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Collinear QCD Models1

S. Dalley2

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

In ancient times, 't Hooft studied the mesons in QCD1+1 [1] to illustrate the power of the large N
limit [2] in the light-cone formalism. Recently some generalisations of the 't Hooft model have been
studied, which retain a remnant of transverse degrees of freedom, based on a dimensional reduction
of QCD to 1+1 dimensions [3, 4, 5, 6, 7, 8, 9]. In this collinear approximation, quarks and gluons are
arti�cially restricted to move in one space dimension, but retain their polarization degree of freedom.
In this lecture, a problem which in principle involves a large number of partons will be addressed in
the context of the collinear model at large N . For light-cone quantisation, large numbers of partons
are synonymous with small Bjorken-x. The example treated here3 is the quark distribution function
in a heavy meson, which is supposed to exhibit a version of Regge behaviour at small-x. The central
idea involves high light-cone energy boundary conditions on wavefunctions | ladder relations |
which typically connect Fock space sectors of di�ering numbers of partons. The same ideas carry
over to 3 + 1 dimensions [10].

We start from SU(N) gauge theory in 3 + 1-dimensions with one avour of quarks. If we pick
an arbitrary �xed space direction x3 and restrict ourselves to zero momentum in the transverse
directions
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for the gauge and quark �elds, one �nds an e�ectively two-dimensional gauge theory of adjoint
scalars and fundamental Dirac spinors with action
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The su�ces L (R) and + (�) in (3) represent Left (Right) movers and +ve (�ve) helicity, which
is a conserved quantity. Thus u; v; �1; �2 represent the transverse polarisations of the 3 + 1 dimen-
sional quarks and gluons. Since the dimensional reduction procedure treats space asymmetrically,
dimensionless parameters s and t, and a bare gluon mass m0 can occur due to loss of transverse
local gauge transformations. For the present application the precise choice of s and t will not be
qualitatively important, so we set s = 1 and t = 0 for simplicity.

In the light-cone gauge A� = (A0 �A3)=
p
2 = 0, the �elds A+ and uL� are non-propagating in

light-front time x+ = (x0 + x3)=
p
2 so may be eliminated by their constraint equations
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and B� = (�1�i�2)=
p
2. The exchange of non-propagating particles associated with the constrained

�elds results non-local interactions in the light-cone hamiltonian
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The zero momentum limit of the constraints (4) forces a condition on the quark-gluon combined
system Z +1

�1

dx�F� = 0 ;

Z +1

�1

dx�J+ = 0 ; (8)

assuming uL and @�A+ vanish at x� = �1. This is required for �niteness of the non-local interac-
tions in (7). The relation involving J+, which amongst other things restricts one to gauge singlets,
will not be discussed further here.

Introducing the harmonic oscillator modes of the physical �elds4
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in the quantum theory we can expand any hadron state j	(P+) > of total momentum P+ in terms

of a Fock basis [11]. The operators ay
� create gluons with helicity �1, while by

� and d
y

� correspond
to quarks and antiquarks (respectively) with helicities � 1

2
. At large N a gauge-singlet meson is a

superposition
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4The superscript on k+ has been dropped for clarity; i; j 2 f1; : : : ; Ng are gauge indices and y is now understood

as the quantum complex conjugate, so does not transpose them.
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Introducing the fourier transform ~F (w), one �nds that in the quantum theory Eq.(8) can be mean-
ingfully applied as an annihilator of physical states for the cases

lim
w!0+

~F�i(w) � j	(P+) > = 0 (12)
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The �rst relation yields a condition on the Fockspace wavefunctions f involving vanishing quark
momentum k = w > 0, the second on vanishing anti-quark momentum k = �w > 0:
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F and a similar set of relations for quarks from (12); in (14)(15) the limit
k ! 0+ is understood. If we adopt the following momentum-space operator ordering in P� (7)Z 0

�1

dw

w
~F y
�i

~F�i �
Z 1

0

dw

w
~F�i ~F

y

�i ; (16)

we then apparently have manifest �niteness as w ! 0 for physical states. Normal ordering the
oscillator modes in P� would spoil �niteness. Since we do not normal order the form (16), in�nite
quark self energies (self-inertias) are generated but no vacuum energies are generated.

