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ABSTRACT
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unbroken. We express the perturbatively corrected entropy in terms of the
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ance is manifest. We also discuss the microscopic origin of particular quantum

black hole configurations. We propose a microscopic interpretation in terms

of a gas of closed membranes for the instanton corrections to the entropy.
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1 Introduction

Black holes play an important role in string theory, and in recent times there has been

considerable progress in the understanding of microscopic and macroscopic properties of

supersymmetric black holes in string theory (for a review see [1]).

It is well known from classical general relativity that non-rotating black hole solutions

can be parametrized in terms of electric and magnetic charges and the ADM mass,

only. In the context of string theory, it has been shown in [2] that four-dimensional

non-rotating black hole solutions in the BPS limit depend classically only on the bare

quantized charges on the horizon. Thus, the black hole solutions in the BPS limit are,

on the horizon, independent of the values of the moduli at spatial infinity. In [3] it has

been shown how one can understand this result from a supersymmetric point of view:

On the horizon the central charge of the extended supersymmetry algebra acquires a

minimal value and thus the extremization of the central charge provides the specific

moduli values on the horizon [3, 4]. Moreover, the entropy of certain supersymmetric

black hole configurations can depend on additional topological data. In the context of

a Calabi–Yau compactification these can be, for instance, the intersection numbers, the

second Chern class and the Euler number [5].

Although the BPS limit of black hole solutions in four dimensions with N ≥ 4 is by now

well understood [6], new features of black hole physics arise in four-dimensional N = 2

string theory. In particular there exists a large number of different N = 2 string vacua

so that the extreme black hole solutions depend on the specific details of the particular

N = 2 string model. Consequently the same features are present for the N = 2 entropy

formula.

The N = 2 central charge and the N = 2 BPS mass spectrum can be directly calculated

form the N = 2 holomorphic prepotential. Therefore the parameters of the prepotential

of a given N = 2 string model determine the black hole entropy as well as the values of

the scalar fields on the horizon.

If one considers four-dimensional N = 2 heterotic string compactifications on K3 × T2

with NV + 1 vector multiplets (including the graviphoton), the classical prepotential is

completely universal and corresponds to a scalar non-linear σ-model based on the coset

space SU(1,1)
U(1)

⊗ SO(2,NV −1)
SO(2)×SO(NV −1)

. The corresponding classical N = 2 black hole entropy and

the moduli on the horizon have been computed explicitly in [7, 8].

Since in heterotic N = 2 string compactifications the dilaton can be described by a vector

multiplet, the heterotic prepotential receives perturbative quantum corrections only at
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the one-loop level [9, 10]; in addition there are non-perturbative contributions. The

perturbative (and non-perturbative) corrections generically split into a cubic polynomial,

a constant term and an infinite series of polylogarithmic terms. Thus, quantum black

hole solutions are generically determined by an infinite set of integer numbers. Hence,

the extremization problem of the quantum corrected N = 2 central charge is, in general,

difficult to solve. Nevertheless, we will be able to give explicit examples, where all the

perturbative quantum corrections are taken into account, and where the extremization

problem can still be solved completely.

In [5, 11] a simple implicit formula for the black hole entropy in terms of the heterotic

string coupling and the target–space duality invariant inner product of charges has been

given, which holds to all orders in perturbation theory. This result is the starting point

of the present paper and we will discuss it in the context of the heterotic S-T model.

The paper is organized a follows: In the first section we will briefly introduce the N = 2

vector couplings, the N = 2 central charge and the related Bekenstein-Hawking entropy

in terms of the N = 2 prepotential. In section 3 we introduce the heterotic S-T model, its

perturbative and non-perturbative quantum corrections and the corresponding transfor-

mation laws under perturbative target–space duality. In section 4 we discuss axion-free

black holes in the S-T model. We treat most of the cases explicitly in terms of target–

space duality invariant combinations of quantized charges. In one case, we also discuss

the implicit axion-free black hole entropy in the S-T model including all perturbative

and non-perturbative quantum corrections. Then we solve this case for a special weak

coupling limit near the line of gauge symmetry enhancement S = T in moduli space.

Section 5 is devoted to the 10 and 11 dimensional configurations that yield the black hole

solutions upon compactification. Finally in section 6 we propose a microscopic interpre-

tation for the Bekenstein-Hawking entropy in terms of an intersection of M-branes living

in a gas of closed membranes. In the last section we summarize our results.

2 N = 2 supergravity and special geometry

The vector couplings of N = 2 supersymmetric Yang-Mills theory are encoded in a

holomorphic function F (X), where X denotes the complex scalar fields of the vector

supermultiplets. With local supersymmetry this function depends on one extra field,

in order to incorporate the graviphoton. The theory can then be encoded in terms of

a holomorphic function F (X) which is homogeneous of second degree and depends on

complex fields XI with I = 0, 1, . . .NV . Here NV counts the number of physical vector

multiplets.
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The resulting special geometry [13, 15] can be defined more abstractly in terms of a

symplectic section V , also referred to as period vector: a (2NV +2)-dimensional complex

symplectic vector, expressed in terms of the holomorphic prepotential F according to

V =

(
XI

FJ

)
, (2.1)

where FI = ∂F/∂XI . The NV physical scalar fields of this system parametrize an NV -

dimensional complex hypersurface, defined by the condition that the section satisfies a

constraint

〈V̄ , V 〉 ≡ V̄ TΩV = −i, (2.2)

with Ω the antisymmetric matrix

Ω =

(
0 1

−1 0

)
. (2.3)

The embedding of this hypersurface can be described in terms of NV complex coordinates

zA (A = 1, . . . , NV ) by letting theXI be proportional to some holomorphic sections XI(z)

of the complex projective space. In terms of these sections the XI read

XI = e
1
2
K(z,z̄)XI(z) , (2.4)

where K(z, z̄) is the Kähler potential, to be introduced below. In order to distinguish

the sections XI(z) from the original quantities XI , we will always explicitly indicate

their z-dependence. The overall factor exp[1
2
K] is chosen such that the constraint (2.2)

is satisfied. Furthermore, by virtue of the homogeneity property of F (X), we can extract

an overall factor exp[1
2
K] from the symplectic sections (2.1), so that we are left with a

holomorphic symplectic section. Clearly this holomorphic section is only defined projec-

tively, i.e. modulo multiplication by an arbitrary holomorphic function. On the Kähler

potential these projective transformations act as Kähler transformations, while on the

sections V they act as phase transformations.

The resulting geometry for the space of physical scalar fields belonging to vector multi-

plets of an N = 2 supergravity theory is a special Kähler geometry, with a Kähler metric

gAB̄ = ∂A∂B̄K(z, z̄) following from a Kähler potential of the special form

K(z, z̄) = − log
(
iX̄I(z̄)FI(X

I(z))− iXI(z)F̄I(X̄
I(z̄))

)
. (2.5)

A convenient choice of inhomogeneous coordinates zA are the special coordinates, defined

by

X0(z) = 1 , XA(z) = zA , A = 1, . . . , NV . (2.6)
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In this parameterization the Kähler potential can be written as [14]

K(z, z̄) = − log
(
2(F + F̄)− (zA − z̄A)(FA − F̄A)

)
, (2.7)

where F(z) = i(X0)−2F (X).

