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Abstract

Several methods have been developed recently to measure the frequencies of a time series to much

higher precision than ordinary FFT. The decomposition of tracking or experimental data into a

Fourier transform can therefore also be done with largely enhanced precision. On the one hand

this allows to free these data from complicated phase space distortions. On the other hand, these

high precision spectrum lines can be interpreted as being the result of the excitation of certain

resonances. In this report we study how this information can be used to tackle resonances. It

has to be stressed that this techniques requires no knowledge concerning the simulation model

or the accelerator being studied. The only input needed is a series of tracking data or, in the

case of the experiment, a set of turn{by{turn data after kicking the beam.
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1 Introduction

A very precise determination of the fundamental frequencies of quasi{integrable
systems has been introduced recently and applied to the analysis of the betatron motion
in an accelerator [1, 2]. The aim of this report is to use the improved knowledge about
these frequencies for a better understanding of the nonlinear contents of single particle
motion in accelerators. An earlier attempt to relate the frequency spectrum to the driving
term of a resonance was proposed [3, 4] in the framework of the �rst order perturbation
theory with applications to the real spectrum from tracking or experimental turn-by-turn
data.

In Sec. 2 we will give a short overview of the theory as introduced by Bengtsson [3].
In Sec. 3.1 we discuss the links between the lines and the resonances as expected from
perturbation theory using the H�enon 2D map. In Sec. 3.2 we will show an application
for the SPS and for a realistic LHC lattice. For the latter [Sec. 3.3] a correction strategy
based on the analysis of the spectral lines allows to correct third-order resonances. The
implications concerning the dynamic aperture are discussed.

2 Spectral analysis via �rst order perturbation theory

Close to a single resonance, the quasi{integrable system can be represented in �rst
order perturbation theory, in the following form:

H(Jx; Jz; �x; �z; s) = �xJx + �zJz +DT (Jx; Jz) cos (1)

where (�x; �z; Jx; Jz; �x; �z) are the tunes and the action-angle variables of the unperturbed
system. The phase term  is

 = nx�x + nz�z + �k � p
s� s0

R
(2)

with s, �k and R the longitudinal position, initial phase and averaged radius respectively.
DT is the amplitude dependent driving term and the resonance condition of the frequencies
is:

nx�x + nz�z + p = 0 nx; nz; p 2 Z (3)

where nx+nz = N is the order of the resonance. J. Bengtsson [3], showed that the motion
generated by Eq. 1 gives rise to a Fourier spectrum, each of its components being related
to a particular resonance. The following table shows which lines are expected in �rst order
for the horizontal and vertical plane respectively:

Horizontal Vertical
(nx � 1)(�x +��x) + nz(�z +��z) nx(�x +��x) + (nz � 1)(�z +��z)

(4)

where the ��x and ��z are the amplitude dependent detuning terms. Notice that
in the line spectrum the resonance conditions are found for the exact frequencies while
the unperturbed tunes are used when applying the perturbation theory.

The actual procedure to obtain the full spectrum of the betatron motion goes as
follows [1]: the time series of tracking (or experimental) data is analysed with the algo-
rithms for the precise measure of the betatron tune. They provide the main frequency
(i.e. the tune) and the corresponding Fourier coe�cient. By subtracting from the time
series this tune line, using the proper amplitude and phase, we obtain a new signal of
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equal length which can be reanalysed in the same way. This iterative procedure provides
the set of frequencies contained in the betatron motion.

It is easily veri�ed that the frequencies can be expressed as linear combinations of
the fundamental tunes �x and �y and the decomposition of the signal reads:

x(n) =
MX
j=1

aje
i[2�(mj�x+nj�z)n+�j ] mj; nj 2 Z (5)

where the aj and �j are amplitude and phase of the corresponding spectral line. It should
be mentioned here that the algorithms used for the high frequency analysis rely on the
hypothesis that the time series is a quasi{periodic signal of length T with frequencies
separated by a distance larger than 1=T . This implies that, in general, regular motion
can always be treated by choosing large enough sample lengths. However, in the chaotic
regime the method will break down since the above condition is not ful�lled.

