electrodes are outside 
the region occupied by the beam. 
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that can be measured with the help of pick-up electrodes; the other 
important parameter the radius on the beam R is impossible to be measured. 

Some Systems of Pick-Up Electrodes 

a) The measurement of the beam charge. 

Let us consider electrodes for which all the coefficients ai, bi, 
are zero, with the exception of ao. As can be seen from eqs. (3) and (4), 
such electrodes measure I1,0 that is the charge of the beam. Esq. (2) 
shows that in the region that is not occupied by the beam the following 
equation must hold: 

φ(r,a) = ao = const. (5) 

This condition is fulfilled in the region which is inside of a conductor. 
The second conductor must envelope the first one. The constant in eq. (5) 
is equal to the potential of the inner electrodes which appears if a unit 
charge is brought onto it, namely: 

ao = l/c, 

where C is the specific capacity of the inner electrode with respect 
to the outer one. 

By this way: 

φA - φB = Q/C (6) 
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b) Measurement of the beam displacement (first momenta) 

If al is different from zero the single electrodes measure: 

I1,1 = Re ∫ W ρdS = ∫x ρdS = <x>Q (7) 

The potential distribution is described by the formula: 

φ (r,a) = alx (8) 

Such field is created by an endless flat condensor, the plates of which 
are vertically positioned. However, one should not make the condensor 
plates higher than necessary. In fact if one increases the height of 
the plates towards infinity, their specific capacity with respect to 
each other (as well as their capacity with respect to the shield) goes 
to infinity too, and, consequently, the sensitivity of the system 
approaches zero. With the help of eq. (1) it is not difficult to find 
the relationship between the potential distance of the electrodes and 
the capacity C(Fig. 1): 

φΑ - φΒ = Q < x > / d . (9) 

Under capacity we understand here (and everywhere) a value which is the 
inverse of the potential difference appearing between the electrodes if 
unit specific charges are brought onto them in the real geometry of the 
experiment, that is in presence of a shield, of amplifier tubes to which the 
electrodes are connected and so on. 

The height of the electrodes is determined by the accuracy with 
which one wants to suppress the contribution of terms of higher order. 
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The case in which not a1 is different from zero, but b1 is different 
from the considered one by a rotation by π/2. In this case the electrodes 
measure the displacements of the beam with respect to the y-axis. 

c) The measurement of quadrupole moments. 

If a2 is different from zero, the single electrodes measure: 

I1,2 = Re ∫ W2ρdS = ∫(x2 - y2)ρds = Q [<x2> - <y2>]. (10) 
The single electrodes must be connected in pairs and must have a hyperboli¬ 
cal shape (Fig. 2): 

x2 - y2 = ± d2/4 (11) 

The potential difference between the electrodes is determined by the 
formula: 

φA - φΒ = 2 <x2> - <y2> Q , φA - φΒ = C d2 
Q , (12) 

where C is the capacity of the system, and is determined in the same way 
as in the foregoing case. By choosing the points where the hyperbolae 
breaks off one must again keep in mind that an increase in the electrode 
size (for a given d) not only the contribution of higher moment is being 
suppressed, but that also the sensitivity of the system goes down. 

The case where not a2 but b2 is different from zero is different 
from the considered case by a rotation by the angle π/4. 

Consequently, the simplest (after the beam displacement) character
istic value of the beam which can be measured with the help of single 
electrodes is the average value x2 - y2. This value characterizes the 
asymmetry of the beam distribution. It is zero for rotationally symmetrical 
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beam and has a maximum for a ribbon-shaped beam with one of the two diameters 
much snaller than the other one. In the case of a beam of negligibly small 
vertical dimension the electrodes measure <x2> = <x)2 + <(∆x) 2>. In 
the absence of the beam displacement this value describes the horizontal 
root mean square beam width. In the general case for the determination of 
<(∆x)2> one must measure as well <x>2 as <x>. If the beam has a 
small horizontal width, the same electrodes measure its average vertical 
extension (and give a signal of the opposite sign). If one tries to measure 
the ribbon-shaped beam, which is inclined by an angle of 45º with respect to 
the x-axis, the electrodes under consideration don't show anything, and it 
is necessary then to use electrodes which are rotated by an angle of π/4 
(the case b2 ≠ zero). The electrodes can in this way observe the loss of 
beam stability in one dimension, if one of the beam dimensions is blowing 
up, e.g. due to a parameter instability of the betatron oscillation. 

The Form of the Electrodes 

Let us consider the problem of finding the form of electrodes 
creating a field for which all the coefficients ai, bi are zero, except 
an (or b n ) . The el ectricax field of this type is described by one term 
of the formula (2), e.g.: 

φ (r, a) = anrn cos nα. (13) 

The electrodes are equipotential planes of the field and must follow 
a curve φ(r,α) = constant, e.g. fulfil the equations: 

rn1 cos nα1 = c, (14') 

rn2 cos nα2 = d, (14'') 
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where c and d are arbitrary constants. 

The equations (14') and (14'') have in general several branches 
(Fig. 2). The electrodes placed on all the branches of one equation must 
be electrically connected. The constants c and d can be chosen arbi
trarily. If c = -d, the electrodes are placed symmetrically with respect 
to the origin of the coordinate system. 

In some cases it can be useful to add to the surfaces of the single 
electrodes according to (14') and (14'') a surface: 

rn3 cos nα3 = 0 , (14''') 

which must be connected to the shield. In the case considered on Fig. 2, 
such a surface is the line kk. The system of single electrodes has in this 
case not two, but only one hyperbolical electrodes of either sign, and the 
screen includes one half of the cylindrical surface shown on Fig. 2 and the 
surface kk. 