We should point out that it is possible to rotate the basis specified by (2.1) by an

Sp(2NV +2,Z) transformation in such a way that it is no longer possible to associate them

to a holomorphic function [16]. The supergravity Lagrangian is then expressed entirely in

terms of the symplectic section V = (P I , iQJ)
T , without restricting its parametrization

so as to correspond to a prepotential F (X) [16].

The target–space duality group Γ is a certain subgroup of Sp(2NV +2,Z). Under target–

space duality transformations, the period vector V transforms as a symplectic vector:

X̃I = U I
J X

J + ZIJ FJ , F̃ I = VI
J FJ +WIJ X

J , (2.8)

where U , V , W and Z are constant, real, (NV + 1)× (NV + 1) matrices, which have to

satisfy the symplectic constraint

O−1 = ΩOT Ω−1 where O =

(
U Z

W V

)
. (2.9)

Finally consider N = 2 BPS states, whose masses are equal to the central charge Z of

the N = 2 supersymmetry algebra. In terms of the magnetic/electric charges (pI , qJ)

and the period vector V = (XI , FJ)
T the BPS masses take the following form [16]:

M2
BPS = |Z|2 = eK(z,z̄)|qIX

I(z)− pIFI(z)|
2 = eK(z,z̄) |M(z)|2. (2.10)

It follows that M2
BPS is invariant under symplectic transformations (2.8).

In the symplectic basis where the symplectic section V is given by V = (P I , iQJ)
T , the

BPS mass takes the following form [16]:

M2
BPS = |Z|2 = eK(z,z̄)|MIP

I(z) + iN IQI(z)|
2 = eK(z,z̄) |M(z)|2. (2.11)

We will choose V = (P I , iQJ)
T in such a way that the symplectic quantum numbers

(N I ,MJ) and the charges (pI , qJ) are related as follows,

N I = (p0, q1, p
2, . . . , pNV ), MJ = (q0,−p

1, q2, . . . , qNV ) . (2.12)

The BPS mass formula (2.10), when evalutated on the horizon of a BPS black hole, also

yields its entropy. On the horizon, the moduli fields take their fixed values, and these

fixed values can be determined by solving a set of 2NV + 2 extremisation conditions [3].
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In a suitable basis Y , given by Y I = Z̄XI [5], these 2NV +2 extremisation equations are

then given by

Y I − Ȳ I = ipI , FI − F̄I = iqI , (2.13)

and the Bekenstein-Hawking entropy reads

SBH = π |Z|2|fix = π
(
|Y 0|2e−K(z,z̄)

)
|fix

= iπ
(
Ȳ IFI(Y

I)− Y IF̄I(Ȳ
I)
)
|fix

. (2.14)

These expressions are valid on the horizon or as double extreme black holes [3]. For

a discussion of more general black holes, where one replaces the charges by harmonic

functions, see [12].

3 The S-T model

3.1 General formulae

In the following, we will focus on the two parameter model [17, 19, 21, 24] based on a

type IIA compactification on a Calabi–Yau space given by a degree 12 hypersurface in the

weighted projective space P4
(1,1,2,2,6) with Hodge numbers (h1,1, h2,1) = (2, 128) and Euler

number χ = 2(h1,1−h2,1) = −252. On the type II side, the vector multiplet prepotential

is given by [22, 21, 24]

FII = −t1(t2)
2 −

2

3
(t2)

3 − c+
1

8π3

∑
j≥0,k≥1

nk,jLi3(e
−2π(jt1+kt2))

+
1

8π3
n0,1Li3(e

−2πt1) , (3.1)

where c = χζ(3)
16π3 . Here, t1 = iz1 and t2 = iz2 denote the two coordinates of the Kähler

cone. The instanton numbers nk,j can be found in [22, 24]. Note that n0,1 = 2 as well as

nk,j ≥ 0.

This model has a dual description [17] in terms of a certain compactification of the

heterotic E8 × E8 string on first a torus T2 and then on K3. This is the so-called

heterotic S-T model with

S = −iz1, T = −iz2. (3.2)

The dilaton S is related to the tree-level coupling constant and to the theta angle by

S = 4π/g2 − iθ/2π.

In order to relate the type II description to its dual heterotic description, the type II

coordinates t1 and t2 must be mapped to the heterotic coordinates S and T . Based on the
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physical requirement that the non-perturbative duality transformations should preserve

the positivity of Re S, it has been argued in [19, 21] that the correct identification is

given by

t1 = S − T , t2 = T . (3.3)

In the following, we will take this to be the correct identification. Thus, in the chamber

Re S > Re T , the heterotic prepotential2 reads for T > 1

Fhet = −ST 2−αT 3− c+
1

8π3

∑
j≥0,k≥1

nk,jLi3(e
−2π(jS+(k−j)T ))−

β

4π3
Li3(e

−2π(S−T )), (3.4)

where α = −1
3

and β = −1
2
n0,1 = −1. The S-T model possesses an S ↔ T exchange

symmetry [19], which is reflected in the instanton coefficients which satisfy nk,j = nk,k−j

[22].

At S = T , there is a genuine gauge symmetry enhancement [20]. A U(1) group gets

enhanced to an SU(2) and four additional hypermultiplets become massless at this point

in moduli space. Three of them belong to the adjoint representation of SU(2). The

SU(2) can then be completely higgsed away. On the type II side this amounts to an

extremal transition to a Calabi–Yau threefold with Hodge numbers (h1,1, h2,1) = (1, 129)

and Euler number χ̃ = −256 [20].

In the standard perturbative regime S → ∞ with T finite, the heterotic prepotential is

given by

Fhet = −ST 2 − αT 3 − c−
1

4π3

∑
k≥1

c(k)Li3(e
−2πkT ) , (3.5)

whith nk,0 = −2c(k) > 0. Note that at T ≈ 1, ∂2
TFhet develops a singularity proportional

to log(T − 1) [18]. In the vicinity of the wall S = T →∞, on the other hand, it follows

from

Li3(e
−x) = p(x) + q(x) log x , x→ 0 ,

p(x) = ζ(3)−
π2

6
x+

3

4
x2 +O(x3) ,

q(x) = −
1

2
x2 +O(x3) (3.6)

that

Fhet = −ST 2 − αT 3 − c̃+
β

2π
(S − T )2 log(S − T ) , (3.7)

2In the following we will only specify the prepotential in this particular chamber.

6



where c̃ = c + βζ(3)
4π3 = χ̃ζ(3)

16π3 . Here, we have also omitted terms which are linear and

quadratic in (S − T ).

