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NON-LEPTONIC WEAK DECAYS OF B MESONS

MATTHIAS NEUBERT
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

BERTHOLD STECH
Institut für Theoretische Physik der Universität Heidelberg

Philosophenweg 16, D-69120 Heidelberg, Germany

We present a detailed study of non-leptonic two-body decays of B mesons based on
a generalized factorization hypothesis. We discuss the structure of non-factorizable
corrections and present arguments in favour of a simple phenomenological descrip-
tion of their effects. To evaluate the relevant transition form factors in the fac-
torized decay amplitudes, we use information extracted from semileptonic decays
and incorporate constraints imposed by heavy-quark symmetry. We discuss tests
of the factorization hypothesis and show how unknown decay constants may be de-
termined from non-leptonic decays. In particular, we find fDs

= (234 ± 25) MeV
and fD∗

s
= (271 ± 33) MeV.

1 Introduction

The weak decays of hadrons containing a heavy quark offer the most direct
way to determine the weak mixing angles of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix and to explore the physics of CP violation. At the same time,
they are of great help in studying strong-interaction physics related with the
confinement of quarks and gluons into hadrons. Indeed, both tasks complement
each other: an understanding of the connection between quark and hadron
properties is a necessary prerequisite for a precise determination of the CKM
matrix and CP-violating phases.

The simplest processes are those involving a minimum number of hadrons,
i.e. a single hadron in the final state of a semileptonic decay, or two hadrons in
the final state of a non-leptonic decay. In recent years, much progress has been
achieved in understanding these processes. Simple bound-state models are able
to describe, in a semiquantitative way, the current matrix elements occurring in
semileptonic decay amplitudes 1−11. A factorization prescription for reducing
the hadronic matrix elements of four-quark operators to products of current
matrix elements shed light onto the dynamics of non-leptonic processes 12,13,
where even drastic effects had been lacking an explanation before.

More recently, the discovery of heavy-quark symmetry14−19 and the estab-
lishment of the heavy-quark effective theory 20−31 have provided a solid theo-
retical framework to calculate exclusive semileptonic transitions between two
hadrons containing heavy quarks, such as the decays B̄ → D(∗)ℓ ν̄. Moreover,
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the heavy-quark expansion has been applied to the calculation of inclusive
semileptonic, non-leptonic and rare decay rates 32−40 and of the lifetimes of
charm and bottom hadrons 41−47. These developments are discussed in detail
in the article of one of us (M. Neubert) in this volume. In particular, they lead
to a precise determination of the CKM matrix element governing the strength
of b→ c transitions:

|Vcb| = 0.039± 0.002 . (1)

In this article, we shall discuss non-leptonic two-body decays of B mesons.
The dynamics of non-leptonic decays, in which only hadrons appear in the
final state, is strongly influenced by the confining colour forces among the
quarks. Whereas in semileptonic transitions the long-distance QCD effects
are described by few hadronic form factors parametrizing the hadronic ma-
trix elements of quark currents, non-leptonic processes are complicated by the
phenomenon of quark rearrangement due to the exchange of soft and hard glu-
ons. The theoretical description involves matrix elements of local four-quark
operators, which are much harder to deal with than current operators. These
strong-interaction effects prevented for a long time a coherent understanding
of non-leptonic decays. The ∆I = 1

2 rule in strange particle decays is a promi-
nent example. Although this selection rule had been known for almost four
decades, only recently successful theoretical approaches have been developed
to explain it in a semiquantitative way 48−51. The strong colour force between
two quarks in a colour-antitriplet state has been identified as the dominant
mechanism responsible for the dramatic enhancement of ∆I = 1

2 processes.
The discovery of the heavy charm and bottom quarks opened up the pos-

sibility to study a great variety of new decay channels. By now, there is an
impressive amount of experimental data available on many exclusive and in-
clusive decay modes. In many respects, non-leptonic decays of heavy mesons
are an ideal instrument for exploring the most interesting aspect of QCD, i.e.
its non-perturbative, long-range character. Since the initial state consists of an
isolated heavy particle and the weak transition operator exhibits a well-known
and simple structure, a detailed analysis of decays into particles with different
spin and flavour quantum numbers provides valuable information about the
nature of the long-range forces influencing these processes, the same forces
that determine the internal structure of all hadrons.

In energetic two-body transitions, hadronization of the decay products
does not occur until they have traveled some distance away from each other 52.
The reason is that once the quarks have grouped into colour-singlet pairs, soft
gluons are ineffective in rearranging them. The decay amplitudes are then ex-
pected to factorize into products of hadronic matrix elements of colour-singlet
quark currents. The factorization approximation has been applied to many
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two-body decays of B and D mesons13,16,53−62. It relates the complicated non-
leptonic decay amplitudes to products of meson decay constants and hadronic
matrix elements of current operators, which are similar to those encountered
in semileptonic decays. The decay constants are fundamental hadronic param-
eters providing a measure of the strength of the quark-antiquark attraction
inside a hadronic state. As some of them are not directly accessible in leptonic
or electromagnetic processes, their extraction from non-leptonic transitions
may provide important information.

In Section 2, we discuss the effective Hamiltonian relevant for decays of
the bottom quark. In Section 3, we provide a prescription for the calculation of
non-leptonic decay amplitudes in the factorization approximation. We discuss
the problems connected with factorization, such as the choice of a suitable
factorization scale and its possible dependence on the energy released in a
decay process. In Section 4, we then discuss in more detail the structure of non-
factorizable corrections. Using the 1/Nc expansion, we argue that in energetic
two-body decays of B mesons a generalized factorization prescription holds,
which involves two parameters aeff

1 ≈ c1+ζc2 and aeff
2 ≈ c2+ζc1 depending on a

hadronic parameter ζ = O(1/Nc). We estimate that the process dependence of
ζ is very mild, suppressed as ∆E/mb, where ∆E is the difference in the energy
release in different two-body decay channels. Some basic aspects of final-state
interactions are briefly covered in Section 5. The remainder of this article is
devoted to a phenomenological description of non-leptonic two-body decays
of B mesons. In the factorization approximation, the ingredients for such an
analysis are meson decay constants and transition form factors. In Section 6,
we collect the current experimental information on meson decay constants. In
Section 7, we describe two simple models that provide a global description
of heavy-to-heavy and heavy-to-light weak decay form factors, embedding the
known constraints imposed by heavy-quark symmetry 18,19,63. With only a
few parameters, these models reproduce within errors the known properties of
decay form factors and predict those form factors which are yet unknown. Our
approach is meant to provide global predictions for a large set of non-leptonic
decay amplitudes. We do not attempt here a more field-theoretical calculation
of weak amplitudes, nor do we perform a dedicated investigation of individual
decay channels.a In Sections 8 and 9, we compare our predictions with the
experimental data on two-body non-leptonic decays of B mesons, present tests
of the factorization assumption, and extract the decay constants of Ds and D∗

s

mesons. In Section 10, we briefly address the interesting possibility of B-meson
decays into baryons. A summary and conclusions are given in Section 11.

aAttempts of a more rigorous calculation of some particular decay modes are discussed
in the article by R. Rückl in this volume.
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2 Effective Hamiltonian

At tree level, non-leptonic weak decays are described in the Standard Model by
a single W -exchange diagram. Strong interactions affect this simple picture in
a two-fold way. Hard-gluon corrections can be accounted for by perturbative
methods and renormalization-group techniques. They give rise to new effective
weak vertices. Long-distance confinement forces are responsible for the binding
of quarks inside the asymptotic hadron states. The basic tool in the calculation
of non-leptonic amplitudes is to separate the two regimes by means of the
operator product expansion (OPE)64, incorporating all long-range QCD effects
in the hadronic matrix elements of local four-quark operators. This treatment
appears well justified due to the vastly different time and energy scales involved
in the weak decay and in the subsequent formation of the final hadrons.

Integrating out the heavy W -boson and top-quark fields, one derives the
effective Hamiltonian for b→ c, u transitions 65,66:

Heff =
GF√

2

{

Vcb
[

c1(µ)Qcb1 + c2(µ)Qcb2
]

+ Vub
[

c1(µ)Qub1 + c2(µ)Qub2

]

+ h.c.

}

+ penguin operators. (2)

It consists of products of local four-quark operators renormalized at the scale
µ and scale-dependent Wilson coefficients ci(µ). Vcb and Vub are elements of
the quark mixing matrix. The operators Q1 and Q2, written as products of
colour-singlet currents, are given by

Qcb1 =
[

(d̄′u)V−A + (s̄′c)V−A

]

(c̄b)V−A ,

Qcb2 = (c̄u)V−A (d̄′b)V−A + (c̄c)V−A (s̄′b)V−A ,

Qub1 =
[

(d̄′u)V−A + (s̄′c)V−A

]

(ūb)V−A ,

Qub2 = (ūu)V−A (d̄′b)V−A + (ūc)V−A (s̄′b)V−A , (3)

where d′ and s′ denote weak eigenstates of the down and strange quarks, re-
spectively, and (c̄b)V−A = c̄ γµ(1−γ5)b etc. Without strong-interaction effects
we would have c1 = 1 and c2 = 0. This simple result is modified, however, by
gluon exchange: the original weak vertices get renormalized, and new types of
interactions (such as the operators Q2) are induced. Not explicitly shown in
(2) are the so-called penguin operators 66. Since their Wilson coefficients are
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b u
cd b u

cd
Figure 1: Hard-gluon corrections giving rise to the Wilson coefficients c1(µ) and c2(µ) in

the effective weak Hamiltonian.

very small, the corresponding contributions to weak decay amplitudes only be-
come relevant in rare decays, where the tree-level contribution is either strongly
CKM-suppressed, as in B̄ → K̄(∗)π, or where matrix elements of the Q1 and
Q2 operators do not contribute at all, as in B̄ → K̄∗γ and B̄0 → K̄0φ.

The Wilson coefficients ci(µ) take into account the short-distance cor-
rections arising from the exchange of gluons with virtualities between mW

and some hadronic scale µ, chosen large enough for perturbation theory to
be applicable. The coefficients c1(µ) and c2(µ), for example, arise from the
hard-gluon exchanges shown in Figure 1. The effects of soft gluons (with
virtualities below the scale µ) remain in the hadronic matrix elements of
the local four-quark operators Qi. In the course of the evolution from mW

down to the scale µ there arise large logarithms of the type [αs ln(mW /µ)]n,
which must be summed to all orders in perturbation theory. This is achieved
by means of the renormalization-group equation (RGE). The combinations
c±(µ) = c1(µ)±c2(µ) of the Wilson coefficients have a multiplicative evolution
under change of the renormalization scale. They can be obtained from the
solution of the RGE

(

µ
d

dµ
− Γ±

)

c±(µ) = 0 , (4)

with the initial condition c±(mW ) = 1, corresponding to c1(mW ) = 1 and
c2(mW ) = 0. The quantities Γ± in (4) are the anomalous dimensions of the
operators (Q1 ±Q2). At one-loop order, they are given by 67,68

Γ± = γ±
αs
4π

; γ± = 6

(

±1 − 1

Nc

)

, (5)

where Nc = 3 is the number of colours. To leading logarithmic order (LO),
the solution of the RGE is

c±(µ) =

(

αs(mW )

αs(µ)

)γ±/2β0

; β0 =
11

3
Nc −

2

3
nf , (6)
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where β0 is the first coefficient of the β function, and nf the number of active
flavours (in the region betweenmW and µ). The physical origin of the enhance-
ment of c−(µ) can be traced back to the attractive force between two quarks in
the colour-antitriplet channel of the scattering process b+u→ c+d. Similarly,
in the colour-sextet channel the force is repulsive, leading to c+(µ) < 1.

The leading logarithmic approximation can be improved by including the
next-to-leading (NLO) corrections of order αs[αs ln(mW /µ)]n. The result is

c±(µ) =

(

αs(mW )

αs(µ)

)γ±/2β0
{

1 +R±

αs(µ) − αs(mW )

4π

}

, (7)

where the coefficients R± are given by 69,70 (β1 is the two-loop coefficient of
the β function)

R± =
Nc ∓ 1

2Nc

{

±6β1

β2
0

+
1

2β0

(

21 ∓ 57

Nc
± 19

3
Nc ∓

4

3
nf

)

∓ 11

}

. (8)

In Table 1, we show the values of c1(mb) and c2(mb) obtained at leading
and next-to-leading order. The evolution of the running coupling constant is
done at two-loop order, using the normalization αs(mZ) = 0.118 ± 0.003. For
comparison, we show in Table 2 the values obtained at a lower scale, which
may be relevant to charm decays. The negative sign of c2(µ) has important
consequences for decays in which there is significant interference between c1
and c2 amplitudes.

