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Abstract

We compute the longitudinal hydrodynamic flow in ultrarelativistic heavy ion colli-
sions at

√
s = 5500 GeV by using boost non-invariant initial conditions following from

perturbative QCD. The transfer of entropy and energy from the central region to larger
rapidities caused by boost non-invariance is determined and the associated decrease in
the lifetime of the system is estimated.
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1 Introduction

One simple scenario for treating the behaviour of QCD matter formed in the central
region (nearly at rest in the center of mass frame) in ultrarelativistic heavy ion col-
lisions is to neglect transverse motion and baryon number, to assume that the initial
conditions for longitudinal motion are longitudinally boost invariant and to assume
that the matter expands isentropically as an ideal fluid. One then obtains the Bjorken
similarity flow [1]. The purpose of this study is to take the initial conditions essen-
tially as given by perturbative QCD [2]-[5]. These have two characteristics. Firstly,
they are boost non-invariant, there is no rapidity plateau but a wide gaussian-like ra-
pidity distribution. Secondly, due to the remarkable small-x increase of the nucleon
structure functions observed at HERA [6] the initial energy densities are quite large,
at LHC energies of

√
s= 5.5 TeV almost 1000 GeV/fm3. This leads to rather long

hydrodynamical evolution times (≈ 100 times initial thermalisation time) and allows a
boost non-invariant flow to develop. In the following we shall, in particular, study the
additional longitudinal flow caused by the maxima of the initial entropy and energy
densities at y = 0 and the associated transfer of entropy and energy from the y = 0
region to larger rapidities.

We limit this study to LHC energies for the following two reasons. Firstly, we want
to study longitudinal 1+1d hydrodynamical effects and at LHC, due to the very large
initial temperatures, this period lasts by far the longest. Also, during all this period
the matter remains in the high T plasma phase. All the complications associated with
the phase transition and the hadronic phase arise together with the need to go over to
1+3d expansion [7]-[8]. Within the 1+1d approximation these late-time features have
been studied in, say, [9]. Secondly, at LHC energies the perturbative computation of
the initial conditions is more reliable. At RHIC energies of

√
s= 200 GeV there is

still a sizable soft component present, which makes the buildup of the initial energy
density slower and would require separate modeling [10]. This is even more so at the
SPS energies of

√
s= 20 GeV, where boost non-invariant initial conditions are modelled

by using rapidity distributions of final state particles [11] or by forcing the flow to be
boost invariant [12].

We also emphasize that the main aim is to study the evolution of the flow under a set
of approximations which will need corrections when applied to the physical situation.
These include full thermalisation and validity of given initial conditions at very large
rapidities. Also fluctuations in the initial conditions [13] and their variation with
transverse coordinate will have to be taken into account.
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2 The equations

For the ultrarelativistic 1+1–dimensional similarity flow it is convenient to replace
xµ = (t, x) by the proper time τ and the space-time rapidity η:

τ =
√
t2 − x2, η =

1

2
log

t+ x

t− x
, (1)

t = τ cosh η, x = τ sinh η. (2)

The variable
t̂ = log(τ/τi) (3)

also naturally appears. The general equation of state with one conserved quantum
number is

p = p(T, µ), (4)

s =
∂p

∂T
, nq − nq̄ ≡ n = 3nB =

∂p

∂µ
, ε = Ts− p+ µn. (5)

The aim now is to determine, for given initial conditions, the pressure p(t, x) and the
flow v(t, x) ≡ tanh Θ(t, x) from the hydrodynamic equations

∂µT
µν = 0, ν = 0, 1, ∂µJ

µ
B = 0, (6)

where

T µν = (ε+ p)uµuν − pgµν , JµB = nBu
µ, (7)

uµ = (γ, γv) = (cosh Θ, sinh Θ). (8)

From eqs. (7) and (5) it follows that uν∂µT
µν − 3µ∂µJ

µ
B = T∂µs

µ, where sµ = suµ is
the entropy current, so that these equations imply entropy conservation:

∂µs
µ = 0, sµ = suµ. (9)

To express eqs. (6) in component form it is convenient to take their components
parallel (uν∂µT

µν = 0) and orthogonal ((gαν − uαuν)∂µT µν = 0, α = 0, 1) to uµ. The
equations to be solved then become [14]

(∂t̂ + v̄∂η)ε+ (ε+ p)(v̄∂t̂ + ∂η)Θ = 0, (10)