Finally, consider writing (3.4) as

Fhet = −ST 2 + f(S, T ). (3.8)

Here f(S, T ) encodes all perturbative and non-perturbative quantum corrections and

may be expanded in powers of e−2πS, as follows [23, 24, 25]

f(S, T ) =
∞∑
k=0

fk(T ) e−2πkS, (3.9)

where f0(T ) ≡ h(T ) encodes all the perturbative quantum corrections in the standard

weak coupling limit S → ∞. It follows that the prepotential F (Y ) = −i(Y 0)2Fhet and

its periods FI(Y ) are given by

F (Y ) = −i(Y 0)2
[
−ST 2 + f(S, T )

]
,

F0 = iY 0
[
−ST 2 − 2f + TfT + SfS

]
,

F1 = Y 0
[
T 2 − fS

]
,

F2 = Y 0 [2ST − fT ] . (3.10)

In special coordinates, the associated Kähler potential reads

K(S, S̄, T, T̄ ) = −log(S + S̄ + ∆)− log(T + T̄ )2. (3.11)

Here, ∆ contains perturbative and non-perturbative corrections and is defined as follows:

∆(S, S̄, T, T̄ ) =
2(f + f̄)− (T + T̄ )(fT + f̄T̄ )− (S + S̄)(fS + f̄S̄)

(T + T̄ )2
. (3.12)

In the standard weak coupling limit these corrections reduce to the Green–Schwarz term

[9]

lim
S→∞

∆(S, S̄, T, T̄ ) = VGS(T, T̄ ) =
2(h+ h̄)− (T + T̄ )(hT + h̄T̄ )

(T + T̄ )2
, (3.13)

and in the classical limit these quantum corrections vanish (by definition). The true

target–space duality invariant perturbative string coupling constant is given by [9]

8π

g2
pert

= S + S̄ + VGS(T, T̄ ) . (3.14)
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3.2 Perturbative target–space duality transformations

The target–space duality group Γ is a certain subgroup of Sp(6,Z). At the perturbative

level, these duality transformations amount to PSL(2,Z)T transformations of the mod-

ulus T , which are generated by T → T + i and T → 1/T . The latter transformation will

be of special interest in the following.

Consider the perturbative BPS mass

M2
BPS = |Z|2 = eK |qIX

I − pIFI |
2 = eK |MIP

I +N I iQI |
2 , (3.15)

where the section V = (P I , iQJ)
T is given by

V = (P I , iQJ)
T = (1, T 2, iT, i(ST 2 + 2h− ThT ), iS,−2ST + hT )T ,

h = −αT 3 − c−
1

4π3

∑
k≥1

c(k)Li3(e
−2πkT ) , (3.16)

and where

MI = (q0,−p
1, q2) ,

N I = (p0, q1, p
2) . (3.17)

The duality transformation T → 1/T acts as follows [21, 24] on the section V given in

(3.16)

V → S1 V , S1 =

 U Z

W V

 , U =



0 1 0

1 0 0

0 0 1


,

Z = 0 , W =



1 −1 0

−1 1 0

0 0 0


, V =



0 1 0

1 0 0

0 0 1


. (3.18)

It follows from (3.18) that [21, 24]

S → S − i+
1

T 2
(2h− ThT + i) ,

h →
h

T 4
+

i

2T 4
−

i

T 2
+
i

2
,

hT → −
hT
T 2

+
4h

T 3
+

2i

T 3
−

2i

T
. (3.19)
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Next, consider taking T to be real. In the region Re T > 1, both h and hT are real.

Then, it follows from (3.19) that

Re S → Re S +
1

T 2
(2h− ThT ) ,

Re h →
Re h

T 4
,

Re hT → −
Re hT
T 2

+
4Re h

T 3
,

Re (h− ThT )

T 2
→

Re (h− ThT )

T 2
−

2Re (2h− ThT )

T 2
. (3.20)

In the region Re T < 1, on the other hand, both h and hT acquire imaginary parts, as

can be seen from (3.19).

The charges (MI , N
J) transform as follows under (3.18)

M → UT,−1M −WN , N → UN . (3.21)

This should be contrasted with the classical transformation law, which follows from (3.21)

by setting W = 0.

It will turn out to be convenient to introduce the O(2, 1) scalar product [8]

〈N,N〉 = (N2)2 +N0N1 = (p2)2 + p0q1 (3.22)

Note that 〈N,N〉 is invariant under both classical and perturbative target space duality

transformations [8].

The perturbative entropy of N = 2 supersymmetric quantum black holes in the BPS

limit is, in target–space duality invariant form, given as follows [5]

SBH =
8π2

g2
pert |fix

〈N,N〉, (3.23)

with gpert defined in (3.14) and with the fields taking their fixed values on the horizon.

4 Axion-free black holes in the S-T model

In this section, we will compute the entropy for certain classes of BPS black hole solutions.

We will take T to be real in the following. Moreover, we will first consider the region

Re S > Re T with Re T > 1. Then, it is possible to have perturbative axion-free solutions

in this region of moduli space. Axion-free solutions are solutions with Re zA = 0, that

is, Im S = Im T = 0. In the region Re T < 1, on the other hand, it is not any longer

possible to set Im S = 0, as can be seen from (3.19).
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For the axion-free solutions in the region Re T > 1, the extremisation conditions (2.13)

yield (with zA = Y A/Y 0)

Y 0 =
1

2
(λ+ ip0) , zAλ = ipA , FI − F̄I = iqI , (4.1)

where λ = Y 0 + Ȳ 0. Thus one can consider three different cases: (i) λ 6= 0, p0 6= 0, (ii)

λ = 0, p0 6= 0 and (iii) λ 6= 0, p0 = 0. We will discuss each of these cases in the following.

4.1 The axion-free S-T black hole with λ 6= 0, p0 6= 0

In this subsection, we will be interested in perturbative axion-free black hole solutions in

the region S � T > 1 with λ 6= 0, p0 6= 0. The extremisation conditions (4.1) then yield

1

λ2
=

q1
p0(p2)2

, S =
p1

λ
=
p1

p2

√
q1
p0
, T =

p2

λ
=

√
q1
p0

(4.2)

as well as

q0 = −
p1q1

p0
− 2λh+ λThT , q2 = 2

p1q1

p2
− p0hT , (4.3)

with h given in (3.16). For real T , h and hT are also real. Solving (4.3) for h and hT

yields

hT = 2
p1q1

p0p2
−
q2

p0
,

h =
1

2λp0

(
p1q1 − p

2q2 − p
0q0
)

,

2h− ThT = −
1

λp0

(
p1q1 + p0q0

)
,

h− ThT =
1

2λp0

(
−3p1q1 + p2q2 − p

0q0
)

. (4.4)

Note that (4.4) relates infinite sums over polylogarithmic functions (appearing on the

left hand side) to simple expressions on the right hand side. Moreover, it is possible

to determine the parameter λ completely in terms of the charges, because the pertur-

bative quantum corrections are independent of the dilaton ( ∂
∂S
h(T ) = 0). Including

non-perturbative corrections encoded in f(S, T ) destroys this property of the black hole

solution. In this more general case λ remains an undetermined parameter.