In a typical hadronic decay process such as B̄0 → D+̺−, there are several
mass scales involved: the hadron masses, the quark masses, the energy release,
etc. Thus, there is an uncertainty in the choice of the “characteristic scale” of
a process. In principle this is not a problem, since the products of the Wilson
coefficients with the hadronic matrix elements of the local four-quark operators
are scale independent. In practice, however, one often employs simple model
estimates of the matrix elements, which usually do not yield an explicit scale
dependence that could compensate for that of the Wilson coefficients. Instead,
these model calculations are assumed to be valid on a particular scale. A re-
lated technical problem is that whereas the operator evolution from mW down
to mb can be calculated in a straightforward way, a more complicated scaling
behaviour is expected below the mass of the b quark, where all the other mass
scales start to become relevant. There have been attempts to account for the
scaling in the region µ < mb by summing logarithms of the type [αs ln(mb/µ)]n

and [αs ln(E/µ)]n, with E = O(mb) being the large energy of a light parti-
cle produced in a two-body decay of a B meson 71,72. However, at present
the treatment of such corrections is still associated with large uncertainties.
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Table 1: Values of the Wilson coefficients at the scale mb = 4.8 GeV, both at leading (LO)
and next-to-leading (NLO) order

αs(mZ) cLO
1 (mb) cLO

2 (mb) cNLO
1 (mb) cNLO

2 (mb)

0.115 1.102 −0.239 1.124 −0.273

0.118 1.108 −0.249 1.132 −0.286

0.121 1.113 −0.260 1.140 −0.301

Table 2: Values of the Wilson coefficients at the scale mc = 1.4 GeV

αs(mZ) cLO
1 (mc) cLO

2 (mc) cNLO
1 (mc) cNLO

2 (mc)

0.115 1.240 −0.476 1.313 −0.576

0.118 1.263 −0.513 1.351 −0.631

0.121 1.292 −0.556 1.397 −0.696

We shall thus stay with the conventional choice µ = O(mb) adopted in most
previous work on non-leptonic B decays.

3 Factorization

In weak interactions, a meson (or meson resonance) can be directly generated
by a quark current carrying the appropriate parity and flavour quantum num-
bers. The corresponding contribution to a decay amplitude factorizes into the
product of two current matrix elements 73,74. As an example, consider the
transition B̄0 → D+ π−. The factorizable part of the amplitude is given by

Afact = −GF√
2
Vcb V

∗
ud a1 〈π−| (d̄u)A | 0 〉 〈D+| (c̄b)V |B̄0〉 . (9)

The coefficient a1 will be discussed below. The B̄0 → D+ transition matrix
element is of the same type as that encountered in the semileptonic decay B̄0 →
D+ℓ−ν. It can be determined using data on semileptonic decays together with
theoretical arguments based on heavy-quark symmetry 19. The amplitude for
creating a pion from the vacuum via the axial current is parametrized by the
decay constant fπ and is proportional to the momentum of the pion:

〈π−(p)| d̄ γµγ5u | 0 〉 = ifπpµ . (10)
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Thus it seems natural to assume that the amplitude for energetic weak decays,
in which the directly generated meson carries a large momentum, is dominated
by its factorizable part. This assumption can be substantiated by a more
detailed analyses of the kinematic situation in the above decay process: a fast
moving (ūd) pair created in a point-like interaction, with both quarks leaving
the interaction region in the same direction and with a velocity close to the
speed of light, will hadronize only after a time given by its γ factor times a
typical hadronization time τhad ∼ 1 fm/c. In the above example, this means
that hadronization occurs about 20 fm away from the remaining quarks. Inside
the interaction region, the (ūd) pair behaves like a colourless and almost point-
like particle. It does little interact with the remaining quarks. Because of this
intuitive “colour transparency argument” 52, one expects that the factorizable
part (9) of the decay amplitude does indeed give the dominant contribution
to the full amplitude. A more formal investigation of this situation, using
an effective theory for heavy quarks and fast-moving light quarks, has been
presented in Ref. 72.

In the following applications, we shall adopt the factorization ansatz also
for processes in which the γ factors of the outgoing particles are not necessarily
large. Examples of such decays are B̄ → K̄ J/ψ and B̄ → D D̄s. In these
cases, the kinematic argument given above does no longer apply. Nevertheless,
in a two-body process, the concentration of energy into colour-singlet states
together with the fact that (axial) vector current matrix elements increase
with the particle momentum favours the direct current-induced production
of mesons over more complicated production mechanisms. Only comparison
with experiment can tell whether factorization is a useful concept also for
those processes. We will analyse the structure of non-factorizable corrections
in Section 4, and discuss some tests of the factorization approximation in
Section 9.

By factorizing matrix elements of the four-quark operators contained in
the effective Hamiltonian (2), one can distinguish three classes of decays 12,13.
The first class contains those decays in which only a charged meson can be
generated directly from a colour-singlet current, as in B̄0 → D+π−. For these
processes, the relevant QCD coefficient is given by the combination

a1 = c1(µf ) + ζ c2(µf ) , (class I) (11)

where ζ = 1/Nc (Nc being the number of quark colours), and µf = O(mb) is the
scale at which factorization is assumed to be relevant. The term proportional
to c2(µf ) arises from the Fierz reordering of Q2 operators and factorization of
the product of colour-singlet currents contained in it. At this point, the colour-
octet term resulting from the Fierz reordering is simply being discarded. In
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order to remove this deficiency, one should treat ζ as a free parameter. This
will be discussed in more detail in the next section.

A second class of transitions consists of those decays in which the meson
generated directly from the current is neutral, like the J/ψ particle in the
decay B̄ → K̄ J/ψ. The corresponding decay amplitude,

Afact =
GF√

2
Vcb V

∗
cs a2 〈J/ψ| (c̄c)V | 0 〉 〈K̄| (s̄b)V |B̄〉 , (12)

is proportional to the QCD coefficient

a2 = c2(µf ) + ζ c1(µf ) . (class II) (13)

Due to the different sign and magnitude of the Wilson coefficients (see Table 1),
the combination a2 is particularly sensitive to the value of the factorization
scale and to any additional long-distance contributions (i.e., to the precise
value of ζ). The QCD coefficient a1, on the other hand, can be estimated
quite reliably.

The third class of transitions covers decays in which the a1 and a2 ampli-
tudes interfere, such as in B− → D0π−. Their final state contains a charged as
well as a neutral meson, both of which can be generated from a current of one
of the operators of the effective Hamiltonian. The corresponding amplitudes
involve a combination

a1 + xa2 , (class III) (14)

where x = 1 in the formal limit of a flavour symmetry for the final-state
mesons, as it is realized in the strongly CKM-suppressed decay B− → π0π−.

In principle, there is another type of factorizable contribution to weak de-
cay amplitudes, which is however significantly different from the ones covered
so far: the so-called “weak annihilation contribution” 75,76, in which the de-
caying heavy meson is annihilated by a current of one of the operators of the
effective Hamiltonian. For a charged meson, this contribution is proportional
to a1, while it is proportional to a2 for a neutral meson. In the latter case,
the weak annihilation is in fact the exchange of a W boson between the two
constituent quarks. In a weak annihilation process, the second current in the
four-quark operator produces all the recoiling final-state particles out of the
vacuum, which implies a sizable form factor suppression. Therefore, annihila-
tion amplitudes are expected to be small, and it is commonly assumed that
they may be neglected for all except some rare processes. This approxima-
tion is not an essential part of the factorization scheme, however. It would be
straightforward to include the annihilation contributions if the relevant form
factors at large time-like values of q2 were known.
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Let us come back to our first example of a class I decay, collecting all
the different pieces of the factorizable contribution to the decay amplitude.
Inserting (10) and a suitable form factor decomposition of the hadronic matrix
element (see Appendix) into (9), we obtain

Afact(B̄
0 → D+π−) = −i GF√

2
Vcb V

∗
ud a1 fπ (m2

B −m2
D)FB→D

0 (m2
π) . (15)

Note that it is the longitudinal form factor F0 which enters this expression,
whereas (in the limit of vanishing lepton mass) the semileptonic decay ampli-
tude for B̄0 → D+ℓ−ν involves the transverse form factor F1. Fortunately,
heavy-quark symmetry provides relations between all the B̄ → D(∗) transition
form factors 19,63. They allow us to relate F0 to form factors which are easily
accessible experimentally.b

Note that the hadronic matrix elements of the vector and axial currents
resulting from the factorization of the matrix elements of four-quark operators
do not show any scale dependence that could compensate the scale dependence
of the Wilson coefficients. Strictly speaking, therefore, factorization cannot be
correct. What one may hope for is that it provides a useful approximation
if the Wilson coefficients (or equivalently the QCD coefficients a1 and a2) are
evaluated at a suitable scale µf , the factorization point. Because the factorized
hadronic matrix elements can only account for the interaction between quarks
remaining together in the same hadron, the Wilson coefficients in effective
Hamiltonian should contain those gluon effects which redistribute the quarks.
Thus, we have to evolve these coefficients down to a scale where the gluons are
no longer effective in changing the particle momenta in a significant way. For
very energetic decays, the “colour transparency argument” shows that gluons
with virtualities much below the mass of the decaying particle are ineffective
in rearranging the final-state quarks 52,72, and µf = O(mb) seems a reasonable
choice for the factorization scale. However, for processes in which the decay
products carry only little kinetic energy, gluons with virtualities well below
mb can still lead to a redistribution of the quarks before hadronization sets
in. This fact may be used as an argument in favour of a lower factorization
scale in such processes. On a qualitative level, the connection between the
factorization scale and the energy release in the final state can be seen from
Figure 2, where we show the ratio a2/a1 as a function of αs(µf ). As we will see
in Section 8, the value preferred by B̄ → Dπ decays is positive and corresponds
to a rather small coupling, indicating µf = O(mb). On the other hand, D

bIn addition, in the present case the smallness of the pion mass allows us to use the
kinematic constraint F0(0) = F1(0) (see Appendix) to relate F0 to a measurable semileptonic
form factor.
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Figure 2: The ratio a2/a1 as a function of the running coupling constant evaluated at the
factorization scale. The bands indicate the phenomenological values of a2/a1 extracted from

B̄ → Dπ and D → Kπ decays.

decays indicate a negative value of a2/a1, corresponding to a significantly lower
value of the factorization scale. This is in accordance with the fact that in these
processes the energy released to the final-state particles is only about 1 GeV.
Moreover, it reflects that for low-energetic processes hadronic weak decays
exhibit a strong ∆I = 1

2 enhancement, which is significant in D decays and
even spectacular in K decays. A strict ∆I = 1

2 selection rule would correspond
to a2/a1 = −1. Because of these intuitive arguments, we are led to abandon
the “naive” factorization prescription adopted in most previous work, where
a fixed factorization scale µf = mb was taken for all B decays, in favour of a
more flexible factorization scheme, in which µf – or equivalently ζ in (11) and
(13) – is treated as a process-dependent parameter.

We end this section with a remark on very low-energetic processes such as
K decays. Factorization of hadronic matrix elements of four-quark operators
into two matrix elements of colour-singlet currents implies that only those non-
perturbative forces that act between quarks and antiquarks are taken into ac-
count. The remaining interactions including, in particular, the gluon exchange
between two quarks or two antiquarks are treated perturbatively. However, in
the decays of strange particles the long-distance attraction between two quarks
in a colour-antitriplet state gives the dominant contribution to ∆I = 1

2 decay
amplitudes. A detailed analysis of these “diquark effects” can be found in
Ref. 51. As will be briefly discussed in Section 10, we expect similar effects
to be important in B decays into baryon-antibaryon pairs. For energetic B
decays into two mesons, on the other hand, the two quarks (or antiquarks) do
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not end up in the same final-state hadron, and a perturbative treatment of
their mutual interaction seems justified.

4 Corrections to Factorization and the 1/Nc Expansion

Let us now illustrate in more detail the structure of the corrections to the
factorization approximation (for a similar discussion, see Refs. 59, 60). For a
given class I or class II two-body decay channel, the effective Hamiltonian (2)
can be rewritten using Fierz identities in such a way that the quarks are paired
according to the flavour quantum numbers of the final-state hadrons.c This
introduces products of two colour-singlet or two colour-octet current operators.
The hadronic matrix elements of the latter ones are being neglected in the naive
factorization approximation.