However the above argument is awed by the fact that in�nities may also arise due to integration
over the parton momenta in the wavefunction j	 >, since (14)(15) are to be interpreted at �xed
ki as k ! 0+. This is evident from the light-cone Schrodinger equation, obtained by projecting
2P+P�j	 >=M2j	 > onto a speci�c n-parton Fock state �M2
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f�1:::�n(p1; : : : ; pn) = V̂ [f�1:::�n(p1; : : : ; pn)] (17)

where V̂ is the interaction kernel (including self-inertias), M the boundstate mass, and mi is mF

(quark) or mB (gluon). The ladder relations (14)(15) are necessary for �niteness of the internal
integrations in V̂ at �xed external momenta pi. However further renormalisation of V̂ is necessary
since the ladder relations do not ensure �niteness when one or more external momenta pi vanish in
(17).5 In fact an explicit two-loop calculation of the fermion self-energy in light-cone Yukawa1+1

[13] shows that divergences do not cancel for the same cuto� on all small momenta. In general
the renormalisation that cures these divergences will depend on the precise cut-o�(s) employed. It
has been suggested to renormalise the fermion kinetic mass �nitely to restore parity invariance in
light-cone calculations [14], and this should coincide with ensuring �niteness of M.6

Eqs.(14)(15) show that the meson wavefunction components do not vanish as the quark momen-
tum vanishes. It will be demonstrated that this leads directly to a rising quark distribution function

5This point, and also the integral terms in (14)(15), were missed in ref.[7].
6After this lecture was typed, a preprint appeared [15] which veri�es this for certain examples with a Yukawa

interaction only.
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at small x = k=P+. The probability to �nd an anti-quark | the answer is the same for a quark |
with momentum fraction x = k=P+ of the meson is
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For the polarized version �Q(x) one inserts sgn(�). In order to make use of (14)(15) to evaluate
Q(x! 0), it is helpful to eliminate the integral terms, which generate renormalisation of the other
(non-integral) terms. Although the integrals are over a set of measure zero, they are non-zero
due to the singular behaviour of the integrand. This singular behaviour can be found from the
(correctly renormalised) Schrodinger equation (17). Let us consider the helicity +1 meson with
valence component f++. The general idea is to use an expansion in � and log 1=x to evaluate
(18). The leading orders we shall calculate are independent of any additional fermion kinetic mass
renormalisation in (17). The leading log approximation amounts to considering the integration
region kn�2 >> kn�2 >> � � � >> k2 >> k1 = k in (18). In this region we may use the ladder
relations iteratively to express every n-parton non-valence contribution in terms of f++. For example,
truncating to no more than one gluon we obtain Q(x ! 0) = �2 < 1=y >++ from the f�++

component, where < 1=y >++ is the average inverse momentum fraction in the f++ component.
Truncating to no more than two gluons, we can compute some of the subleading � and log 1=x

corrections. For this we need to use the n = 4 boundstate equation (17) (for which there is neither
a fermion self-inertia nor a �nite kinetic mass renormalisation) to evaluate the integral term in (14).
The following results neglect the A+ exchange process between quark and gluon in (17), whose
e�ects cannot be explicitly resummed. From resumming instantaneous fermion (uL) processes the
correct ladder relations in this 2-gluon approximation become
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Then to leading log the contributions from one and two gluon components of the wavefunction give

Q(x! 0) � (��)2(1 + �2 log 1=x) < 1=y >++ : (22)

An example of a next-to-leading log contribution comes from integrating the two-gluon contribution

over the region
R k
0
dk2

R
k
dk3 using (17) at n = 4
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�
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The analytic ladder results are compared with a non-perturbative DLCQ solution of (17) trun-
cated to the same number of gluons in Figs. 1 and 2. The DLCQ calculations are formal at �nite
x since no additional fermion kinetic mass renormalisation has been carried out to ensure �nite M
as K ! 1. In practice however, for heavy quarks the e�ects of this omission are very tiny at
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Figure 1: (a) Unpolarized distribution function for helicity +1 meson at �2 = 0:1: (Dotted) 1-gluon
ladder prediction (< 1=y >++ is indistinguishable from 2 for heavy quarks); (solid) DLCQ up to 1
gluon, K=24; (dashed) arbitrary-gluon tree-level ladder prediction.(b) helicity asymmetry �Q=Q.
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Figure 2: (a) Unpolarized distribution function for helicity +1 meson at �2 = 0:1, m2
B=m

2
F = 0:1:

(Dotted) ladder prediction for up to 2 gluons and next-to-leading log; (solid) DLCQ up to 2 gluons,
K=15; (dashed) non-valence part of the DLCQ calculation. (b) Helicity asymmetry �Q=Q.
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�nite K, and the plots shown should be a good representation of the exact result at �nite x (the
same comment applies to plots in ref.[7]). At x � 1=K the DLCQ results should in any case match
onto the analytic predictions. There are many sources in the approximations which might account
for the remaining discrepancy in the normalisation and slope seen in Fig.2 at small x, although the
agreement is much better if the DLCQ calculation is repeated without the quark-gluon A+ exchange.

More generally if we consider the ladder relations to leading order in �, which means neglecting
the integrals in (14)(15), an arbitrary number of gluons can be eliminated to yield an exponential
sum of leading log 1=x's (Fig.1)

Q(x! 0) � �2x��
2

< 1=y >++ (24)

The integral terms should only renormalise � in the previous expression. All the results point to a
rising small-x unpolarized distribution. At large N the polarization asymmetry changes sign and
then vanishes at small x in the leading log approximation, �Q=Q � x2�

2
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