(v̄∂t̂ + ∂η)p+ (ε+ p)(∂t̂ + v̄∂η)Θ = 0, (11)

(∂t̂ + v̄∂η)nB + nB(v̄∂t̂ + ∂η)Θ = 0, (12)

where
v̄(τ, η) = tanh[Θ(τ, η)− η)], (13)
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Figure 1: Section of space-time between two flow lines (eq. (15)) and two lines of constant
proper time.

with given initial conditions T = T (τi, η), µ = µ(τi, η).
To correctly interpret the numerical results it is useful to have a concrete picture of

the role played by the conservation laws in the flow. This is obtained by writing for
any conserved vector V µ

0 =
∫
d2x ∂µV

µ =
∫
C
dσµV

µ, (14)

with dxµ = (dt, dx) and dσµ = (dx, dt) and choosing the path as shown in Fig. 1. Here
the horizontal lines are two lines of constant τ while the vertical lines are chosen as
flow lines η = ηflow(τ), defined as the solutions of

dx(t)

dt
= v(x(t), t)⇒ τ

dη

dτ
= v̄(τ, η(τ)) = tanh[Θ(τ, η)− η)]. (15)

Computing the line integral (14) over various portions of the path in Fig. 1 gives the
fluxes of V µ through these portions; their total sum has to vanish.

Take first V µ = sµ. Converting the line integral in eq. (14) to the variables τ, η using
uµ = (cosh Θ, sinh Θ) one finds that∫

C
dσµs

µ =
∫
C
τ cosh(Θ− η)s [dη − tanh(Θ− η)dτ/τ ]. (16)

Thus the entropy flux through a flow line (15) is zero (dσµu
µ = 0 is an equivalent

definition of a flow line) while the flow through a line τ = constant is

S(τ, η1 < η < η2) =
∫ η2

η1

dη τs(τ, η) cosh[Θ(τ, η)− η]. (17)

Varying now τ and letting η1(τ), η2(τ) follow flow lines, eq. (14) implies that the integral
(17), the total entropy measured between two flow lines at a fixed proper time, is
constant, independent of τ . A similar equation holds for JµB.
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We may also apply eq. (14) to the energy and momentum fluxes T 0µ and T 1µ. Since
they are not proportional to uµ, the result becomes more complicated. A similar
computation gives that the flux through a flow line is:

FE(τ1 < τ < τ2) = −
∫ τ2

τ1

dτ
p sinh Θ

cosh[Θ− ηflow(τ)]
, (18)

FP (τ1 < τ < τ2) = −
∫ τ2

τ1

dτ
p cosh Θ

cosh[Θ− ηflow(τ)]
, (19)

where the arguments of Θ, p are τ, ηflow(τ). Further, the energy and momentum fluxes
through a segment τ = constant are:

E(τ, η1 < η < η2) =
∫ η2

η1

dη τ [ε cosh Θ cosh(Θ− η) + p sinh Θ sinh(Θ− η)], (20)

P (τ, η1 < η < η2) =
∫ η2

η1

dη τ [ε sinh Θ cosh(Θ− η) + p cosh Θ sinh(Θ− η)], (21)

where the arguments of ε, p,Θ are τ, η. Referring to Fig. 1, the total sum of two
contributions of type (18) and of two contributions of type (20) has to vanish for T 0µ;
similarly for T 1µ. This implies that the energy (eq. (20)) or momentum (eq. (21))
between two flow lines is not constant but changes due to energy or momentum flow
across the flow line: work done against expansion.

Note the different flow-dependent factors in (17) and (20): the total energy E con-
tains an additional boost factor cosh Θ not present for S.

To have a still simpler view of the conservation laws, assume a similarity flow,
Θ(τ, η) = η or v(t, x) = x/t and an equation of state p = p(ε). Then v̄ = 0 and
from eq. (15) the flow lines are η = constant and we take them to be ±η0. For this
very special flow the equations of motion (6) become

τ∂τ ε+ ε+ p = 0, (22)

∂ηp = 0, (23)

τ∂τn+ n = 0, (24)

τ∂τs+ s = 0, (25)