Consider again the example of the decay B̄0 → D+π−. In this case, the
appropriate form to write the effective Hamiltonian is

Heff =
GF√

2
Vcb V

∗
ud

{ (

c1(µ) +
c2(µ)

Nc

)

(d̄u)V−A (c̄b)V−A

+
c2(µ)

2
(d̄tau)V−A (c̄tab)V−A

}

+ . . . , (16)

where (d̄ tau)V−A = d̄ γµ(1 − γ5)tau etc., and we have shown explicitly the
dependence on the number of colours. For a given decay process, let us now
define two hadronic parameters as follows:

ε
(BD,π)
1 (µ) ≡ 〈π−D+| (d̄u)V−A (c̄b)V−A |B̄0〉

〈π−| (d̄u)V−A | 0 〉 〈D+| (c̄b)V−A |B̄0〉 − 1 ,

ε
(BD,π)
8 (µ) ≡ 〈π−D+| (d̄tau)V−A (c̄tab)V−A |B̄0〉

2〈π−| (d̄u)V−A | 0 〉 〈D+| (c̄b)V−A |B̄0〉 . (17)

They parametrize the non-factorizable contributions to the hadronic matrix
elements and are process dependent. Here the subscript refers to the colour
structure of the operator, whereas the superscript indicates the particles in-
volved in the process. The final-state particle with flavour quantum numbers
of one of the currents is given last. This superscript is written only when neces-
sary to avoid confusion. In terms of these new parameters the decay amplitude
resumes the form given in (9), however, with a1 replaced by the new coefficient

aeff
1 =

(

c1(µ) +
c2(µ)

Nc

)

[

1 + ε
(BD,π)
1 (µ)

]

+ c2(µ) ε
(BD,π)
8 (µ) . (18)

cIn all our applications, class III amplitudes are related to combinations of class I and II
amplitudes by isospin relations.
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Similarly, in the class II transition B̄0 → D0π0 we encounter the effective
coefficient

aeff
2 =

(

c2(µ) +
c1(µ)

Nc

)

[

1 + ε
(Bπ,D)
1 (µ)

]

+ c1(µ) ε
(Bπ,D)
8 (µ) . (19)

Since we have introduced these parameters without loss of generality, the
effective coefficients aeff

i take into account all contributions to the matrix ele-
ments and are thus µ independent. In other words, the hadronic parameters
εi(µ) restore the correct µ dependence of the matrix elements, which is lost in
the naive factorization approximation. Using the RGE for the coefficient func-
tions, it is then straightforward to show that the µ dependence of the hadronic
parameters is, in the leading logarithmic order, given by

1 + ε1(µ) =
1

2

[(

1 +
1

Nc

)

[

1 + ε1(µ0)
]

+ ε8(µ0)

]

κ+

+
1

2

[(

1 − 1

Nc

)

[

1 + ε1(µ0)
]

− ε8(µ0)

]

κ− ,

ε8(µ) =
1

2

[(

1 − 1

Nc

)

ε8(µ0) +

(

1 − 1

N2
c

)

[

1 + ε1(µ0)
]

]

κ+

+
1

2

[(

1 +
1

Nc

)

ε8(µ0) −
(

1 − 1

N2
c

)

[

1 + ε1(µ0)
]

]

κ− ,

(20)

where κ± = [αs(µ)/αs(µ0)]
γ±/2β0 , and µ0 is an arbitrary normalization point.

It is interesting to evaluate these expressions assuming that there exists a scale
µ0 = µf where factorization holds, i.e. where εi(µf ) = 0. It then follows that

ε1(µ) =
1

2

(

1 +
1

Nc

)

κ+ +
1

2

(

1 − 1

Nc

)

κ− − 1 = O(1/N2
c ) ,

ε8(µ) =
1

2

(

1 − 1

N2
c

)

(κ+ − κ−) = O(1/Nc) , (21)

and expanding in powers of αs we obtain

ε1(µ) = O(α2
s) , ε8(µ) = −4αs

3π
ln

µ

µf
+O(α2

s) . (22)

To deduce the dependence on the number of colours, we have used the ex-
pressions for the anomalous dimension given in (5). Note that the large-Nc
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counting rules, ε1 = O(1/N2
c ) and ε8 = O(1/Nc), are independent of the

assumption that factorization holds at the scale µf
77,78. Hence, from first

principles of QCD, we expect that |ε1| ≪ 1, whereas contributions from ε8 can
be more sizable.

Similar counting rules can be derived for the Wilson coefficients ci(µ);
however, they can be obscured by the presence of the large logarithm L =
ln(mW /µ). In general, we have

c1(µ) = 1 +O(L/N2
c ) , c2(µ) = O(L/Nc) . (23)

At the scale µ = mb, it is evident from Table 1 that one can consistently treat
L = O(1), and thus c1 = 1 + O(1/N2

c ) and c2 = O(1/Nc). For much lower
scales, such as µ = mc, however, Table 2 shows that it is appropriate to take
L/Nc = O(1), and therefore c1 = 1 +O(1/Nc) and c2 = O(1).

Let us now discuss the relation of this general approach to the conventional
factorization scheme, focusing first on the case of B decays. Naive factoriza-
tion corresponds to setting εi(mb) = 0, in which case a1 and a2 are universal,
process-independent coefficients, which are simply linear combinations of the
Wilson coefficients c1(mb) and c2(mb). In (18) and (19) we have shown how
these relations are modified by the presence of non-factorizable corrections.
From the above discussion it follows that non-factorizable corrections are ex-
pected to be small in class I transitions. In class II decays, on the other hand,
the contribution proportional to ε8 is enhanced by the large value of the ra-
tio |c1/c2|. Hence, as a general rule, we expect sizable violations of the naive
factorization approximation in class II decays only. Explicitly, evaluating the
general expressions in the large-Nc limit, we find

aeff
1 = c1(µ) + c2(µ)

(

1

Nc
+ ε

(BD,π)
8 (µ)

)

+O(1/N2
c ) = 1 +O(L/N2

c ) ,

aeff
2 = c2(µ) + c1(µ)

(

1

Nc
+ ε

(Bπ,D)
8 (µ)

)

+O(L/N3
c ) . (24)

In B decays, with L = O(1) and neglecting terms of order 1/N2
c , we can rewrite

this as
aeff
1 ≈ 1 , aeff

2 ≈ c2(mb) + ζ c1(mb) , (25)

with

ζ ≡ 1

Nc
+ ε

(Bπ,D)
8 (mb) . (26)

Note that, with the same accuracy, the first relation in (25) may be replaced
by aeff

1 ≈ c1(mb) + ζ c2(mb). It is important to stress at this point that the
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naive choice a1 = c1 + c2/Nc and a2 = c2 + c1/Nc does not correspond to any
consistent limit of QCD 78; in particular, this is not a prediction of the 1/Nc
expansion. Since the parameter ε8 is of order 1/Nc, the two contributions to
ζ are expected to be of similar magnitude, and hence ζ should be considered
as an unknown dynamical parameter. In other words, the large-Nc counting
rules of QCD predict that related class I and class II two-body decays, such
as B̄0 → D+π− and B̄0 → D0π0, or B̄0 → D+̺− and B̄0 → D0̺0, can be
described (up to corrections of order 1/N2

c ) using factorization with a single
phenomenological parameter ζ = O(1/Nc). Strictly speaking, however, this
parameter will take different values for different class II decay channels. The
picture emerging from this discussion is equivalent to the concept of using
a process-dependent factorization scale µf , discussed in the previous section.
This scale is defined such that ε8(µf ) ≡ 0. Using (22) one may then calculate
the corresponding value of ε8(mb) and thus the ζ parameter for each process.

We can go a step further and estimate the expected size of the process
dependence of the parameter ζ. From Figure 2, we know that for the par-
ticular case of B̄ → Dπ transitions factorization holds at a high scale, i.e.

ε
(Bπ,D)
8 (µf ) = 0 for µf ∼> mb and thus ζ ≈ 1/3. If we now assume that in

other two-body decays of B mesons the factorization scale is lower because
there is less energy released to the final-state particles, we may use relation
(22) to obtain for the change in ζ:

∆ζ = ∆ε8(mb) ≈
4αs(mb)

3π

∆E

mb
≈ 0.02 × ∆E

1 GeV
, (27)

where ∆E is the difference in the energy release in different decay channels.
In the two-body B decays of interest to us, ∆E is always smaller than 1 GeV,
so that ∆ζ becomes a parameter of order 1/mb. The corresponding variations
of ζ are of order a few per cent, which is small compared with the value of ζ
itself (ζ ≈ 1/3 for B̄ → Dπ decays).

To summarize this discussion, we repeat that in energetic two-body decays
of B mesons the large-Nc counting rules of QCD predict that factorization
with aeff

1 ≈ 1 works well for class I transitions, whereas class II transitions
can be described by a phenomenological coefficient aeff

2 ≈ c2(mb) + ζ c1(mb)
with ζ = O(1/Nc). Based on an intuitive argument, we have estimated that
the process dependence of ζ is very mild, since ∆ζ ∼ ∆E/mb. Thus, we have
provided a theoretical basis for the phenomenological treatment of using a
factorization prescription in which the phenomenological parameter ζ is taken
to be the same for all energetic two-body decays of B mesons.

Let us briefly also discuss the case of charm decays. Here the large-Nc
counting rules are different, because empirically L/Nc = O(1). Then, neglect-
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ing terms of order 1/N2
c , we find instead of (25) the relations

aeff
1 ≈ c1(mc) + ζ′ c2(mc) , aeff

2 ≈ c2(mc) + ζ c1(mc) , (28)

with

ζ′ ≡ 1

Nc
+ ε

(DK,π)
8 (mc) , ζ ≡ 1

Nc
+ ε

(Dπ,K)
8 (mc) . (29)

In general, class I and II transitions can no longer be described by the same
ζ parameter. However, we may again argue that the expected process depen-
dence of the ζ parameters is a mild one. In (27) now appears the smaller
charm-quark mass in the denominator, but on the other hand the energy dif-
ference ∆E in the numerator is smaller than in B decays. As a consequence,
we still have ∆ζ of order a few per cent; in particular, then, we expect ζ′ ≈ ζ.
That ζ in (25) should be treated as a phenomenological parameter, rather than
fixed to the value ζ = 1/3 predicted by naive factorization, was the basis of
the approach of Bauer et al. 13 (see also Ref. 53). It turns out that setting
ζ ≈ 0 provides a successful description of many two-body decays of D mesons.
To some extend, this phenomenological “rule of discarding 1/Nc terms” can
be understood in the context of QCD sum rules 79, and using more formal con-
siderations based on the heavy-quark expansion 80. From the above argument,
it follows that if ζ ≈ 0 for one D decay mode, it is expected to be a small
parameter also for other channels.

As a final comment, we note that whereas the concept of introducing
effective, process-dependent parameters aeff

i works in most two-body decays of
B and D mesons, it has to be modified in decays where the final state consists
of two vector particles (P → V V decays). The polarization of the final-state
particles in such processes is very sensitive to non-factorizable contributions
and final-state interactions. The ratios between S-, P- and D-wave amplitudes
predicted in the factorization approximation are affected since non-factorizable
contributions to the amplitude will, in general, have a different structure for
different partial waves 59. In other words, the matrix elements describing the
non-factorizable contributions to the decay amplitudes are spin-dependent,
thus affecting the polarization of the final-state particles. Likewise, final-state
interactions are different for different partial waves. They may change S- into
D- waves even without changing the total decay rate. A case of particular
interest is the polarization of the J/ψ particle in the decay B → K̄∗J/ψ. Most
models predict a longitudinal polarization of around 40% (a model that we
shall introduce in Section 7 predicts 48%), whereas the experimental world
average is 81 (78± 7)%. A recent CLEO measurement, however, gives 82 (52±
7 ± 4)%. Although a clear picture has not yet emerged, it is possible that
the first deviations from factorization predictions in B decays will be seen
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in polarization data. Indeed, it has been argued that spin-dependent non-
factorizable effects are necessary to understand the data 83 (see, however, also
the discussion in Ref. 8).

5 Final-State Interactions

In the conventional factorization approximation, the scattering of the final-
state particles off each other is neglected, and all amplitudes are real (apart
from an arbitrary common phase). Watson’s theorem, however, requires the
amplitudes to have the same phases as the corresponding scattering ampli-
tudes 84. Moreover, in two-body decays, the final state must be of low angular
momentum, and we know that S- and P-wave scattering amplitudes in the
GeV region are, in general, inelastic.