Let us now check the target–space duality transformation properties of (4.4) under p0 ↔

q1, that is, under T → 1/T . It follows from (3.20) that the left hand side of (4.4)
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transforms as

Re h →
p0

2q2
1λ

(p1q1 − p
2q2 − p

0q0) ,

Re hT → −
q2
q1
− 2

p0q0
q1p2

. (4.5)

The right hand side of (4.4) transforms in the same way, provided the electric and mag-

netic charges transform as follows:

p0 ↔ q1, p2 → p2, q0 ↔ −p
1, q2 → q2. (4.6)

Note that these are the classical transformation laws associated to T → 1/T (cf. eq.

(3.21)). Similarly, it follows from (3.20) that S transforms as

Re S → −
q0

p2

√
p0

q1
, (4.7)

which is also consistent with the transformation behaviour of S = p1/λ under (4.6).

Note that in the classical limit the dilaton is only invariant under target–space dual-

ity transformations if the additional charge constraints, given by (4.3), are taken into

account.

The perturbative entropy is then given by (3.23) with

8π

g2
pert |fix

=
1

2

√
q1

p0

(
p1

p2
+
q2

q1
−
p0q0

q1p2

)
. (4.8)

In the classical limit, on the other hand, we find, for the dilaton on the horizon, that

4π

g2
|fix

=
p1

p2

√
q1
p0

(4.9)

as well as the classical duality invariant charge constraints p1q1 = −p0q0 = 1
2
p2q2, which

follow from (4.3).

Note that (4.8) was computed in the region Re S > Re T > 1. It is easy to check that

the perturbative string coupling constant (4.8), given in terms of the bare charges on the

horizon, is invariant under the classical target–space duality transformations (4.6) of the

charges. Thus, the entropy formula

SBH =
π

2

√
q1

p0

(
p1

p2
+
q2

q1
−
p0q0

q1p2

)(
(p2)2 + p0q1

)
(4.10)

actually holds in the entire chamber Re S � Re T . Note that the entropy varies smoothly

across the point T = 1, where p0 = q1.
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4.2 The axion-free S-T black hole with λ = 0, p0 6= 0

Here, we will be interested in perturbative axion-free black hole solutions in the region

S � T > 1 with λ = 0, p0 6= 0. The extremisation conditions (4.1) then yield pA =

0, q0 = 0 and

〈N,N〉 = p0q1 , T =

√
q1

p0
, S =

1

2

q2√
p0q1

+
1

2

√
p0

q1
hT , (4.11)

with h given in (3.16). Under T → 1/T we have again p0 ↔ q1 and q2 → q2 as in (4.6).

Moreover (3.20) also holds for this solution.

The perturbative string coupling constant on the horizon is now given by

8π

g2
pert |fix

=
p0

q1

(√
q1

p0

q2

p0
+ Re h(

√
q1/p0)

)
. (4.12)

It is easy to check that the perturbative string coupling constant (4.12) is indeed invariant

under the classical target–space duality transformations (4.6) of the charges. It follows

that the perturbative entropy formula

SBH = π

(√
p0q1q

2
2 + (p0)2Re h(

√
q1/p0)

)
(4.13)

holds in the entire chamber Re S � Re T . Note again that the entropy (4.13) varies

smoothly across the point T = 1, where p0 = q1.

In the classical limit the string coupling constant on the horizon and the classical entropy

have the following form:

8π

g2
|fix

=

√
p0

q1

q2

p0
, SclassBH = π

√
p0q1q

2
2 . (4.14)

4.2.1 The entropy in the limit S ≈ T → 0

In the strong coupling limit S ≈ T → 0 the heterotic prepotential is given by f(S, T )

only. In particular we find

Fhet = f(0, 0) =
1

8π3
ζ(3)

∑
j,k≥0

nk,j (4.15)

with n0,0 = −8π3c − 2β. Since the sum is divergent, this expression is only to be

understood in an asymptotic sense. For vanishing S and T the prepotential would diverge,

because of this infinite sum. In this limit, the entropy is then given by

SBH = π
(
|Y 0|2e−K

)
|fix

= (p0)2 1

8π2
ζ(3)

∑
j,k≥0

nk,j . (4.16)

In section 6, we will discuss a microscopic interpretation for the entropy (4.16).
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4.3 The axion-free S-T black hole with λ 6= 0, p0 = 0

Next, we will be interested in perturbative axion-free black hole solutions in the region

S > T with λ 6= 0, p0 = 0. More precisely, we will discuss the general standard weak

coupling limit, the general black hole solution including non-perturbative corrections and

a special weak coupling limit near S = T . This case is analogous to one studied in the

context of the S-T -U model, where the fixed points of T and U had to be taken to lay

near the wall T = U of perturbative gauge symmetry enhancement [28]. In the case

of the S-T model, there is a genuine gauge symmetry enhancement on the wall S = T

[20]. We will use the S ↔ T exchange symmetry of the model in order to determine the

entropy in the two chambers Re S > Re T and Re S < Re T near the wall S = T .

Recall that, in the chamber Re S > Re T , the heterotic prepotential is given by Fhet =

−ST 2 + f(S, T ) with

f(S, T ) = −αT 3 − c+
1

8π3

∑
j≥0,k≥1

nk,jLi3(e
−2π(jS+(k−j)T ))−

β

4π3
Li3(e

−2π(S−T )).

(4.17)

For the case λ 6= 0, p0 = 0, the extremisation conditions (4.1) then yield

qA = 0 , Y A = i
pA

2
, Y 0 =

λ

2
, zA = i

pA

λ
. (4.18)

The parameter λ is determined (in general implicitly) by the constraint

iq0 = 4
∂

∂λ
F (λ, pA) . (4.19)

4.3.1 Standard weak coupling limit

In the standard weak coupling limit S = p1/λ→∞ with arbitrary but finite T = p2/λ,

and consequently f(S, T )→ h(T ), the entropy is given by (3.23) with

8π

g2
pert |fix

= 2
p1

λ
+

λ2

(p2)2
h(p2/λ)−

λ

p2
hT (p2/λ) . (4.20)

Using (3.20) it is easy to show that the perturbative string coupling constant on the

horizon (4.20) is invariant under target–space duality transformations T → 1/T with

λ→ (p2)2/λ, p2 → p2,
p1

λ
→

p1

λ
+

λ2

(p2)2
(2h−

p2

λ
hT ). (4.21)

In the classical limit these transformations reduce to p1 ↔ q0 and p2 → p2. The string

coupling constant has the following fixed value in terms of the charges on the horizon:

4π

g2
|fix

=
p1

λ
, λ =

√
−
p1(p2)2

q0
. (4.22)
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Thus, the classical entropy of the black hole in terms of the charges is (q0 < 0)

SclassBH = π
√
|q0|p1(p2)2. (4.23)

4.3.2 More general axion-free quantum black holes

Let us now consider more general quantum corrected black hole solutions given in terms

of f(S, T ) and of

fS(S, T ) = −
1

4π2

∑
j≥0,k≥1

nk,jjLi2(e
−2π(jS+(k−j)T )) +

β

2π2
Li2(e

−2π(S−T )) ,

fT (S, T ) = −3αT 2 −
1

4π2

∑
j≥0,k≥1

nk,j(k − j)Li2(e
−2π(jS+(k−j)T ))−

β

2π2
Li2(e

−2π(S−T )).