(the last follows from the first and third and ε+ p = Ts+ µn) and further imply that

p = p(τ), ε = ε(τ), s = s(τ, η) =
τi
τ
s(τi, η), n = n(τ, η) =

τi
τ
n(τi, η), (26)

i.e. p, ε depend on τ only while s, n can depend also on η in such a way that Ts+ µn

depends only on τ . The conservation laws of sµ, T 0µ then simplify to∫ η0

−η0

dη [τ1s(τ1, η)− τ2s(τ2, η)] = 0, (27)∫ η0

−η0

dη cosh η [τ1ε(τ1)− τ2ε(τ2)] = 2
∫ τ2

τ1
dτ p(τ) sinh η0; (28)
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Figure 2: The initial condition for ε(τi, η) for
√
s = 5500 GeV. The dashed curve is the

gaussian fit, eq. (31), with σ = 3.8.

similar ones hold for JµB, T
1µ. Eq.(27) is clearly an integrated form of eq.(25). In eq.(28)

the η dependent parts factor and match on two sides of the equation. The τ dependent
part explicitly shows how the change in ε(τ)τ is related to pdV ∼ pdτ .

A further step of simplification would be to assume a massless equation of state,
p = ε/3 = aT 4 + bµ2T 2 + cµ4, a, b, c = constants. Then a solution with a similarity
flow would be

T (τ, η) =
(
τi

τ

)1/3

T (τi, η), µ(τ, η) =
(
τi

τ

)1/3

µ(τi, η), p(τ) =
(
τi

τ

)4/3

p(τi), (29)

where T (τi, η), µ(τi, η) are so constrained that p(τi) is independent of η. This is the
standard Bjorken flow [1] generalised by the inclusion of baryon number. Putting µ = 0
finally gives the Bjorken flow.

3 Initial conditions

One expects the initial net baryon number to very small near y = 0; in [5] the net
baryon number-to-entropy ratio, B/S was computed to be about 1/5000. Hence, we
shall put the chemical potential µ = 0. Further, we are interested in the evolution of
the system in the plasma phase, T = Tc...7Tc and choose the equation of state to be
p = p(T ) = ε/3 = aT 4, a = constant, s = p′(T ) = (ε+ p)/T . According to lattice data
for pure SU(3) [15] the validity of p = ε/3 improves with increasing T so that the error
is 20% at T = 2Tc and 10% at T = 3Tc.

The initial conditions have to specify ε(τi, η) and Θ(τi, η). For the initial flow we shall
simply take a similarity flow, Θ(τi, η) = η, in order to study how boost non-invariance
affects it. The initial conditions for the energy density are computed by extending the
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calculations of [4]-[5] to all rapidities. The initial energy per unit rapidity in the local
rest frame equals the transverse energy of produced minijets computed from

ε(τi, η) =
dE

dη

1

V
≈ TAA(b = 0)

∫ ∞
p0

dpT pT
dσNN

dpTdy
·

1

V
, (30)

where the nuclear overlap function is TAA(0) ≈ A2/(πR2
A) ≈ 32/mb for Pb+Pb, the

volume per unit rapidity is V = τiπR
2
A, 1/τi = p0 = 2 GeV and the inclusive gluon jet

production cross section in NN collisions is computed in [5]. The results for τi = 0.1
fm are shown in fig. 2 for LHC energies,

√
s= 5500 GeV, together with a gaussian fit

to the central region
ε(τi, η) = ε0 exp[−η2/(2σ2)], (31)

with σ = 3.8. The distribution is seen to be quite broad. In this sense boost non-
invariance is quite mild in the central region, even though evidently the initial condition
has to drop faster than a gaussian at the ends of phase space. As a side remark, at
RHIC energy

√
s= 200 GeV the width parameter is σ = 2.05.

In the initial values of εi in fig. 2 only gluons with pT ≥ 2 GeV are included. The value
2 GeV corresponds to the saturation limit at LHC energies [5] and the resulting εi can
be expected to be a good estimate for the total energy density. At RHIC energies the
saturation limit is lower, only about 1 GeV. This is so low a scale that perturbation
theory becomes unreliable. One could also try to keep the minimum pT of partons
included in the computation at the fixed value of 2 GeV; at RHIC energies one then
should also include a sizable (about 50%) soft component if one wants to model the
entire event. Modeling the soft component is certainly possible but we wish to avoid
this phenomenological analysis [10] in the present work.