Let us first consider a scattering eigenstate, i.e. an eigenstate of the S
matrix. The phase of the amplitude for the decay into this state, which is in
general a linear combination of physical final states, is identical to the cor-
responding scattering phase. But final-state interactions will, in general, also
affect the magnitude of the scattering amplitudes. By definition, these interac-
tions occur in a space-time region where the final-state particles have already
been formed in their ground states, but are still strongly interacting while re-
coiling from each other. Accordingly, for a very energetic two-body decay with
a pion in the final state, the “colour transparency argument” of the previous
section already excludes the possibility of significant final-state interactions,
since the light quark-antiquark pair will have left the region of strong inter-
action long before it hadronizes into a pion. In a weak decay involving small
recoil energies, however, the product kR (particle momentum times the radius
of the strong-interaction region) is of the same order as the scattering phase
δ, which is O(1). Therefore, in such a decay rescattering will indeed change
also the magnitude of the decay amplitude. In K → 2π decays, for exam-
ple, rescattering effects lead to an enhancement of the ∆I = 1

2 amplitude by
≈ 30% and to a reduction of the ∆I = 3

2 amplitude by ≈ 10% 51. Fortunately,
in very energetic processes such as exclusive B decays, the phase δ is negligible
compared to kR, and we may safely assume that the magnitude of the ampli-
tude for decays into a scattering eigenstate remains unchanged by final-state
interactions. As a consequence, the relation between the amplitudes Ai for
decays into final states i (which are, in general, not scattering eigenstates) to
the “bare” amplitudes A0

i is

Ai =
(

S1/2
)

ij
A0
j , (30)

where S denotes the strong-interaction S matrix.
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The S matrix can redistribute the amplitudes into different channels car-
rying the same quantum numbers, including those channels which were not
originally coupled to the weak process. To illustrate the consequences of (30)
we consider, as an extreme example, a two-channel S matrix with maximal
absorption (S11 = S22 = 0):

S =

(

0 eiϕ

eiϕ 0

)

. (31)

The square root of this matrix is

S1/2 =
1√
2

exp
{

i
(ϕ

2
− π

4

)}

(

1 i
i 1

)

. (32)

For a vanishing “bare” amplitude for decays into the second channel (A0
2 =

0), the amplitude A1 for decays into the first channel is reduced by a factor
1/

√
2, leading to a 50% reduction in the corresponding branching ratio. The

second channel, in spite of not being directly accessible through the weak decay,
obtains an amplitude of the same magnitude. Although this is an extreme
example, one should be aware of the fact that different decay channels influence
each other. In particular, decays with small branching ratios may have been
modified or even caused by a “spill-over” from stronger modes.

Obviously, using the factorization approximation we can only attempt to
calculate the “bare” decay amplitudes A0

i . However, summing over all decay
channels with the same conserved quantum numbers, the uncertainties con-
nected with final-state interactions drop out. The reason is that, because of
(30) and the unitarity of the S matrix, we have

∑

i

|Ai|2 =
∑

i

|A0
i |2 , (33)

i.e. this sum of decay rates remains unaffected by final-state interactions. By
measuring the branching ratios of several related decay channels, one can ex-
tract the magnitudes of the corresponding isospin amplitudes as well as their
relative phases 85. The same isospin amplitudes can also be obtained from the
“bare” decay amplitudes calculated in the factorization approximation. Ne-
glecting inelastic rescattering, one can then extract the QCD coefficients aeff

1

and aeff
2 from a comparison of measured and calculated isospin amplitudes.

It is well-known that final-state interactions are important in D decays;
they must be included in the comparison of theoretical predictions with data57.
For B decays, on the other hand, we expect smaller final-state interaction
effects. Because of the large energy released to the particles in the final state,
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the magnitude of the isospin amplitudes should not be modified significantly by
final-state interactions. Moreover, there do not exist any charm resonances in
the B meson mass region that could lead to strong final-state interactions. As
an example, consider the decays B̄ → Dπ. The four-quark operator (d̄u)(c̄b),
which is part of the effective weak Hamiltonian relevant for B decays, carries
isospin quantum numbers I = 1 and I3 = +1 and thus can transform a B̄0

meson into a state with I = 1
2 or I = 3

2 , while the B− can only decay into
final states with I = 3

2 . Accordingly, we define the following (complex) isospin
amplitudes:

A1/2 = 〈Dπ; I = 1
2 |Heff |B̄0〉

A3/2 = 〈Dπ; I = 3
2 |Heff |B̄0〉 =

1√
3
〈Dπ; I = 3

2 |Heff |B−〉 . (34)

They are related with the physical decay amplitudes through

A(B̄0 → D+π−) =

√

1

3
A3/2 +

√

2

3
A1/2

A(B̄0 → D0π0) =

√

2

3
A3/2 −

√

1

3
A1/2

A(B− → D0π−) =
√

3A3/2 . (35)

Although the phases of the measured decay amplitudes are unknown, we can
extract from (35) the isospin amplitudes as well as their relative phase:

|A1/2|2 = |A(B̄0 → D+π−)|2 + |A(B̄0 → D0π0)|2

− 1

3
|A(B− → D0π−)|2

|A3/2|2 =
1

3
|A(B− → D0π−)|2

cos(δ3/2 − δ1/2) =
3|A(B̄0 → D+π−)|2 − 2|A1/2|2 − |A3/2|2

2
√

2|A1/2||A3/2|
. (36)

Let us assume that the magnitudes of the three physical amplitudes had been
measured. We could then use these relations to determine the magnitudes of
the two isospin amplitudes as well as their relative phase. In order to compare
the results with the amplitudes calculated in the factorization approximation,
we must assume that the magnitude of the isospin amplitudes remains unaf-
fected by final-state interactions. In other words, the contribution of inelastic
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Table 3: Upper limits for the relative phase shifts between the two isospin amplitudes in
some exclusive hadronic B decays

Ratio CLEO (90% CL) |δ3/2 − δ1/2|
B(B̄0 → D0π0)/B(B− → D0π−) < 0.07 < 36◦

B(B̄0 → D0̺0)/B(B− → D0̺−) < 0.05 < 30◦

B(B̄0 → D∗0π0)/B(B− → D∗0π−) < 0.13 < 53◦

B(B̄0 → D∗0̺0)/B(B− → D∗0̺−) < 0.07 < 36◦

scattering into or from other channels has to be negligible. Then neglecting
final-state interactions simply amounts to neglecting the relative phase shift
between the different isospin amplitudes, and we can directly compare the the-
oretical predictions obtained for |A1/2| and |A3/2| with the experimental values
for these quantities.

Unfortunately, in B decays complete measurements of the class of decay
amplitudes relevant to the isospin analysis described above are not yet avail-
able. Still, we can use existing data to obtain upper bounds on the relative
phase shifts in some interesting cases. In our example, it is the amplitude
A(B̄0 → D0π0) that has not yet been measured. However, from the current
upper limit for the corresponding branching ratio we can derive an upper limit
for the relative phase shift |δ3/2 − δ1/2|. To this end, we represent the second
relation in (35) as a triangle in the complex plane. An elementary geometrical
argument shows that the angle between A1/2 and A3/2 is maximal when there
is a right angle between A1/2 and A(B̄0 → D0π0). Hence

sin2(δ3/2 − δ1/2) ≤
9

2

τ(B−)

τ(B̄0)

B(B̄0 → D0π0)

B(B− → D0π−)
. (37)

Similar inequalities can be derived for the phase shifts in other decay channels.
Using then experimental upper limits for colour-suppressed B decay modes
obtained by the CLEO Collaboration 81,86, as well as τ(B−)/τ(B̄0) = 1.06 ±
0.04 for the lifetime ratio 87, we obtain the results shown in Table 3. The next
generation of CLEO data is likely to produce still smaller upper bounds for the
various phase shifts, but even the current limits are a strong indication that
final-state interactions in hadronic two-body decays of B mesons are much less
important than in the corresponding decays of D mesons. We will therefore
neglect them in our analysis.
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6 Decay Constants

The evaluation of factorized amplitudes requires the knowledge of meson decay
constants and hadronic form factors of current matrix elements. We shall
discuss first what is known about decay constants. For a pseudoscalar meson
P = (q1q̄2), we define

〈 0 | q̄2γµγ5q1 |P (p)〉 = ifP pµ . (38)

The decay constant fV of a vector meson P = (q1q̄2) is defined by d

〈 0 | q̄2γµq1 |V (ǫ)〉 = ǫµmV fV . (39)

The experimental values of the decay constants of the charged pion and
kaon, as obtained from their leptonic decays P+ → ℓ+νℓ (γ), are 88

fπ = (130.7 ± 0.37) MeV , fK = (159.8 ± 1.47) MeV . (40)

For charm mesons, the uncertainties in the experimental values of the leptonic
decay rates are much larger. For the D+ meson, only an upper bound can be
deduced from the published data 89:

fD < 310 MeV (90% CL) . (41)

Four groups (WA7590, CLEO91, BES92, and E65393) have measured theD+
s →

µ+νµ branching ratio, from which the decay constant fDs
can be extracted.

The average value is 87

fDs
= (241 ± 37) MeV . (42)

Later, we shall compare this result with an independent determination of fDs

from non-leptonic decays.
The decay constants of light charged mesons can also be obtained from the

1-prong hadronic decays of the τ lepton. Denoting the relevant CKM-matrix
element by Vij , and neglecting radiative corrections, we write the corresponding
decay width as

Γ(τ− →M−ντ ) =
m3
τ

16π
G2
F |Vij |2 f2

M

(

1 − m2
M

m2
τ

)2 (

1 + bM
m2
M

m2
τ

)

, (43)

dFor the neutral mesons ̺0 and ω, we use the current ūγµu on the left-hand side of

(39) and divide the right-hand side by
√

2. With this definition and under the assumption
of isospin symmetry, the decay constants of neutral and charged ̺ mesons have the same
numerical value.
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Table 4: Decay constants of light charged mesons extracted from hadronic τ decays

M π K ̺ K∗ a1

fM [MeV] 134 ± 1 158 ± 3 208 ± 1 214 ± 7 229 ± 10

Table 5: Decay constants of neutral vector mesons extracted from their electromagnetic
decays

V ̺ ω φ J/ψ ψ(2S)

cV 1/2 1/18 1/9 4/9 4/9

fV [MeV] 216 ± 5 195 ± 3 237 ± 4 405 ± 14 282 ± 14

with bP = 0 for pseudoscalar and bV = 2 for (axial) vector mesons. We
use mτ = 1777 MeV for the mass of the τ lepton and ττ = 291.0 ± 1.5 fs
for its lifetime 88. Moreover, we use the following branching ratios for τ− →
M−ντ

88,94: (11.31 ± 0.15)% (π), (0.69 ± 0.03)% (K), (24.94 ± 0.16)% (̺),
(1.25± 0.08)% (K∗), and (17.65± 0.32)% (a1). This leads to the values of the
decay constants shown in Table 4. Only experimental errors are quoted. The
results for fπ and fK are in excellent agreement with those given in (40).

The decay constants of neutral vector mesons can be extracted from their
electromagnetic decay width, using

Γ(V 0 → e+e−) =
4π

3

α2

mV
f2
V cV , (44)

where cV are factors related to the electric charge of the quarks that make up
the vector meson. From the measured widths 88, we obtain the results shown
in Table 5. The errors reflect the uncertainty in the experimental data only.
The value for f̺ obtained in this way is somewhat larger than that derived
from τ decays. In our analysis below, we take f̺ = 210 MeV. In all other
cases, we take the central values shown in the Tables.

We note for completeness that the decay constants of light neutral pseu-
doscalar mesons can be extracted from the two-photon decay P 0 → γγ. Av-
eraging the results reported by the TPC/2γ 95 and CELLO 96 Collaborations,
we find

fη = (131 ± 6) MeV , fη′ = (118 ± 5) MeV . (45)
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Decay constants not yet known experimentally are left as free parameters
in our expressions for the branching ratios. However, we will often need an
estimate for the decay constants of charm mesons, such as D and D∗. In
the heavy-quark limit (mc → ∞), spin symmetry predicts that fD = fD∗ ,
and most theoretical predictions indicate that symmetry-breaking corrections
enhance the ratio fD∗/fD by 10–20% 19. Hence, we take as our central values

fD = 200 MeV , fD∗ = 230 MeV ,

fDs
= 240 MeV , fD∗

s
= 275 MeV . (46)

The value for fD lies in the ball park of most theoretical predictions, whereas
that for fDs

corresponds to the central experimental result quoted in (42).