(4.24)

The corresponding general axion-free black hole entropy in the S-T model is then given

by

SBH = π
(
|Y 0|2e−K

)
|fix

= 4π|Y 0|2
(
2ST 2 + f − TfT − SfS

)
|fix

. (4.25)

This entropy contains all perturbative and non-perturbative quantum corrections encoded

in f(S, T ) and represents the general axion-free entropy in the S-T model. For the case

considered here we have Y 0 = λ/2, S = p1/λ and T = p2/λ, and the parameter λ is

subject to the constraint

q0 = −
p1(p2)2

λ2
− 2λf − λ2 ∂

∂λ
f (4.26)

with

∂

∂λ
f = 3α

(p2)3

λ4
−

β

2π2

p1 − p2

λ2
Li2(e

−2π(p1−p2)/λ)

+
1

4π2λ2

∑
j≥0,k≥1

nk,j
(
jp1 + (k − j)p2

)
Li2(e

−2π(jp1+(k−j)p2)/λ). (4.27)

The constraint (4.26) can be solved for a special weak coupling limit as we will show

next.

4.3.3 Special weak coupling limit

For the present case Y 0 − Ȳ 0 = 0, using (2.14), the general axion-free entropy can be

brought into the following form:

SBH =
π

2

(
− λq0 + 3

(
p1(p2)2

λ
+ α

(p2)3

λ

)
−
βλ

2π2
(p1 − p2)Li2(e

−2π(p1−p2)/λ)
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+
λ

4π2

∑
j≥0,k≥1

nk,j
(
(k − j)p2 + jp1

)
Li2(e

−2π((k−j)p2+jp1)/λ)
)

. (4.28)

In the perturbative regime S > T → ∞, S − T ≈ 0, that is, in the vicinity of the wall

S = T the constraint (4.26) can be solved approximately:

q0λ
2 = −p1(p2)2 − α(p2)3 + λ3

(
2c+

βζ(3)

2π3

)
−

β

12
(p1 − p2)λ2 −

β

2π
(p1 − p2)2λ

+ · · · . (4.29)

Here we expanded in x = 2π(p1 − p2)/λ around x = 0 using

Li3(e
−x) = ζ(3)−

π2

6
x+

(
3

4
−

log x

2

)
x2 +O(x3),

Li2(e
−x) =

π2

6
+ (log x− 1) x+

1

2
x2 +O(x3). (4.30)

Note that the logarithmic contributions from the polylogarithms cancel against each

other in (4.29). Using that |p1 − p2| � |pA| � |q0|, one can solve (4.29) in terms of the

following power series expansion

λ =
∞∑
i=1

γi
(
√
q0)i

=
γ1
√
q0

+
γ2

q0
+ . . . . (4.31)

Inserting (4.31) into (4.29) and comparing terms yields

γ2
1 = −p1(p2)2 − α(p2)3, γ2 =

β

4π
(p1 − p2)2 . (4.32)

Choosing again q0 < 0, pA > 0 it follows that

λ =

√
−p1(p2)2 − α(p2)3

q0
+

β

4π

(p1 − p2)2

q0
+ · · · . (4.33)

In the limit S > T →∞, S−T ≈ 0, the only polylog term contributing to the correspond-

ing quantum corrected entropy is the term Li2(e
−2π(S−T )) ≈ 2π(S − T ) log 2π(S − T ). It

follows that in this limit the entropy can be written as

SBH = 2π
√
|q0| (p1(p2)2 + α(p2)3)−

β

4
(p1 − p2)2 log

(
|q0|(p1 − p2)2

(p1(p2)2 + α(p2)3)

)
+ · · · (4.34)

Equation (4.34) gives the entropy in the chamber Re S > ReT near the wall ReS = ReT .

By utilising the S ↔ T exchange symmetry of the model, it follows that in the chamber

Re T > ReS the entropy near the wall ReT = ReS is given by (4.34) with p1 ↔ p2. Note,

in particular, that the entropy is finite on the wall S = T and that it varies continuously

across the wall S = T . A similar effect, which we will briefly describe next, also occurs

in 5 dimensions when considering the entropy density of the associated black string.
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4.4 The entropy density for the associated 5 dimensional black string

Consider the S-T model with the following prepotential (in the chamber S > T )

F = −
(
ST 2 + αT 3

)
, α = −

1

3
. (4.35)

Let R5 denote the radius of the circle of the compactified 5-th dimension. Then [26]

S = R5s , T = R5t , (4.36)

where s and t denote the two moduli fields in 5 dimensions. It follows that

F = −R3
5 V ,

V = dΛ∆Σt
Λt∆tΣ = st2 + αt3 , tΛ = s, t , (4.37)

where V denotes the prepotential of real special geometry in 5 dimensions. It has to

satisfy the additional constraint [26]

V = 1 . (4.38)

Consider a black string carrying charges p1 and p2. In the M-theory picture these charges

are magnetic and carried by two 5-branes, whereas in the heterotic picture p1 is the

charge of the fundamental string, i.e. electric, and p2 comes from a 5-brane that has

been identified with a KK-monopole (see next section). The associated magnetic central

charge is given by [26]

Zm = −tΛp
Λ = −

(
p1t2 + p2(2st+ 3αt2)

)
, (4.39)

with tΛ = dΛ∆Σt
∆tΣ. It can be derived from the central charge in 4 dimensions, as follows.

The 4 dimensional central charge reads

Z4D = eK/2M , M = qIX
I − pIFI . (4.40)

For the case at hand, p0 = 0, qA = 0, so that

M = R2
5

(
q0
R2

5

− p1t2 − p2(2st+ 3αt2)

)
. (4.41)

The magnetic central charge Zm in 5 dimensions is related to the 4 dimensional central

charge in the following way

Zm = lim
R5→∞

(R5)
−1/2 Z4D

= lim
R5→∞

(R5)
3/2 eK/2

(
q0

R2
5

− p1t2 − p2(2st+ 3αt2)

)
. (4.42)
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Using that K = − log(2R5)
3 − logV = − log(2R5)

3, it follows that

Zm = lim
R5→∞

(R5)
−1/2Z4D = −p1t2 − p2(2st+ 3αt2) , (4.43)

up to an overall constant factor. This is in accordance with (4.39).