According to eq.(20) the total initial energy carried by the flow in the interval −η0 <
η < η0 is, estimating the transverse area to be πR2

A,

Etot(τi) = πR2
A

∫ η0

−η0

τidη cosh η ε(τi, η) ≈
∫
pT>p0,|y|<η0

d3p E
dσNN

d3p
· TAA(0). (32)

Here the first part is a general relation for a flow Θ = η; the second part shows where
it is computed from. Due to the boost factor cosh η, which in the jet computation
corresponds to the weight factor E, most of the energy is carried by flow at large ra-
pidities. When η0 approaches the beam rapidity ybeam, the error in the jet computation
grows for two reasons: firstly, baryon number will be important at large rapidities and
secondly, physics there is not that of independent 2→ 2 collisions. However, this error
is important only at very large values of η, where the energy density is already small.
It thus will not affect the conclusions of this hydrodynamical study.
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4 Analytic approximations

We are studying modifications to the Bjorken flow and it is appropriate to ask whether
they in some limit can be described analytically. Consider the limit σ � 1, a broad
gaussian (31). Writing (t̂ = log(τ/τi))

ε(τ, η) = ε0 exp{−
4

3
t̂−

η2

2σ2
+ g(τ)}, (33)

Θ(τ, η) = η[1 + f(τ)], (34)

linearising eqs.(11-12) under the assumptions f, g, η2/σ2 � 1 and integrating, one
obtains

f(τ) =
3

8σ2
[1− exp(−

2

3
t̂)], (35)

g(τ) = −
1

2σ2
{t̂−

3

2
[1− exp(−

2

3
t̂)]}. (36)

The linearisation ∂t̂f � f 2 demands that

t̂� 3 log(
4

3
σ). (37)

Furthermore, for the flow lines one obtains

log[ηflow(τ)/η0] =
3

8σ2
{t̂−

3

2
[1− exp(−

2

3
t̂)]} (38)

These equations contain the following natural expectations:

• The energy density at η ≈ 0 decreases faster than in the Bjorken flow due to
energy moving to larger η. For small times

ε(τ) = ε0 exp[−
4

3
(t̂+

t̂2

8σ2
+ ...)]; (39)

• With increasing time the flow is accelerated relative to the similarity flow. For
small times

Θ(τ, η) = η(1 +
t̂

4σ2
+ ...); (40)

• The flow lines bend outwards. For small times

ηflow(τ) = η0(1 +
t̂2

8σ2
+ ...). (41)
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Figure 3: The energy density scaled by the Bjorken flow, ε(τ, η)/εi ∗ (τ/τi)
4/3, for

√
s = 5500

GeV. From top the curves correspond to τ/τi = 1, 101/2, 10, 103/2 , 100.
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Figure 4: Curves of constant ε(τ, η) for
√
s = 5500 GeV. The curves from below at η = 0

correspond to ε = 900,117,15,2 GeV/fm3. The vertical lines are flow lines (η = constant

for Bjorken flow). The thick flow lines are used to compute fig. 6. The dotted lines are the

leftmost characteristic curve C+ and the rightmost C−, between which the computation has

to remain.

5 Numerical results

The method of characteristics [16] is particularly suited for 1+1 dimensional hydrody-
namical problems. First the differential equation [14]

dη

dt̂
= tanh[Θ(t̂, η)− η ± ys], (42)
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where ys = tanh cs = tanh(1/
√

3), defines the two families C± of characteristics. This
is like the equation (15) defining the flowlines, but modified by the sound rapidity ±ys.
Along each family of curves the changes of Θ and ε are related by

dΘ±
cs

ε+ p
= 0, along C±. (43)

A code integrating ε,Θ, starting from the initial values ε(τi, η),Θ(τi, η) = η by deter-
mining the characteristic directions, and then the new values of ε,Θ by stepping in the
characteristic directions, is easily constructed.

Results of numerical integration of the equations are shown in Figs. 3-6 for LHC
(
√
s= 5500 GeV). The energy density, scaled by the Bjorken flow, is shown in fig. 3 as

a function of η at different times. Curves of constant energy density on the τ, η plane
are plotted in fig. 4. The energy density in fig. 3 at η = 0 is seen to decrease somewhat
faster than in the Bjorken case. This is due to leakage of energy to larger rapidities,
seen as an increase in ε at large η and described analytically in section 4. During the
whole duration of the plasma phase, ε>∼2 GeV/fm3, or from τi to about 100τi, this
additional decrease is about 12% at LHC.