7 Transition Form Factors

The most important ingredient of factorized decay amplitudes are the hadronic
form factors defined in terms of the covariant decomposition of hadronic matrix
elements of current operators. In particular, we need matrix elements of the
type

〈M | q̄γµ(1 − γ5)b |B〉 , (47)

where M is a pseudoscalar or vector meson with mass mM . There are two
form factors (F0, F1) describing the transition to a pseudoscalar particle, and
four form factors (V , A0, A1, A2) for the transition to a vector particle. The
definitions of these form factors are given in the Appendix. Conventionally,
they are written as functions of the invariant momentum transfer q2. To obtain
reliable theoretical predictions for the form factors is the main obstacle in the
analysis of hadronic weak decays, once the factorization hypothesis is accepted.

In the case of the heavy-to-heavy transitions B̄ → D and B̄ → D∗, heavy-
quark symmetry implies simple relations between the various transition form
factors. In the heavy-quark limit, they read 63

F1(q
2) = V (q2) = A0(q

2) = A2(q
2) =

mB +mM

2
√
mBmM

ξ(w) ,

F0(q
2) = A1(q

2) =
2
√
mBmM

mB +mM

w + 1

2
ξ(w) , (48)

where

w = vB · vM =
m2
B +m2

M − q2

2mBmM
(49)
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is the product of the velocities of the two mesons, and the universal (mass-
independent) function ξ(w) is called the Isgur-Wise form factor 18,28. This
function is normalized to unity at the kinematic point w = 1, where the two
mesons have a common rest frame. For the realistic case of finite heavy-quark
masses, the above relations are modified by corrections that break heavy-quark
symmetry. They can be analysed in a systematic way using the heavy-quark
effective theory 19−31. This is discussed in detail in the article by one of us
(M. Neubert) in this volume. As a consequence, it has become possible to
extract the B̄ → D(∗) form factors relevant for all class I transitions considered
in this article from semileptonic decay data with good precision and in an
essentially model-independent way. The results are compiled in Ref. 57. The
use of heavy-quark symmetry constitutes a significant improvement compared
with earlier estimates of non-leptonic amplitudes, which were based on model
calculations of the relevant form factors.

Unfortunately, there has not been similar progress in the calculation of
hadronic current matrix elements between heavy and light mesons. For these
transitions, we still must rely on the results obtained using some phenomeno-
logical model. One such model (below referred to as the NRSX model) was in-
troduced in Ref. 57, where we used the overlap integrals of the BSW model1,13

to obtain the form factors at zero momentum transfer, and then proposed a
specific ansatz for their q2 dependence motivated by pole dominance and the
relations in (48). Another model 7, which we shall not discuss in detail, has
been used by Deandrea et al. 58 to perform a global analysis of non-leptonic
decays comparable to ours.

In order to get an idea about the unavoidable amount of model dependence,
which will affect our predictions for class II decays ofB mesons, we will consider
an alternative to the NRSX model. The main purpose here is not to provide a
new approach that is more sophisticated; on the contrary, we will make several
strong assumptions to obtain a model as simple as possible. Yet, we have
checked that it agrees, within reasonable limits, with the available data on
semileptonic decays, as well as with most theoretical predictions. We thus feel
confident that this model may also be used advantageously to obtain rough
estimates for other processes, such as rare B decays and decays of Bs mesons.

In the case of heavy-to-light transitions, the symmetry relations in (48)
are no longer valid. We account for this by introducing, for each form factor,
a function ξi(w) replacing the Isgur-Wise function. There is, however, still a
connection between various form factors provided by kinematic constraints at
zero momentum transfer (q2 = 0), corresponding to

w = wmax =
m2
B +m2

M

2mBmM
. (50)
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There, the form factors satisfy the relations

F1(0) = F0(0) ,

A0(0) =
mB +mM

2mM
A1(0) − mB −mM

2mM
A2(0) . (51)

The normalization condition for the Isgur-Wise function is replaced by the
inequalities

ξF0(1) ≤ 1 , ξA1(1) ≤ 1 , (52)

which follow from equal-time commutation relations for a heavy b quark. For
an estimate of the functions ξi(w) we shall adopt a simple pole model, which
apart from the masses of some resonances has no tunable parameters. This
model reproduces the relations (48) in the heavy-quark limit. It will serve for
an immediate estimate of all form factors in the physical region of q2. As a
starting point, we write ξi(w) =

√

2/(w + 1)hi(w), where hi(w) will be simple

monopole form factors. In the heavy-quark limit, the prefactor
√

2/(w + 1) can
be shown to yield an upper bound for the Isgur-Wise function 63. For heavy-
to-light form factors, on the other hand, this factor ensures that ξi(w) ∼ w−3/2

for large w, in accordance with the scaling rules obtained in Ref. 97. In the
next step we make the strong assumption that the symmetry relations in (48)
still hold for heavy-to-light form factors, but only at the point q2 = 0. In other
words, we assume that all the hi(wmax) are equal. This is a minimal ansatz
that preserves the kinematic relations in (51). For the functions hi(w) with
i = F1, V , A0 and A2, we take

hi(w) = N
wmax − wi
w − wi

, (53)

where N is a common normalization factor. Note that, according to its defi-
nition, the value of wmax in hF1 is different from that in the other three cases.
The locations of the poles are at

wi =
m2
B +m2

M −M2
i

2mBmM
, (54)

where Mi denotes the mass of the nearest resonance with the appropriate spin-
parity quantum numbers. Most of these masses are known experimentally;
some others (such as the masses of the Bc and B∗

c mesons) are taken from
potential models. To obtain the masses of the 1+ resonances, we simply add
400 MeV to the masses of the corresponding 1− states, as suggested by the
spectroscopy of the light and charm mesons, and use the same values for the
A1 and A2 form factors.
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It remains to find an ansatz for hF0(w) and hA1(w). For simplicity, we
choose to normalize these functions to unity at w = 1, corresponding to a
complete overlap of the initial and final states at the same velocity [cf. (52)].
Moreover, we have to satisfy the condition hF0(wmax) = hA1(wmax) = N .
Thus, we take (for j = F0, A1)

hj(w) =
1

1 + r
w − 1

wmax − 1

, (55)

where N = 1/(1 + r) is still a free parameter. To fix it, we try to mimic the
effect of the physical axial vector (1+) pole on the form factor A1(w) near
w = 1. In order to have full correspondence with the pole structure of the
other form factors in (53), the factor 1

2 (w + 1) in (48) has to be included.
Therefore, we require that the derivative of the product 1

2 (w + 1)hA1(w) at
w = 1 be equal to the derivative of a single-pole form factor with the physical
pole mass MA1 . The result is

r =
(mB −mV )2

4mBmV

(

1 +
4mBmV

M2
A1

− (mB −mV )2

)

, (56)

where V is a vector meson. The same value of r is then taken for hF0(w).
With these simple assumptions, all form factors are determined.

A few tests of this model may be quoted here: The branching ratios for
the semileptonic decays B̄ → D∗ℓ ν̄ and B̄ → D ℓ ν̄ are found to be 5.3%
and 1.8%, respectively. The corresponding experimental values are 88 (4.64 ±
0.26)% and (1.8 ± 0.4)%. In the semileptonic decay B̄ → ̺ ℓ ν̄, the values
for the form factors at q2 = 0 are V = A1 = A2 = 0.26, in accordance with
the predictions V = 0.35 ± 0.07, A1 = 0.27 ± 0.05 and A2 = 0.28 ± 0.05
obtained using QCD sum rules 98. The expected branching ratio for this decay
is 25.5|Vub|2, which when combined with the experimental result 99 B(B̄ →
̺ ℓ ν̄) = (2.5+0.8

−0.9) × 10−4 yields |Vub| = (3.1 ± 0.5) × 10−3. The calculated
̺/π ratio in exclusive semileptonic B decays is 2.2, as compared with the
experimental value of 99 1.4 ± 0.6. Finally, comparing the calculated B̄ → π
form factor F1(q

2) at threshold with the B∗-pole structure at this point 100,101

gives gBB∗π = 0.54× (0.2 GeV/fB∗) for the BB∗π coupling constant, which is
of the expected order.
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8 Theoretical Predictions, Comparison with Experiment and De-

termination of aeff

1
and aeff

2

We first discuss the results obtained using the NRSX model 57. To obtain pre-
dictions for the branching ratios from the factorized decay amplitudes, we use
τ(B̄0) = 1.55±0.04 ps and τ(B−) = 1.65±0.04 ps for the B-meson lifetimes87,
and Vcb = 0.039± 0.002 from (1). The small errors in these quantities, as well
as uncertainties in the decay constants of light mesons, are neglected. Our
predictions for the branching ratios of the dominant non-leptonic two-body
decays of B mesons are given in Tables 6 and 7. The QCD coefficients aeff

1 and
aeff
2 (for simplicity called a1 and a2 in the tables), as well as the unknown decay

constants of charm mesons, have been left as parameters in the expressions for
the branching ratios. For comparison, we show the world average experimental
results for the branching ratios, as recently compiled in the review article in
Ref. 102. They are dominated by the CLEO II measurements. The quoted up-
per limits for the colour-suppressed B̄0 decay modes also include recent CLEO
data reported in Ref. 86. In Tables 8–10, we show for comparison the predic-
tions obtained using the simple form-factor model described in the previous
section, including some new decay channels which had not been considered in
Ref. 57. In the theoretical expression for the class III decay B− → D∗0a−1 , the
term proportional to aeff

2 requires the knowledge of the current matrix element
between the B meson and the pseudovector meson a1. We use the axial cur-
rent as an interpolating field for the a1 particle and employ chiral symmetry to
relate the corresponding form factors to those of the B− → ̺− matrix element.

Let us now compare in detail the theoretical predictions with the data.
Due to the uncertainty in the values of the phenomenological parameters aeff

1

and aeff
2 , we first concentrate on ratios of branching fractions in which these

coefficients cancel. The comparison of such predictions with data constitutes
a test of the factorization hypotheses and of the quality of our form factors.
From the class I transitions listed in Tables 6 and 8, we obtain the predictions

R1 =
B(B̄0 → D+π−)

B(B̄0 → D∗+π−)
≈ 1.04 [1.07] ,

R2 =
B(B̄0 → D+̺−)

B(B̄0 → D∗+̺−)
≈ 0.88 [0.89] . (57)

Here and below we use the NRSX model as our nominal choice, and quote
results obtained with the new model of Section 7 in parentheses. In the heavy-
quark limit both ratios become equal to unity, because the spin symmetry
relates D and D∗. Only part of the deviations from this limit is a form factor
effect; the remainder is of kinematic origin. The experimental results for these
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Table 6: Branching ratios of non-leptonic B̄0 decays (in %) obtained in the NRSX model57.
In the third column, the factors containing not yet known decay constants have been sup-
pressed. The last column shows the world average experimental results 102,86. Upper limits

are given at the 90% confidence level

B̄0 Modes NRSX Model aeff
1 = 1.08 Experimental
aeff
2 = 0.21 Average

Class I

D+π− 0.257 a2
1 0.30 0.31 ± 0.04 ± 0.02

D+K− 0.020 a2
1 0.02

D+D− 0.031 a2
1 (fD/200)2 0.04

D+D−
s 0.879 a2

1 (fDs
/240)2 1.03 0.74 ± 0.22 ± 0.18

D+̺− 0.643 a2
1 0.75 0.84 ± 0.16 ± 0.07

D+K∗− 0.035 a2
1 0.04

D+D∗− 0.030 a2
1 (fD∗/230)2 0.03

D+D∗−
s 0.817 a2

1 (fD∗
s
/275)2 0.95 1.14 ± 0.42 ± 0.28

D+a−1 0.719 a2
1 0.84

D∗+π− 0.247 a2
1 0.29 0.28 ± 0.04 ± 0.01

D∗+K− 0.019 a2
1 0.02

D∗+D− 0.022 a2
1 (fD/200)2 0.03

D∗+D−
s 0.597 a2

1 (fDs
/240)2 0.70 0.94 ± 0.24 ± 0.23

D∗+̺− 0.727 a2
1 0.85 0.73 ± 0.15 ± 0.03

D∗+K∗− 0.042 a2
1 0.05

D∗+D∗− 0.072 a2
1 (fD∗/230)2 0.08

D∗+D∗−
s 2.097 a2

1 (fD∗
s
/275)2 2.45 2.00 ± 0.54 ± 0.49

D∗+a−1 1.037 a2
1 1.21 1.27 ± 0.30 ± 0.05

Class II

K̄0J/ψ 2.262 a2
2 0.10 0.075± 0.021

K̄0ψ(2S) 1.051 a2
2 0.05 < 0.08

K̄∗0J/ψ 3.645 a2
2 0.16 0.153± 0.028

K̄∗0ψ(2S) 1.939 a2
2 0.09 0.151± 0.091

π0D0 0.164 a2
2 (fD/200)2 0.007 < 0.033

π0D∗0 0.230 a2
2 (fD∗/230)2 0.010 < 0.055

̺0D0 0.111 a2
2 (fD/200)2 0.005 < 0.055

̺0D∗0 0.240 a2
2 (fD∗/230)2 0.011 < 0.117
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Table 7: Branching ratios (in %) of non-leptonic B− decays in the NRSX model