2. Three-Dimensional Fields 

When trying to calculate the potential districution in a three-dimensional 
case, one encounters serious mathematical difficulties. Usually 
it is simpler to choose the form of the electrodes by an empirical method. 
We limit ourselves therefore to some remarks of a general character; 

a) Equation (1) shows that the sensitivity of the system is propor
tional to φ(x,y,z), e.g. inversely proportional to the capacity of the 
electrodes (capacity must here be understood in the same sense as explained 
in section 1.b); 
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b) The stray fields on the edges of the pick-up electrodes have 
not the same distribution as the field between the electrodes. The contri
bution of the undesirable component depends therefore strongly on the 
contribution of the stray fields to the integral of eq. (1). It is better to 
work with electrodes the length of which is considerabl bigger than the 
transverse dimensions; 

c) In most of the practical problems the dependence of the field of 
the electrodes on z is much stronger than the dependence of ρ on z 
("long" beam). Assuming that in the region in which φ ≠ 0, ρ is independent 
of z, we find from eq. (1): 

φA - φB = ∫ dx dy ρ(x,y) ∫ φ(x,y,z) dz, (15) 

where the integration has to be carried out over the region in which φ 
is essentially different from zero. 

The integral field distribution: 

(x,y) =∫ φ (x,y,z) dz (16) 

fulfils the two-dimensional Laplace equation and can be expressed in 
the form of a series according to eq. (2). The experimentally measurable 
value φA - φB is defined by this series expression. One obtains the 
result leading to important practical conclusions. Let us consider, for 
instance, the measurement of the beam displacement. As it has already been 
said (see section 1.b) in the region which is occupied by the beam the 
field of the electrodes should be expressed by the formula φ = ax. 

The necessary properties has a field which is enclosed in a square, 
as is shown on Fig. 3, if the potential on the dotted border line varies from 
- to + according to a linear law. In the case of two flat electrodes, this 
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condition is fulfilled only by the field of an infinitely large flat 
condensor. A field with the required properties can be created by the 
electrodes as shown on Fig. 4. Here a field of the necessary configuration 
can he obtained with considerably smaller capacity of the system. An analogous 
method can be applied for the improvement of the electrodes of Fig. 2. 

So far we discussed the problem from a pure electrostatic point of 
view. It is easy to see that the motion of the beam does not change our 
formula as long as the difference between the length of the beam and the 
length of the electrodes exceeds considerably the transverse dimensions 
of the system. For short beams the relativistic field compression has to 
be taken into account. This, however, is hardly of any practical interest. 

The author is indebted to E.K. Tarasov and P.R. Zenkyevitch for the 
discussion of the results. 
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A P P E N D I X 

We want to prove the theory mentioned in the introduction. We make 
use of Green's equation which is valid for any finite and contin ous functions 
φ1 and φ2: 

∫(φ2·∆φ1 - φ1∆φ2)dv = ∫(φ2 ∂φ1 - φ1 ∂φ2 ) dS. (A.1) ∫(φ2·∆φ1 - φ1∆φ2)dv = ∫(φ2 n - φ1 n ) dS. (A.1) 

Let φ1 and φ2 be the potentials for two different charge distributions. 
Then is: 

∆φ1 = - 4πρ1; ∂φ1/∂n = - E1n 
(Α.2) 

∆φ2 = - 4πρ 2; ∂φ2/∂n = - Ε2n 

Therefore: 

∫(φ2ρ1 - φ1ρ2) dV = 
1 

∫(φ2Ε1n - φ1Ε2n)dS, (Α.3) ∫(φ2ρ1 - φ1ρ2) dV = 4 π ∫(φ2Ε1n - φ1Ε2n)dS, (Α.3) 

where ρ1 and ρ2 are the charge distributions, and Ε1n and Ε2n  
the normal components of the electrical field strength vector. The integral 
on the right-hand side of eq. (A.3) is carried out over the surfaces of 
the electrodes, the screen (if the system has one) or an infinitely far 
remoted sphere. The integral over the infinitely far remoted sphere equals 
zero, because φ and Ε go both simultaneously to zero. The integral over 
grounded screen is also zero, because φ = 0. On the surface of conducting 
bodies, the potential does not depend on the coordinates and: 

∫ En dS = - 4 π Q , (Α.4) 
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where Q is the charge of the body. 

We obtain therefore from eq. (A.3): 

∫ (φ2ρ1 - φ1ρ2)dv + Σ (φ2iQ1i - φ1iQ2i) = 0, (A.5) ∫ (φ2ρ1 - φ1ρ2)dv + 
i (φ2iQ1i - φ1iQ2i) = 0, (A.5) 

where the sum has to be taken over all conductors. Let us assume that 
in the first distribution a charge q is located on the point x,y,z and 
in the second distribution the charges +1 and -1 are located on the 
bodies A and Β (the pick-up electrodes). We find then from eq. (A.5): 

φ (x, y, z) q = φΑ - φΒ (A·6) 

Equation (Α.6) can be generalized for the case of a condinuous charge 
distribution: 

φA - φB = φ(x,y,z) ρ (x,y,z) dv, (Α.7) 

where φA and φB are the potentials of the bodies A and B, which 
appear for a charge density distribution ρ(x,y,z) and φ(x,y,z) is the 
potential which appears on the point (x,y,z) if one brings a unit positive 
charge onto the body A and the negative unit charge onto the body B. 

Reference: 

(1) I.E. ΤΑMM, Fundamentals of the Theory of Electricity, 1946, 
Gosteichisdat, Moscow. 
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Figure Captions: 

Fig. 1 Electrodes measuring the beam displacement. 

Fig. 2 Electrodes measuring <x2> - <y2> 

Fig. 3 ---

Fig. 4 Electrodes measuring the beam displacement. 