Converted to the lifetime of the system in the plasma phase (the time it takes
to decrease from εi to εc) the above result implies that the density gradient in the
longitudinal direction decreases the lifetime by about 9%. This is opposite to the effects
of dissipation: in the case of a rapidity plateau, the fastest decrease of energy density
is obtained in the case of full thermalisation; dissipative effects increase the lifetime of
the system [10]. The longest lifetime is obtained for free-streaming expansion.

Fig. 4 also shows flow lines, which are constant in η in the Bjorken case but bend
outwards in the present case. We do not show the numerical grid of characteristic
curves, but the leftmost characteristic curve C+ and the rightmost one C− are plotted
in this figure. The numerical computation cannot be extended outside them.

The flow Θ(τ, η), scaled by the Bjorken flow η, is shown in fig. 5. The initial flow
Θ = η is rapidly accelerated at large |η|, due to increasing ∂ηp/p, (=η/σ2 for the
gaussian parametrization) but this is already in the domain where the details of the
model need not be correct. In the relevant region near η = 0 the effects are seen to be
small, a few %.

As discussed earlier, the total entropy between two flow lines, eq.(17), is constant.
However, the flow rapidity Θ(τ, η) changes along the flow lines changing also the ra-
pidity interval between the flow lines. As a result the entropy of given fluid element is
shifted in rapidity and its amount per unit flow rapidity is changed. With our initial
conditions the shift is always to larger rapidities — higher pressure in the central region
accelerates the fluid towards the ends — and the rapidity intervals between the flow
lines increase. The net result is that the entropy per unit flow rapidity, which can be
expressed as

dS(τ, η)

dΘ
= πR2

Aτs(τ, η) cosh[Θ(τ, η)− η]
dη

dΘ

∣∣∣∣∣
fixed τ

, (44)
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Figure 6: The total entropy per unit Θ between the two thick flow lines in fig. 4 for
√
s =

5500 GeV. The dotted curve corresponds to τ = τi and the solid one to τ = 100τi.

will decrease in the central region and the overall distribution will get wider.
The result of our computation for dS/dΘ is shown in Fig. 6. In η the computation

is extended between the two (arbitrarily chosen) thick flow lines in Fig. 4. The dotted
curve shows the initial distribution at τi = 0.1 fm and the solid curve the final distri-
bution at τ = 100τi. Note that the end points move outwards due to a combination of
two effects: the flow lines bend outwards (Fig. 4) and the flow is accelerated relative
to η (Fig. 5).

To obtain a measurable distribution we should be able to treat the hadronization
and to fold the thermal motion of final particles with the collective motion of the flow
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(after expressing the entropy in terms of particle number densities). At present, we
do not have a reliable way to estimate the effects of hadronization but if it has any
effects on flow we would expect them to further widen the rapidity distribution as the
hadronization proceeds from the lower density fragmentation regions to the central
region. Thermal folding involves flow velocities effectively over two-to-three rapidity
units. It will lead to a somewhat wider overall rapidity distribution but in the smooth
central region the effect of folding is small. We conclude that our result of Fig. 6 gives
the minimum change from the initial state at τi to the rapidity distribution of final
particles.

6 Conclusions

In the case of a fully developed rapidity plateau, there is a very simple hydrodynamical
scaling solution for the longitudinal expansion of QCD matter produced in ultrarela-
tivistic heavy ion collisions [1]. In reality, there need not be a rapidity plateau, and
we have studied the longitudinal flow using a rapidity distribution of the initial energy
density obtained from computations in perturbative QCD. Then the rapidity distri-
bution is approximately gaussian but very broad, and thus the deviations from the
Bjorken flow are not very large. To analyze the general features of the flow we also
derived equations for the total entropy and energy between two flow lines and gave
approximate solutions in the limit of broad gaussians for the central region.

The finite width of the rapidity region leads to a transfer of energy from the central
region to larger rapidities. As a consequence the rapidity distribution gets wider and
the energy density in the central region decays faster than for a boost invariant flow.
Correspondingly, the lifetime of the system (the time it takes to decrease from εi to
εc) decreases by about 10%. A similar decrease would be caused by transverse density
gradients. On the other hand, dissipative effects would increase the lifetime.

The longitudinal density gradient also leads to some but very small acceleration of
the longitudinal flow: the effect in the central region is rather on the 1% than 10%
level. In the sense our results confirm the assumptions in [9], called the frozen motion
model in [12], that in estimating thermal effects in the central region it is reasonable
to assume that at LHC energies the longitudinal flow velocity scales even when the
density distributions are not boost invariant.
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