B− Modes NRSX Model aeff
1 = 1.08 Experimental
aeff
2 = 0.21 Average

Class I

D0D− 0.033 a2
1 (fD/200)2 0.04

D0D−
s 0.938 a2

1 (fDs
/240)2 1.09 1.36 ± 0.28 ± 0.33

D0D∗− 0.032 a2
1 (fD∗/230)2 0.04

D0D∗−
s 0.873 a2

1 (fD∗
s
/275)2 1.02 0.94 ± 0.31 ± 0.23

D∗0D− 0.023 a2
1 (fD/200)2 0.03

D∗0D−
s 0.639 a2

1 (fDs
/240)2 0.75 1.18 ± 0.36 ± 0.29

D∗0D∗− 0.077 a2
1 (fD∗/230)2 0.09

D∗0D∗−
s 2.235 a2

1 (fD∗
s
/275)2 2.61 2.70 ± 0.81 ± 0.66

Class II

K−J/ψ 2.411 a2
2 0.11 0.102± 0.014

K−ψ(2S) 1.122 a2
2 0.05 0.070± 0.024

K∗−J/ψ 3.886 a2
2 0.17 0.174± 0.047

K∗−ψ(2S) 2.070 a2
2 0.09 < 0.30

Class III

D0π− 0.274 [a1 + 1.127 a2 (fD/200)]
2

0.48 0.50 ± 0.05 ± 0.02

D0̺− 0.686 [a1 + 0.587 a2 (fD/200)]
2

0.99 1.37 ± 0.18 ± 0.05

D∗0π− 0.264 [a1 + 1.361 a2 (fD∗/230)]
2

0.49 0.52 ± 0.08 ± 0.02
D∗0̺− 0.775 [a2

1 + 0.661 a2
2 (fD∗/230)2 1.19 1.51 ± 0.30 ± 0.02

+ 1.518 a1a2 (fD∗/230)]
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Table 8: Branching ratios (in %) of class I non-leptonic B̄0 decays in the new model
described in Section 7

B̄0 Modes New Model aeff
1 = 0.98 Experimental
aeff
2 = 0.29 Average

Class I

D+π− 0.318 a2
1 0.30 0.31 ± 0.04 ± 0.02

D+K− 0.025 a2
1 0.02

D+D− 0.037 a2
1 (fD/200)2 0.03

D+D−
s 1.004 a2

1 (fDs
/240)2 0.96 0.74 ± 0.22 ± 0.18

D+̺− 0.778 a2
1 0.75 0.84 ± 0.16 ± 0.07

D+K∗− 0.041 a2
1 0.04

D+D∗− 0.032 a2
1 (fD∗/230)2 0.03

D+D∗−
s 0.830 a2

1 (fD∗
s
/275)2 0.80 1.14 ± 0.42 ± 0.28

D+a−1 0.844 a2
1 0.81

D∗+π− 0.296 a2
1 0.28 0.28 ± 0.04 ± 0.01

D∗+K− 0.022 a2
1 0.02

D∗+D− 0.023 a2
1 (fD/200)2 0.02

D∗+D−
s 0.603 a2

1 (fDs
/240)2 0.58 0.94 ± 0.24 ± 0.23

D∗+̺− 0.870 a2
1 0.84 0.73 ± 0.15 ± 0.03

D∗+K∗− 0.049 a2
1 0.05

D∗+D∗− 0.085 a2
1 (fD∗/230)2 0.08

D∗+D∗−
s 2.414 a2

1 (fD∗
s
/275)2 2.32 2.00 ± 0.54 ± 0.49

D∗+a−1 1.217 a2
1 1.16 1.27 ± 0.30 ± 0.05

π+π− 50.0 a2
1 |Vub|2

π+̺− + ̺+π− 176.9 a2
1 |Vub|2
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Table 9: Branching ratios (in %) of class II non-leptonic B̄0 decays in the new model. We
take θ = 20◦ for the η–η′ mixing angle

B̄0 Modes New Model aeff
1 = 0.98 Experimental
aeff
2 = 0.29 Average

Class II

K̄0J/ψ 0.800 a2
2 0.07 0.075± 0.021

K̄0ψ(2S) 0.326 a2
2 0.03 < 0.08

K̄∗0J/ψ 2.518 a2
2 0.21 0.153± 0.028

K̄∗0ψ(2S) 1.424 a2
2 0.12 0.151± 0.091

π0J/ψ 0.018 a2
2 0.002 < 0.006

̺0J/ψ 0.050 a2
2 0.004 < 0.025

π0D0 0.084 a2
2 (fD/200)2 0.007 < 0.033

π0D∗0 0.116 a2
2 (fD∗/230)2 0.010 < 0.055

̺0D0 0.078 a2
2 (fD/200)2 0.007 < 0.055

̺0D∗0 0.199 a2
2 (fD∗/230)2 0.017 < 0.117

ωD0 0.081 a2
2 (fD/200)2 0.007 < 0.057

ωD∗0 0.203 a2
2 (fD∗/230)2 0.017 < 0.120

η D0 0.058 a2
2 (fD/200)2 0.005 < 0.033

η D∗0 0.073 a2
2 (fD∗/230)2 0.006 < 0.050
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Table 10: Branching ratios (in %) of non-leptonic B− decays in the new model

B− Modes New Model aeff
1 = 0.98 Experimental
aeff
2 = 0.29 Average

Class I

D0D− 0.039 a2
1 (fD/200)2 0.04

D0D−
s 1.069 a2

1 (fDs
/240)2 1.03 1.36 ± 0.28 ± 0.33

D0D∗− 0.034 a2
1 (fD∗/230)2 0.03

D0D∗−
s 0.883 a2

1 (fD∗
s
/275)2 0.85 0.94 ± 0.31 ± 0.23

D∗0D− 0.025 a2
1 (fD/200)2 0.02

D∗0D−
s 0.642 a2

1 (fDs
/240)2 0.62 1.18 ± 0.36 ± 0.29

D∗0D∗− 0.091 a2
1 (fD∗/230)2 0.09

D∗0D∗−
s 2.570 a2

1 (fD∗
s
/275)2 2.47 2.70 ± 0.81 ± 0.66

Class II

K−J/ψ 0.852 a2
2 0.07 0.102± 0.014

K−ψ(2S) 0.347 a2
2 0.03 0.070± 0.024

K∗−J/ψ 2.680 a2
2 0.23 0.174± 0.047

K∗−ψ(2S) 1.516 a2
2 0.13 < 0.30

π−J/ψ 0.038 a2
2 0.003 0.0057± 0.0026

̺−J/ψ 0.107 a2
2 0.009 < 0.077

Class III

D0π− 0.338 [a1 + 0.729 a2 (fD/200)]
2

0.48 0.50 ± 0.05 ± 0.02

D0̺− 0.828 [a1 + 0.450 a2 (fD/200)]
2

1.02 1.37 ± 0.18 ± 0.05

D0a−1 0.898 [a1 + 0.317 a2 (fD/200)]
2

1.03

D∗0π− 0.315 [a1 + 0.886 a2 (fD∗/230)]
2

0.48 0.52 ± 0.08 ± 0.02
D∗0̺− 0.926 [a2

1 + 0.456 a2
2 (fD∗/230)2 1.26 1.51 ± 0.30 ± 0.02

+ 1.292 a1a2 (fD∗/230)]
D∗0a−1 1.296 [a2

1 + 0.128 a2
2 (fD∗/230)2 1.36 1.89 ± 0.53 ± 0.08

+ 0.269 a1a2 (fD∗/230)]
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ratios are R1 = 1.11 ± 0.23 and R2 = 1.15 ± 0.34, in agreement with our
predictions, although the errors are still large. We may also consider the
corresponding ratios for pairs of class I transitions to final states which differ
only in their light meson. For instance, we find

R3 =

(

f̺
fπ

)2
B(B̄0 → D+π−)

B(B̄0 → D+̺−)
≈ 1.03 [1.06] ,

R4 =

(

f̺
fπ

)2
B(B̄0 → D∗+π−)

B(B̄0 → D∗+̺−)
≈ 0.88 [0.88] , (58)

which in the heavy-quark limit become equal unity, too. The experimental
values are R3 = 0.95± 0.24 and R4 = 0.99± 0.25, again in agreement with our
predictions.

Similar ratios can be taken for class II amplitudes; however, since the
relevant matrix elements involve current matrix elements between a heavy
and a light meson, the theoretical predictions are considerably more model
dependent. Based on the results of our two models, we expect

R5 =
B(B̄ → K̄ J/ψ)

B(B̄ → K̄∗J/ψ)
≈ 0.62 [0.32] ,

R6 =
B(B̄ → K̄ ψ(2S))

B(B̄ → K̄∗ψ(2S))
≈ 0.54 [0.23] . (59)

The strong model dependence does not allow for a test of the factorization
hypothesis in this case. The corresponding experimental values are R5 =
0.58±0.11 and R6 = 0.44±0.31, where we have averaged the results for B̄0 and
B− decays (accounting for the different lifetimes) when available. Although
the experimental errors are sizable, the data seem to prefer the NRSX model.

We now turn to the actual values of the phenomenological parameters aeff
1

and aeff
2 . From the theoretical point of view, the cleanest determination of aeff

1

is from the class of decays B̄0 → D(∗)+h−, where h− is a light meson (h = π,
̺ or a1). The relevant B̄0 → D(∗)+ transition form factors are known from the
analysis of semileptonic B decays using the heavy-quark effective theory, and
the decay constants of the light mesons are experimentally known with good
accuracy. Also, these transitions have a similar decay kinematics, so that we
may expect that they are characterized by the same value of aeff

1 . Performing
a fit to the experimental data, we obtaine

aeff
1 |Dh = 1.08 ± 0.04 [0.98 ± 0.04] . (60)

eSince we are neglecting final-state interactions, the parameters aeff

i
are real numbers,

and by convention we take aeff
1

to be positive.
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The coefficient aeff
1 can also be determined from the decays B̄ → D(∗)D

(∗)−
s ,

which are characterized by a quite different decay kinematics. In principle, it
would be interesting to investigate whether the resulting value is different in
the two cases, i.e. whether there is an observable process dependence of the
phenomenological parameter. In practise, this cannot be done because of the
large uncertainty in the values of the decay constants of charm mesons. From
a fit to the data, we find

aeff
1 |DDs

= 1.10 ± 0.07 ± 0.17 [1.05 ± 0.07 ± 0.16] , (61)

where the second error accounts for the uncertainty in f
D

(∗)
s

. In both cases,

(60) and (61), the data support the theoretical expectation that aeff
1 is close to

unity [see (25)].
A value for the parameter |aeff

2 | (but not the relative sign between aeff
2

and aeff
1 ) can be obtained from the class II decays B̄ → K̄(∗)J/ψ und B̄ →

K̄(∗)ψ(2S). From a fit to the six measured branching ratios, we extract

|aeff
2 |Kψ = 0.21 ± 0.01 [0.29 ± 0.01] . (62)

This result is more strongly dependent on the form-factor model used, which
is not surprising given that class II decays involve heavy-to-light transition
matrix elements. As we have seen above, the NRSX model may be the more
trustable one; still, we believe the difference between the two results provides
a realistic estimate of the theoretical uncertainty.