Inserting the constraint (4.38) into (4.39) yields

Zm = −

(
t2(p1 + αp2) +

2p2

t

)
. (4.44)

According to [3], the entropy density can be obtained by solving the extremization con-

dition

∂

∂t
Zm = 0 . (4.45)

The extremisation condition (4.45) yields

t3 =
p2

p1 + αp2
. (4.46)

Inserting (4.46) into (4.39) yields the magnetic central charge at the fixed point

Zm|fix = −3
(
(p2)2(p1 + αp2)

)1/3
= −3

(
dΛ∆Σp

Λp∆pΣ
)1/3

. (4.47)

The 5 dimensional entropy density3 is then given by

S5D
BH ∝ Z2

m|fix ∝
(
dΛ∆Σp

Λp∆pΣ
)2/3

. (4.48)

This is the entropy density in the chamber s > t. In the chamber t > s, on the other

hand, (4.48) holds with p1 ↔ p2. Hence, it follows that

S5D
BH ∝

(
p1(p2)2 + α(p2)3

)2/3
θ(s− t) +

(
p2(p1)2 + α(p1)3

)2/3
θ(t− s) . (4.49)

5 The heterotic and type II solutions

In the previous sections we computed the entropy, by solving a set of extremisation

conditions, for certain classes of black hole solutions. In this section, we will describe the

corresponding black hole and black string solutions. On the heterotic side, we have pure

Neveu-Schwarz (NS) solutions, whereas on the type II side they represent intersections

of D- or M-branes living in a gas of closed type II strings or closed M-2-branes.

3Note that, for extended objects, one usually considers densities instead of total quantities. In analogy

to the BPS mass density it is reasonable to discuss the entropy density here.
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The general S-T model allows 6 non-vanishing charges. The restriction to the axion-

free case gives two constraints, given in equation (4.3). Thus, in the axion-free case

we have only 4 independent charges. In the case (i) we kept all 4 charges. The other

cases (ii) and (iii) are the least charge configuration where we turned off q0 or p0. These

cases are especially interesting. In 11 dimensions the case (ii) describes an intersection

of membranes and (iii) an intersection of 5-branes. In 4 dimensions both solutions are

S-dual to one another. The general configuration, where we keep the charges q0 and p0

non-vanishing, describes an interpolation between these least charged solution. We will

in the following focus on the case (iii), although on the type II side we will present some

speculations about the general solution (case (i)).

We begin with a discussion of the heterotic solutions. On the heterotic side we can only

give a microscopic interpretation to the classical solutions. For simplicity we will restrict

ourselves to the special case where p0 = 0. In this case it follows from (4.34) that the

classical entropy is given by

SclassBH = 2π
√
|q0 p1 p2

2| . (5.1)

Note that, on the heterotic side, p1 is an electric charge. The corresponding solution in

10 dimensions is given by (see the second ref. of [6])

ds2
10 = 1

H1
du (dv +H0du) + dymdym +H2

(
1
H2

(dx8 + ~V d~x)2 +H2d~x
)

H = d(1/H1) ∧ du ∧ dv +∗ dH2 ∧ du ∧ dv ∧ (dy)m , e−2φ̂ = H1

H2
,

(5.2)

(εijk∂jVk = ∂iH2, u, v = x9 ± t, m = 1..4). This configuration describes a fundamental

string lying in a NS 5-brane. In addition, there are momentum modes travelling along

the string (boost), and in the transversal space is a KK-monopole. In comparison to the

S-T -U model we have identified T = U , which means that the harmonic functions related

to the 5-brane and to the KK-monopole part have been identified. As a consequence,

this classical solution is T -selfdual with respect to the x8 direction, but concerning the u

direction this duality transformation exchanges H0 with H1 (q0 ↔ p1). When compacti-

fying this solution, one reduces first over the torus (x8, x9). This yields a black hole lying

in a 4-brane. In a second step one wraps the 4-brane completely over a K3 manifold..

The associated scalar fields are then given by

S = e−2φ = e−2φ̂
√
|Grs| =

√
H0H1

H2
2

, T =
√
|Grs| =

√
H0

H1
, (5.3)

where Grs denotes the (x8, u) part of the metric (5.2). For the 4d metric in the Einstein
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frame one obtains

ds2 = −
1√

H0H1H
2
2

dt2 +
√
H0H1H

2
2 d~xd~x . (5.4)

Thus, by inserting the harmonic functions H0 = 1 +
√

2q0
r

, H1 = 1 +
√

2p1

r
, H2 = 1 +

√
2p2

r

into (5.4) and by calculating the area of the horizon, one obtains the entropy (5.1). In

addition, the scalar fields behave smoothly and take fixed values on the horizon (r = 0),

which are given in terms of the charges only.

In addition to the quantum corrections (higher genus corrections), described in the pre-

vious sections, one has to consider α′ corrections as well. These terms do not appear

in the prepotential, instead they are related, e.g., to higher curvature corrections. In

order to have control over these terms as well, we have to make sure that the curvature

in the string frame does not blow up on the horizon. Since the radius of the horizon in

the string frame is proportional to the magnetic charge, we can suppress these terms by

choosing a sufficiently large charge p2.

Next, we would like to discuss the solutions on the type II side. The heterotic solution

discussed above can be mapped onto the type II side, where the corresponding black hole

solution can be interpreted as a compactification of intersecting branes. Both solutions

are equivalent, but on the type II side the corrections to the prepotential have a clear

geometrical interpretation in terms of the Calabi–Yau threefold. Thus, on the type II

side, one can identify the additional states and the statistical interpretation of the entropy

is especially clear.

The black hole becomes non-singular if 4 branes intersect each other. If one has less

branes intersecting each other, the horizon shrinks to zero size and the black hole becomes

singular. Actually, it is not necessary to have additional branes at the intersection, also

internal waves (boosts) or KK-monopoles can stabilize the horizon.

We will now discuss the type II analogue of (5.4), and we will mainly do this in the M-

theory picture. Since the solution has only two Kähler class moduli, we can only wrap two

inequivalent branes around the two non-homologous 4-cycles of the Calabi–Yau threefold.

Since on the type II side p1 and p2 are magnetic charges, the 11-d brane configuration must

contain the intersection of two 5-branes. These two 5-branes intersect over a 3-brane and

in order to obtain the electric charge q0, we make again a boost along the worldvolume

of the intersection, i.e. along one of the 3-brane directions. The corresponding metric is

given by (in the following we will mainly consider the metric) [29]

ds2
11 =

1

(H1H2)1/3

[
dudv +H0du

2 + dx5dx5 + dx6dx6 +H1H2d~xd~x+HΛωΛ

]
, (5.5)

19



where ωΛ (Λ = 1, 2) are two 2-dimensional line elements and where ~x = (x1, x2, x3). The

boost direction is x4 (u, v = x4 ± t), which is parametrized by H0. The location of the

branes can be chosen as follows:

t x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

boost ◦ ◦

H1 − 5− brane × × × × × ×

H2 − 5− brane × × × × × ×

(5.6)

where the worldvolume coordinates are indicated by “×”, and where “◦” denotes the

boost directions.

Next, one has to compactify this configuration on a Calabi–Yau threefold, which yields

a string solution in 5 dimensions (t, x1 . . . x4). Ignoring the instanton corrections for a

moment, this solution is given by [30]

ds2
5D =

1

(dΛ∆ΣHΛH∆HΣ)1/3

[
dudv +H0du

2 + dΛ∆ΣH
ΛH∆HΣ d~xd~x

]
, (5.7)

where Λ,∆,Σ = 1, 2, and where dΛ∆Σ denote the intersection numbers of the Calabi–Yau

given in (3.1). The index Λ counts the number of non-trivial 4-cycles of the Calabi–Yau,

and in the solution it indicates around which 4-cycle we have wrapped the 5-brane. For

this string we can define an entropy density (entropy per string length) and we obtain,

after inserting the harmonic functions given after equation (5.4),

S5D
BH = 2π (dΛ∆Σp

Λp∆pΣ)2/3 (5.8)

which coincides with (4.48). In a second step one has to compactify this string, that is

one has to wrap it around the 4-th direction. As a result we obtain the 4-d black hole

ds2
4D = −

1
√
H0 dΛ∆ΣHΛH∆HΣ

dt2 +
√
H0 dΛ∆ΣHΛH∆HΣ d~xd~x , (5.9)

whose 4-d entropy is given by

S4D
BH = 2π

√
|q0| dΛ∆ΣpΛp∆pΣ . (5.10)

which coincides with the first term in (4.34).

This model shows that compactifying on a Calabi–Yau threefold can stabilize a solution.

Since the model under consideration has only two Kähler class moduli, we can only wrap

two topological inequivalent (e.g. orthogonal) 5-branes around 4-cycles of the Calabi–

Yau threefold. As a consequence all triple intersections are self-intersections, which

stabilize the black hole solution. Although the 11-d configuration is singular, the Calabi–

Yau compactification makes it non-singular. Because the dependence of the black hole
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solution on the intersection numbers is given via the expression dΛ∆ΣH
ΛH∆HΣ, a self-

intersection of branes has qualitative the same consequence as the triple intersection of

different branes. Thus, in the same way as additional branes, also the self-intersections

improve the singularity structure of a black hole.

Finally, we would like to comment on the interpolating case (i). We will again only

discuss the intersection part of the solution. In this case, in addition to the magnetic

charges we have the electric charges q1, q2 as well as the constraints (4.3). Therefore, we

need in 11 dimensions a brane solution that interpolates between the 2-brane and the

5-brane. This solution is known and is given by [31]

ds2 =
1

(HH̃)2/3

[
H̃(M3) +H(E3) + H̃H(E5)

]
, (5.11)

where M3 and En denote a 3-dimensional Minkowskian and an n-dimensional Euclidian

space, respectively. The harmonic functions H and H̃ are function of the transversal

space E5: H = 1 + q
r3 , H̃ = 1 + q cos2 ξ

r3 . For ξ = 0 we have a 5-brane, and for ξ = π/2

we have a 2-brane. We do not wish to discuss this solution in detail, but we would like

to point out that an intersecting configuration in terms of these objects along the line of

[32] could provide a microscopic picture for the case (i).

In order to understand the instanton corrections to this solution, it is not sufficient to

consider the 11-d intersection of 5-branes and their compactification only. Instead, one

has to add free membranes in 11 dimensions, which are mapped onto rational curves in

the Calabi–Yau threefold. We will discuss this point in the next section.

6 The microscopic picture

It has, for a long time, been an open question how to give the Bekenstein-Hawking

entropy a statistical interpretation in terms of a degeneracy of states. Although there

has been substantial progress in terms of the D-brane picture [37], it is still a question

that deserves further study.

Consider, for example, the special configuration (iii) which, upon compactification on a

Calabi–Yau threefold, yields a string in five dimensions. Inspired by the degeneracy of

fundamental strings and the “correspondence principle” [34], one could argue that the

degeneracy of states of the corresponding (unknown) underlying quantum theory should,

for large level N , be of the form

d(N) ∼ N−γ/4 e2π
√

c
6
N . (6.1)
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Here c and γ are a priori unknown parameters. For the case γ = c+3, eq. (6.1) describes

the degeneracy of a fundamental string with central charge c for large level N [35].

The exponential term in (6.1) is known as the leading term and the polynomial term

as the subleading term. The leading term is well understood in the context of classical

solutions of supersymmetric vacua, especially for the BPS saturated case [2, 3, 6, 5]. The

subleading term has been recently identified in the context of N = 2 supersymmetric

heterotic and type II vacua [28]. These subleading corrections occur naturally as quantum

or instanton corrections for N < 3. However, the configuration (iii) is special, and other

configurations (and compactifications) such as, for instance, the case (ii) do not share

this microscopic picture. Moreover, non-extreme black hole entropies in effective string

theories depend on the values of the moduli at infinity [36]. Thus, an interpretation

of their entropy in terms of the degeneracy of the spectrum of an underlying quantum

theory, such as in eq. (6.1), appears in general to be somewhat problematic.

In the following we will give a microscopic interpretation for certain black hole entropies,

that were derived above in the context of N = 2 supergravity coupled to two vector

multiplets, which arises as a low-energy effective string theory. Such a microscopic inter-

pretation is up to now only possible near particular points in moduli space. In particular

we will propose a microscopic picture that gives a statistical/thermodynamical interpre-

tation of the 4-d entropy for the cases (ii) and (iii).

In order to understand the microscopic picture one has to understand the brane picture.

We will first consider case (iii), for which there is a clear brane picture. As mentioned

in the previous section, the 11-d configuration consists of an intersection of 5-branes and

a gas of closed membranes. The intersection part has been discussed in the last section

and it give rise to the Bekenstein-Hawking entropy (5.10). A microscopic picture for

this part has been given in [27]. Following the ideas given there, the microscopic states

can be seen as open membrane states that connect the 5-branes. Since they are massive

as long as they are stretched, they will move to the common intersection in order to

become massless there. Next, one wraps the 5-branes around 4-cycles of the Calabi–Yau

threefold and obtains the black string solution given in (5.7). This string is also the

common intersection of all 5-branes, and the open membranes sitting on the common

intersection appear now as momentum modes for this string. If one further takes into

account that the magnetic charge pΛ can be interpreted as arising when wrapping the

5-branes pΛ times around the Λ-th 4-cycle, one can identify the Bekenstein-Hawking

entropy (5.10) with the statistical entropy for the string states of this 5-d black string.

This part of the entropy, associated with the intersection of the 5-branes, gets now cor-
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rected by an instanton part. The corresponding microscopic interpretation was given in

[28]. Here we will extend this interpretation further. The 11-d origin of the instanton

part in the entropy is of a different nature. Turning on the instanton corrections means

that we consider the 11-d intersection to live in a gas of closed membranes. When com-

pactifying this configuration, the worldvolume of the closed membranes are completely

mapped into the internal space. Two of the three worldvolume coordinates are mapped

onto rational curves in the Calabi–Yau threefold and the third one is again identical with

the direction of the 5-d black string. The type IIA analogon would be, that we first

compactify over this string (the 11-th direction) and obtain in 10-d 4-branes living in a

gas of closed strings. In the second step of the compactification, the worldvolumes of

these closed strings are mapped onto rational curves in the Calabi–Yau threefold.