A determination of aeff
2 from decays with a rather different kinematics is

possible by considering the class III transitions B− → D(∗)0h− with h = π or
̺. Moreover, because of the interference of a1 and a2 amplitudes, these decays
are sensitive to the relative sign of the QCD coefficients. From the theoretical
point of view, it is of advantage to normalize the branching ratios to those of
the corresponding B̄0 decays, which are class I transitions. The theoretical
predictions for these ratios are of the form

B(B− → D(∗)0h−)

B(B̄0 → D(∗)+h−)
=
τ(B−)

τ(B̄0)

[

1 + 2x1
aeff
2

aeff
1

+ x2
2

(

aeff
2

aeff
1

)2
]

, (63)

where x1 and x2 are process-dependent parameters depending on the ratio of
some hadronic form factors and decay constants (x1 = x2 except for the decay
B− → D∗0̺−). For the ratios of branching fractions on the left-hand side,
we use recent CLEO data reported in Ref. 86, which are more accurate than
the previous world averages presented in Tables 6–10. Performing a fit to the
data, we extract the ratio aeff

2 /aeff
1 for each channel. The results are collected
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Table 11: Ratios of non-leptonic decay rates of charged and neutral B mesons 86, and the
corresponding values for aeff

2
/aeff

1

Experimental Ratios Predictions for xi aeff
2 /aeff

1

B(B− → D0π−)

B(B̄0 → D+π−)
= 1.73 ± 0.25 1.127 [0.729] 0.24 ± 0.08 ± 0.02

[0.38 ± 0.13 ± 0.03]

B(B− → D0̺−)

B(B̄0 → D+̺−)
= 1.19 ± 0.24 0.587 [0.450] 0.10 ± 0.18 ± 0.03

[0.13 ± 0.24 ± 0.04]

B(B− → D∗0π−)

B(B̄0 → D∗+π−)
= 1.64 ± 0.28 1.361 [0.886] 0.18 ± 0.08 ± 0.02

[0.27 ± 0.12 ± 0.03]

B(B− → D∗0̺−)

B(B̄0 → D∗+̺−)
= 1.71 ± 0.36 x1 = 0.759 [0.646] 0.35 ± 0.17 ± 0.03

x2 = 0.813 [0.675] [0.41 ± 0.20 ± 0.04]

in Table 11, where the second error results from the uncertainty in the lifetime
ratio 87 τ(B−)/τ(B̄0) = 1.06 ± 0.04. Taking the average, and using (60), we
find

aeff
2

aeff
1

∣

∣

∣

∣

Dh

= 0.21 ± 0.05 [0.31 ± 0.08] ,

aeff
2 |Dh = 0.23 ± 0.05 [0.30 ± 0.08] . (64)

The value of aeff
2 is in good agreement with that obtained in (62). Given

the different decay kinematics in the two processes, this observation is quite
remarkable.

The magnitude and, in particular, the positive sign of aeff
2 are of great

importance for the theoretical interpretation of our results. We find that in
non-leptonic B decays the two parameters aeff

1 and aeff
2 have the same sign,

meaning that the corresponding amplitudes interfere constructively. This find-
ing is in stark contrast to the situation encountered in D-meson decays, where
a similar analysis yields 13,57

aeff
1 |charm = 1.10 ± 0.05 , aeff

2 |charm = −0.49 ± 0.04 , (65)

indicating a strong destructive interference. Since most D decays are (quasi)
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two-body transitions, this effect is responsible for the observed lifetime dif-
ference between D+ and D0 mesons 88: τ(D+)/τ(D0) = 2.55 ± 0.04. In B
decays, on the other hand, the majority of transitions proceeds into multi-
body final states, and moreover there are many B− decays (such involving two
charm quarks in the final state) where no interference can occur. The relevant
scale for multi-body decay modes may be significantly lower than mb, leading
to destructive interference (see Figure 2). Therefore, the observed construc-
tive interference in the two-body modes is not in conflict with the fact that
τ(B−) > τ(B̄0).

The values for aeff
2 extracted from B̄ → K̄(∗)ψ and B̄ → D(∗)h decays in

(62) and (64) indicate that non-factorizable contributions (at the scale µ = mb)
are small in these processes. Using aeff

2 |Kψ = c2(mb)+ζKψc1(mb) = 0.21±0.05
and aeff

2 |Dh = c2(mb) + ζDhc1(mb) = 0.23± 0.05 with conservative errors, and
combining these with the values of the Wilson coefficients given in Table 1, we
find

ζKψ = 0.44 ± 0.05 , ε
(BK,ψ)
8 (mb) = 0.11 ± 0.05 ,

ζDh = 0.46 ± 0.05 , ε
(BD,h)
8 (mb) = 0.13 ± 0.05 . (66)

Hence, within errors there is no experimental evidence for a process dependence
of the value of ζ, in accordance with our expectation stated in (27).

9 Tests of Factorization and Extraction of Decay Constants

Based on the factorization hypothesis, we have made in the previous section
a number of predictions for the ratios of hadronic decay rates. Within the
current experimental uncertainties, these predictions agree well with the avail-
able data. In this section, we shall discuss a particularly clean method to test
the factorization hypothesis. As suggested by Bjorken 52, we make use of the
close relationship between semileptonic and factorized hadronic amplitudes by
dividing the non-leptonic decay rates by the corresponding differential semilep-
tonic decay rates evaluated at the same q2. This method provides a direct test
of the factorization hypothesis; moreover, it may be used to determine some
interesting decay constants 103,104. Assuming that factorization holds, we have

R
(∗)
M =

B(B̄0 → D(∗)+M−)

dB(B̄0 → D(∗)+ℓ−ν̄)/dq2
∣

∣

∣

q2=m2
M

= 6π2f2
M |aeff

1 |2 |Vij |2X(∗)
M , (67)

with aeff
1 ≈ 1. Here fM is the decay constant of the meson M , and Vij is the

appropriate CKM matrix element (depending on the flavour quantum num-
bers of the meson M). To determine this ratio experimentally, one needs the
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Table 12: Values of the differential semileptonic branching ratio used in the factorization
tests, as compiled in Ref. 81

q2
dB(B̄ → D∗ℓ ν̄)

dq2
[10−2 GeV−2]

m2
π 0.237± 0.026

m2
̺ 0.250± 0.030

m2
a1

0.335± 0.033

m2
Ds

0.483± 0.033

m2
D∗

s

0.507± 0.035

values of the differential semileptonic branching ratio at various values of q2.
They have been determined for B̄ → D∗ℓ ν̄ decays in Ref. 81, using a fit to
experimental data. We collected their results in Table 12.

Neglecting the lepton mass, we obtain for a pseudoscalar meson P :

XP =
(m2

B −m2
D)2

[m2
B − (mD +mP )2] [m2

B − (mD −mP )2]

∣

∣

∣

∣

F0(m
2
P )

F1(m2
P )

∣

∣

∣

∣

2

,

X∗
P =

[

m2
B − (mD∗ +mP )2

] [

m2
B − (mD∗ −mP )2

]

× |A0(m
2
P )|2

m2
P

∑

i=0,± |Hi(m2
P )|2 . (68)

The helicity amplitudes H0(q
2) and H±(q2) are defined in the Appendix. For

the special case that the pseudoscalar meson is a pion, it is an excellent approx-
imation to expand the quantities Xπ and X∗

π in powers of m2
π/m

2
B, yielding 57

Xπ ≃ 1 +
4m2

πmBmD

(m2
B −m2

D)2
≈ 1.001 ,

X∗
π ≃ 1 +

4m2
πmBmD∗

(m2
B −m2

D∗)2
− 4m2

π

(mB −mD∗)2
≈ 0.994 . (69)

Neglecting the tiny deviation from unity, we obtain

Rπ = R∗
π = 6π2f2

π |aeff
1 |2 |Vud|2 ≈ |aeff

1 |2 × 0.96 GeV2 . (70)

This prediction may be compared with the experimental value R∗
π = 1.18 ±

0.22 GeV2 obtained by combining the B̄0 → D∗+π− branching ratio from
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Table 6 with the value for the differential semileptonic branching ratio at q2 =
m2
π given in Table 12. This yields aeff

1 = 1.11 ± 0.10, in good agreement with
the expectation based on factorization. An even cleaner test of factorization is
obtained when (67) is evaluated for a vector or pseudovector meson, in which
case one has exactly 105

XV = X∗
V = 1 . (71)

Since the lepton pair created by the (V − A) current carries spin one, its
production is kinematically equivalent to that of a (pseudo-) vector particle
with four-momentum qµ. For a ̺ meson in the final state, for instance, we
thus obtain

R̺ = R∗
̺ = 6π2f2

̺ |aeff
1 |2 |Vud|2 ≈ |aeff

1 |2 × 2.48 GeV2 , (72)

to be compared with the experimental value R∗
̺ = 2.92 ± 0.71 GeV2. This

gives aeff
1 = 1.09 ± 0.13, again in good agreement with the expectation based

on factorization. In principle, eqs. (70) and (72) offer the possibility for four in-
dependent determinations of the QCD parameter aeff

1 . Good agreement among
the extracted values supports the validity of the factorization approximation
in B decays. Already at the present level of accuracy, it shows that there is
little room for final-state interactions affecting the magnitude of the considered
decay amplitudes.

From the kinematic argument about the equivalence of the lepton pair in
the semileptonic decay and the spin-1 meson in the hadronic decay, it follows
that (67) is valid separately for longitudinal and transverse polarization of the
D∗ meson in the final state. Thus, the polarization of the D∗ meson produced
in the non-leptonic decay B̄0 → D∗+V − should be equal to the polarization
in the corresponding semileptonic decay B̄ → D∗ℓ ν̄ at q2 = m2

V . However,
in order to turn this prediction into a test of the factorization hypothesis one
would have to determine the polarization of the D∗ meson with high precision.
This is so because in the semileptonic as well as in the non-leptonic case the D∗

polarization at the points q2 = 0 and q2 = q2max is determined by kinematics
alone to be 100% longitudinal and 1/3 longitudinal, respectively. This shows
that for a stringent test of the factorization hypothesis at small q2 one must
determine the transverse polarization contribution with a small relative error.
Especially for the semileptonic decays, a precision measurement of the q2 de-
pendence of the polarization appears to be a complicated task, however. Still,
we can make a rather precise prediction for this quantity using heavy-quark
symmetry. In the heavy-quark limit, the ratio of transverse to longitudinal
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Table 13: Theoretical predictions for the ratio ΓT/Γtot at fixed q2, where Γtot = ΓT + ΓL

q2 0 m2
̺ m2

a1
m2
D∗

s

q2max

ΓT/Γtot 0 12 ± 1 26 ± 2 48 ± 1 2/3

polarization at some fixed q2 is simply given by

ΓT

ΓL
=

4q2(m2
B +m2

D∗ − q2)

(mB −mD∗)2[(mB +mD∗)2 − q2]
. (73)

Including the leading symmetry-breaking corrections to this result 106−108, one
obtains the numbers shown in Table 13. For the polarization of the D∗ meson
in the decay B̄0 → D∗+̺−, the CLEO Collaboration finds 81 ΓT/Γtot = (7 ±
5 ± 5)%, in agreement with our prediction of 12% transverse polarization for
the semileptonic decay at q2 = m2

̺. However, in order for this test to be
sensitive to deviations from factorization, the experimental uncertainty will
have to be reduced substantially . The situation may be more favourable
in the decay B̄0 → D∗+D∗

s with predicted 48% of transverse polarization,
hopefully allowing for a measurement with smaller relative uncertainties.