Keeping this in mind, there emerges a corresponding thermodynamical picture. The 11-

d intersection lives in thermal equilibrium with a gas of free closed membranes. When

they touch a 5-brane, they break up into open membranes which move to the common

intersection. Eventually, they recombine to escaping closed membranes. The average

number of open membranes on the 5-branes is counted by q0 [27]. In a thermodynamical

picture a natural definition of the temperature4 is given by the radius of the 5-d black

string, i.e. T 2 ∼ 1/R2
5 = (dΛ∆Σp

Λp∆pΣ)
1
3/q0 (see eq. (5.7)). By keeping the magnetic

charges at some generic value, the temperature is directly related to the average number

of states on the intersection, i.e. to q0. There are now two special cases:

a) the zero temperature limit (R5 →∞): In this limit all Kähler class moduli are large

and hence all instanton corrections are suppressed. The black hole states are given by

the open membranes living on the common intersection. Or in the thermodynamical

language, all membranes are condensed - there are no free membranes.

b) the infinite temperature limit (R5 � 1): There are no open membranes on the 5-

branes (the Kähler class moduli are small). In this case the instanton corrections yield the

dominant part and the black hole states consist of a “hot gas” of closed membranes, which

are mapped into the internal space. The total number of these states is related to the

sum over all rational curves. Note that this sum is in general infinite. On the other hand

the charges are bounded from below by the brane tension or the zero point oscillations.

Equivalently the temperature is bounded from above. And any non-vanishing value of

the charges will regularize the instanton sum.

4One should keep in mind that in this picture the temperature has nothing to do with the Hawking

temperature of non-extremal black holes. We only want to give a statistical/thermodynamical picture

of the 11-d configuration.
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In this picture, the transition between the two cases is smooth. The reason for this is

that we have, so far, implicitly assumed that the magnetic charges take some finite value.

As a consequence we were able to change the values of all Kähler class moduli in the

same way, i.e. we went up and down in the Kähler cone. Going down in the Kähler cone

means that we heat up the system, which takes us into the instantonic region. By going

up in the Kähler cone, on the other hand, we cool down the system - all open membranes

condense and we are in the intersection region.

This situation changes, however, drastically if we allow that also one of the magnetic

charges becomes very small. In this case we are approaching a wall of the Kähler cone

(t1 → 0), where one of the 4-cycles vanish. At this point, the system undergoes a phase

transition, a vanishing 4-cycle “is replaced” by an emerging 3-cycle beyond the wall.

We do not wish to discuss this phase transition in detail here. But if we approach this

point, which on the heterotic side corresponds to S ' T , the entropy gets logarithmic

corrections as given in eq. (4.34).

Finally, let us discuss a problem related to the ζ(3) terms in the prepotential (3.1). As

a consequence also the entropy contains terms wich are proportional to ζ(3). Since this

irrational number cannot be expressed in terms of rational numbers or factors of π, it

seems to be difficult to give the entropy a statistical interpretation. In order to address

this question we can go to a region in moduli space where only these terms contribute.

This is shown in eq. (4.16), where we took pA ' 0 and p0 � 1. The 11-d starting point

for this limit is an intersection of two 2-branes embedded in a gas of closed membranes.

This is a configuration dual to the 5-brane case discussed above. As before, in this picture

we have open membranes sitting on the intersection. The contributions proportional to

ζ(3) can now be extracted if we go to the hot temperature limit, i.e. R5 � 1, which in

this case correspond to p0 � 1. Again the dominant part is given by the gas of closed

membranes. This pure instantonic part yields the entropy contribution (4.16), and we

have to face the problem of interpreting ζ(3). Interestingly, this term also appears in the

statistical entropy that counts the number of free bosons and fermions (ideal gas) living

in the membrane worldvolume, which is given by [33]

Sstat =
7

8π
ζ(3)NL2T 2 , (6.2)

where N denotes the number of states of free bosons that should be equal to the number

of fermions, L2 is the spacial volume (which should be normalized properly) and T 2 is

the membrane tension. The membrane tension is related to the string tension by [33]:

T 2 = T 1/L = 1/(2πα′L). So, by comparing this statistical entropy with (4.16) and by

setting α′ = L, we see that both expressions coincide up to integers. This coincidence
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suggests, that the ζ(3) terms in the entropy (4.16) count the number of worldvolume

states of the compactified M-2-branes.

7 Conclusions

In this paper we investigated axion-free quantum black hole solutions in the N = 2

supersymmetric heterotic S-T model. For these solutions we discussed the entropy in

target–space duality invariant form as well as the scalar fields on the horizon. The

entropy in this model is determined by 4 independent charges. If we keep all 4 charges

the entropy is given by eq. (4.10). This result takes into account all the perturbative

corrections appearing in the prepotential. Next, we considered two special classes of

solutions, whose entropy is given in terms of 3 charges only. In 11 dimensions, these two

cases correspond to intersections of only membranes or only 5-branes. For the first case

the entropy is given in (4.13) and for the second one in (4.25). In the latter case we also

included the non-perturbative corrections. However, this latter solution depends on a

constrained parameter. We expanded this solution around a vanishing 4-cycle and found

logarithmic corrections for the entropy (subleading terms).

In the second part we considered the corresponding 10-d (heterotic) or 11-d (M-theory)

configurations. In the context of M-theory we proposed a microscopic interpretation for

the entropy formulae. In this picture we have in 11 dimensions an intersection of two

branes living in a gas of free closed membranes. When compactifying this configura-

tion the intersecting branes are wrapped around inequivalent cycles and the free closed

membranes are mapped onto rational curves of the CY-threefold. An interesting feature

of this model is that, although the 11-d solution is singular, the compactification on a

CY-threefold stabilizes this solution. A torus compactification, on the other hand, yields

a singular configuration in 4 dimensions.

Finally, we discussed a thermodynamical picture for the intersection of branes living in

a gas of membranes. The number of open membranes attached to the intersection of

2- or 5-branes depends on the point in the Kähler cone. If we move up in the Kähler

cone, the number increases (the closed membranes “condense”) and going down has the

consequence that all open membranes “evaporate” from the intersection. Deep inside the

cone we reach a pure instantonic region. Here, for the case of intersecting membranes,

we proposed a microscopic interpretation for the ζ(3) terms in the entropy in terms of

worldvolume states of membranes.

To conclude, the microscopic picture of the quantum black hole solutions we have in-
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vestigated is not yet complete. But it is encouraging that, at least at special points in

moduli space, a reasonable statistical interpretation of the entropy, including quantum

corrections, is possible.
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