We shall now discuss an alternative use of (67). Assuming the validity
of the factorization hypothesis with a fixed value for aeff

1 , one may employ
this relation for the determination of unknown decay constants 103,104. In
particular, we can use it to determine the decay constants of the Ds and D∗

s

mesons. As explained above, in the latter case we simply haveXD∗
s

= X∗
D∗

s

= 1.
But also in the case of Ds mesons we obtain essentially model-independent
predictions. Defining the mass ratio x = 1

2 (mD(∗) +mDs
)/mB, we find in the

heavy-quark limit 57 (x ≈ 0.36 and x ≈ 0.38, respectively)

XDs
=

1 − 3x2 + 2x3

1 − 3x2 − 2x3
≈ 1.36 ,

X∗
Ds

=
1 − x− 2x2

1 − x+ 2x2
≈ 0.37 . (74)

These values are close to the predictions of the NRSX model, which are

XDs
≈ 1.33 , X∗

Ds
≈ 0.39 . (75)

Using these values (allowing for a theoretical error of ±0.03) together with
|aeff

1 | = 1.08 ± 0.04, we obtain the theoretical predictions:

RDs
= (87.2 ± 6.7) f2

Ds
,
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R∗
Ds

= (25.6 ± 2.7) f2
Ds
,

RD∗
s

= R∗
D∗

s

= (65.6 ± 4.8) f2
D∗

s

. (76)

By averaging the experimental data on B̄0 and B− decays into two charm
mesons (taking into account the differences in the B-meson lifetimes), we ob-
tain

B(B̄ → DD−
s ) = (0.95 ± 0.24)% ,

B(B̄ → DD∗−
s ) = (1.00 ± 0.30)% ,

B(B̄ → D∗D−
s ) = (1.03 ± 0.27)% ,

B(B̄ → D∗D∗−
s ) = (2.26 ± 0.60)% . (77)

Using the last two averaged decay rates gives the experimental ratios

R∗
Ds

= (2.13 ± 0.58) GeV2 , R∗
D∗

s

= (4.46 ± 1.22) GeV2 . (78)

Comparing this with the theoretical predictions in (76), we find

fDs
= (288 ± 42) MeV , fD∗

s
= (261 ± 36) MeV . (79)

More precise determinations of the decay constants are possible if, instead
of using (67), we consider ratios of non-leptonic decay rates, comparing pro-
cesses involving Ds and D∗

s mesons with those involving the light mesons π and
̺. These processes involve a similar kinematics, so that the ratios of the corre-
sponding decay rates are sensitive to the same form factors, however evaluated
at different q2 values. This method has the advantage that in the ratios the
phenomenological parameter aeff

1 cancels; similarly, we may hope that some of
the experimental systematic errors cancel. Using the NRSX model, we find

B(B̄0 → D+D−
s )

B(B̄0 → D+π−)
= 1.01

(

fDs

fπ

)2

,

B(B̄0 → D∗+D−
s )

B(B̄0 → D∗+π−)
= 0.72

(

fDs

fπ

)2

,

B(B̄0 → D+D∗−
s )

B(B̄0 → D+̺−)
= 0.74

(

fD∗
s

f̺

)2

,

B(B̄0 → D∗+D∗−
s )

B(B̄0 → D∗+̺−)
= 1.68

(

fD∗
s

f̺

)2

. (80)
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Combining these predictions with the average experimental branching ratios
in (77), we find the rather accurate values

fDs
= (234 ± 25) MeV , fD∗

s
= (271 ± 33) MeV . (81)

The result for fDs
is in excellent agreement with the value fDs

= 241±37 MeV
in (42), extracted from leptonic decays of Ds mesons. The ratio fD∗

s
/fDs

=
1.16 ± 0.19, which cannot be determined from leptonic decays, is in good
agreement with theoretical expectations 109,110.

Along these lines, there are numerous other possibilities for extracting
information on decay constants and current matrix elements. In particular,
the decay constants of P-wave particles like a0, a1, K

∗
0 and K1 are of interest

due to their sensitivity to relativistic quark motion, which allows for a test of
hadron models. For instance, one may use the ratio

B(B̄0 → D∗+a−1 )

B(B̄0 → D∗+̺−)
≈ 1.18

(

fa1

f̺

)2

(82)

to determine the pseudovector meson decay constant fa1 , which is defined by
〈 0 | q̄γµγ5q |a1〉 = ǫµma1fa1 . From the experimental results, we obtain

fa1 = (1.22 ± 0.19) f̺ = (256 ± 40) MeV , (83)

which agrees with the large value derived from τ decays shown in Table 4.
The fact that the decay constant of a P-wave meson is of the same order of
magnitude as those of the corresponding S-wave mesons is quite remarkable.
It shows that mesons containing light quarks are highly relativistic systems;
for non-relativistic constituent quarks one would expect the wave function of
a state with non-zero orbital momentum to vanish at the origin, leading to a
vanishing decay constant.

10 B Decays to Baryons

We end our discussion of non-leptonic processes with a remark on the par-
ticularly interesting case of B decays into baryon-antibaryon pairs. For these
transitions it is probably not sufficient to apply factorization in the way de-
scribed so far. The relevant flavour flow diagram (for a b → c transition) is
shown in Figure 3. In contrast with the situation realized in B decays into
mesons, the c and d quarks produced in the weak interaction now end up in
the same hadron. It is, therefore, appropriate to rewrite the effective weak
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b
u
cd
qq
qq

Figure 3: Flavour flow diagram for a B decay into a baryon-antibaryon pair.

Hamiltonian in a different form using charge-conjugate fields and a Fierz re-
ordering 111:

Heff =
GF√

2
Vcb

[

c−(µ) (cd′)†3∗(ub)3∗ + c+(µ) (cd′)†6(ub)6

]

+ h.c.

+ penguin operators , (84)

where (cd′)3∗ = εkij c̄
c
i (1 − γ5) d

′
j is an (S − P ) colour-antitriplet diquark

current. The colour-sextet current (cd′)6 is given by a similar expression. The
appearance of the coefficients c−(µ) and c+(µ) shows that perturbative QCD
interactions affect the colour-antitriplet and sextet channels differently: the
QCD force is attractive (c− > 1) in the antitriplet and repulsive (c+ < 1) in
the sextet channel.

From the very existence of baryons it is evident that, besides the pertur-
bative enhancement, there must also be a strong long-distance binding force
between two quarks in a colour-antitriplet state. This can be taken into ac-
count by introducing diquark fields and their couplings to the local currents
occurring in (84). QCD sum rules predict that these diquark couplings are
large 112. This result has been confirmed by the magnitude of ∆S = 1 transi-
tions, where diquark effects play a dominant role51. Thus, we expect B decays
to baryon-antibaryon pairs to proceed predominantly via the formation of a
diquark-antidiquark state, followed by the creation of a quark-antiquark pair
in the colour field of these diquarks. This decay mechanism implies interesting
selection rules, which allow for a number of predictions113,114. For instance, the
charm baryon in baryonic b→ c transitions is built from (cd) spin-zero states.
Thus, in B̄ decays one should not find a (cuu) nor a (cus) nor a (css) baryon,
as long as final-state interactions may be neglected. In b → u transitions one
naturally obtains a ∆I = 1

2 selection rule, because a spin-zero (ud) diquark
necessarily has isospin zero. No ∆ resonances should therefore be produced in

42



these decays, but there is no such suppression of ∆̄ production. A comparison
of these predictions with experimental data, once these will become available,
should provide information about the creation process of quark-antiquark pairs
inside hadrons. For an estimate of the expected branching ratios, the reader
is referred to Ref. 114.

11 Summary

We have presented an overview of the theory and phenomenology of exclu-
sive hadronic decays of B mesons, concentrating on two-body modes. Such
decays are strongly influenced by the long-range QCD colour forces. Theoret-
ically, their description involves hadronic matrix elements of local four-quark
operators, which are notoriously difficult to calculate. The factorization ap-
proximation is used to relate these matrix elements to products of current
matrix elements. Conventionally, the factorized decay amplitudes depend on
two phenomenological parameters a1 and a2, which are connected with the
Wilson coefficients ci(µ) appearing in the effective weak Hamiltonian. We
have shown that (except for decays into two vector mesons) this approach can
be generalized in a natural way to include the dominant non-factorizable con-
tributions to the decay amplitudes. In the generalized factorization scheme,
the effective parameters aeff

1 and aeff
2 become process-dependent. However,

using the large-Nc counting rules of QCD we have argued that in energetic
two-body decays of B mesons aeff

1 ≈ 1 and aeff
2 ≈ c2(mb) + ζ c1(mb), where

ζ = O(1/Nc) is a dynamical parameter. Moreover, we have shown that the
process dependence of ζ is likely to be very mild, so that it can be taken to be
a constant for a wide class of two-body decays. These theoretical expectations
are supported by the data. From a fit to the world average branching ratios of
two-body decay modes, we obtain aeff

1 ≈ 1.08 and aeff
2 ≈ 0.21, corresponding to

ζ ≈ 0.45. There is no evidence for a process dependence of these parameters;
in particular, the values obtained for aeff

2 from the decays B̄ → K̄(∗)ψ and
B− → D(∗)0h−, where h = π or ̺, are in good agreement with each other.

The obvious interpretation of the fact that the ratio aeff
2 /aeff

1 is positive and
the value of the parameter ζ close to the “naive” factorization prediction ζ =
1/3 is that, in energetic two-body decays of B mesons, a fast moving colour-
singlet quark pair interacts little with soft gluons. Hence, factorization works
at a high scale of order mb. The situation is different from that encountered
in the much less energetic decays of D mesons, where one finds a negative
value of aeff

2 /aeff
1 , corresponding to ζ ≈ 0. Since the energy release in charm

decays is much less, even soft gluons can rearrange the quarks, and the effective
factorization scale is lower. According to the relation between the factorization
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scale and the ratio of the phenomenological parameters exhibited in Figure 2,
this leads to a negative value of aeff

2 /aeff
1 and thus a smaller value of ζ.

The most important ingredient of factorized decay amplitudes are the
hadronic form factors parametrizing the hadronic matrix elements of quark
currents. In the case of the heavy-to-heavy transitions B̄ → D and B̄ →
D∗, heavy-quark symmetry implies simple relations between the various form
factors. Incorporating the leading symmetry-breaking corrections using the
heavy-quark effective theory, it has become possible to extract all B̄ → D(∗)

form factors from semileptonic decay data with good precision. The use of
heavy-quark symmetry constitutes a significant improvement over earlier esti-
mates of non-leptonic amplitudes, which were based on model calculations of
the relevant form factors. As a consequence, for all class I decays considered
in this article the factorized decay amplitudes can be predicted without any
model assumptions.

There has not been similar progress in the calculation of current matrix
elements between heavy and light mesons. For these transitions we must still
rely on phenomenological models. Consequently, the theoretical predictions
for class II decay amplitudes involve larger theoretical uncertainties. In order
to get an idea about the amount of model dependence, we have considered two
different quark models and compared their results. We find that it is possible
to determine the parameter aeff

2 with a theoretical accuracy of about 25%.
In the context of each model, a large set of class II branching ratios can be
reproduced within the experimental errors using a fixed value of aeff

2 .
We have discussed various tests of the (generalized) factorization hypoth-

esis by considering ratios of decay rates, and by comparing non-leptonic decay
rates with semileptonic rates evaluated at the same value of q2. Within the
present experimental uncertainties, there are no indications for any deviations
from the factorization scheme in which aeff

1 and aeff
2 are treated as process-

independent hadronic parameters. Accepting that this scheme provides a use-
ful phenomenological concept, exclusive two-body decays of B mesons offer
a unique opportunity to measure the decay constants of some light or charm
mesons, such as the a1, Ds and D∗

s . In particular, on the basis of the ex-
perimental data available today, we find fDs

= (234 ± 25) MeV and fD∗
s

=
(271 ± 33) MeV. The result for fDs

is in excellent agreement with the value
extracted from leptonic decays of Ds mesons. The ratio fD∗

s
/fDs

= 1.16±0.19
is in good agreement with theoretical expectations.
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Appendix

We collect our definitions for the weak decay form factors, which parametrize
the hadronic matrix elements matrix elements of flavour-changing vector and
axial currents between meson states. For the transition between two pseu-
doscalar mesons, P1(p) → P2(p

′), we define

〈P2(p
′)|Vµ|P1(p)〉 =

(

(p+ p′)µ − m2
1 −m2

2

q2
qµ

)

F1(q
2) +

m2
1 −m2

2

q2
qµ F0(q

2) ,

(A.1)
where qµ = (p− p′)µ is the momentum transfer. For the transition of a pseu-
doscalar into a vector meson, P1(p) → V2(ǫ, p

′), we define

〈V2(ǫ, p
′)|Vµ |M1(p)〉 =

2i

m1 +m2
ǫµναβ ǫ

∗νp′αpβ V (q2) ,

〈V2(ǫ, p
′)|Aµ |M1(p)〉 =

[

(m1 +m2) ǫ
∗
µA1(q

2) − ǫ∗ · q
m1 +m2

(p+ p′)µA2(q
2)

− 2m2
ǫ∗ · q
q2

qµA3(q
2)

]

+ 2m2
ǫ∗ · q
q2

qµA0(q
2) ,

(A.2)

where ǫµ is the polarization vector, satisfying ǫ · p′ = 0. Here, the form factor
A3(q

2) is given by the linear combination

A3(q
2) =

m1 +m2

2m2
A1(q

2) − m1 −m2

2m2
A2(q

2) . (A.3)

Moreover, in order for the poles at q2 = 0 to cancel, we must impose the
conditions

F1(0) = F0(0) , A3(0) = A0(0) . (A.4)
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The helicity amplitudes H0(q
2) and H±(q2) are given by the following combi-

nations of form factors 115 (K denotes the momentum of the daughter meson
in the parent rest frame):

H±(q2) = (m1 +m2)A1(q
2) ∓ m1K

m1 +m2
V (q2) ,

H0(q
2) =

1

2m1

√

q2

[

(m2
1 −m2

2 − q2)(m1 +m2)A1(q
2)

− 4m2
1K

2

m1 +m2
A2(q

2)

]

. (A.5)
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