3 Application to models

The identi�cation of the spectral lines in terms of resonances is only partially solved
by perturbation theory owing to the complexity of the problem. For the 2D H�enon map
we have systematically studied amplitude and phase of various lines and their relation to
�rst order perturbation theory. The bene�cial e�ects of reducing phase space distortion
by subtraction of spectral lines are demonstrated using more realistic models of the SPS
and the LHC. Finally we discuss how the lines are used to correct resonances of the LHC
lattice.

3.1 The H�enon 2D map

The H�enon map can be represented by a sextupolar kick followed by a rotation:
8><
>:

x0 = cos(2��x) � x + sin(2��x) � (px + x2)

p0

x = � sin(2��x) � x+ cos(2��x) � (px + x2)
(6)

Tracking data were generated with di�erent starting amplitudes and di�erent values of
the tune and were analysed with the procedure described in Sec. 2. According to the �rst
order perturbation theory only the resonances of order 3, and the sub-resonances of order
1 can be excited. Using the results of Sec. 2 we expect to �nd the following lines:

3-rd order 1-st order
�2�x 0
�4�x �2�x

(7)

The results are summarised in Fig. 1. It shows the dynamic aperture of the model and the
behaviour of the phase of the di�erent spectral lines with respect to the tune variation.
Characteristic jumps in the phase of the lines by 180 degrees are found at tune values for
which Bengtsson has predicted resonances. Actually many more lines are found due to
terms that have been neglected by the �rst order perturbation theory. For example the
lines �3�x may be explained by a naive application of Bengtsson derivation to the single
resonance Hamiltonian arising from the model in second order.

In general it is di�cult to establish a one-to-one correspondence between lines and
resonances, because the existence of a certain resonant term in the Hamiltonian may
contribute to di�erent lines. In particular this seems to be true for higher order resonances.
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Correction
Stability Border Uncorrected LHC lattice of (3,0) & (1,2)

Resonance

Regular Motion 15.5 16.9
Strong Chaos 16.0 17.1

Lost before 1000 Turns 16.9 18.0

Table 1: Improvement of Dynamic Aperture due to Resonance Correction

3.2 Reduction of Phase Space Deformations

In a �rst example [LHC case in Fig. 2a, c] the doughnut shaped horizontal phase
space is reduced to a near perfect circle by removing the �rst 100 dominant lines. It goes
without saying that the tune line has to be kept. This procedure does not introduce high
order distortions which tend to spoil the usefulness of perturbative techniques like Normal
Form.

The strong reduction of phase space distortion can be applied to sharpen the method
for detecting the onset of chaos [6]. In Fig. 2b a typical case is shown of the evolution of
the angular distance in phase space of initially close-by particles. In the case of regular
motion a linear increase of this distance is expected. The large variations of the distance
may make it di�cult however to decide about the nature of the particle motion. The
subtraction of lines (compare [part d.)] to [part b.)]) o�ers an easy and reliable method
to reduce these variations.

The most di�cult test is the study of motion close to resonance structures. The
large �ve islands [SPS case in Fig. 2a] can indeed be reduced to points by the subtraction
of lines as seen in part b.). The one essential precondition of this method is however the
existence of a well de�ned tune. The method therefore fails in the case of chaotic motion,
here achieved by approaching the vicinity of the separatrix. The subtraction of 100 lines
that transform [part c.)] into [part d.)] does no longer simplify the complexity in phase
space.

3.3 The correction of the resonances in the LHC

A possible exploitation of the techniques discussed so far consist in the correction of
the resonance contributions generated by the nonlinear elements in an accelerator lattice.
For this purpose we analysed tracking data of a realistic LHC model.

Following well established strategies for the correction of the resonances [5] we tried
to identify the location and the strength of a set of corrector families to compensate the
third order resonances (3; 0) and (1; 2). A family of sextupolar spool pieces, normally
used to correct the average b3 component along the lattice was split into several families
to compensate the cosine and sine term of the two resonances. Using tracking data at
each location of the correctors we were able to identify the best places for correctors,
i.e. longitudinal locations where the oscillations of the lines have their extreme values
[Fig. 3]. Two resonances were corrected simultaneously each with two correction families
while keeping the b3 corrected on average. We managed to reduce by more that 50% the
amplitude of the lines. The resulting reduction of the phase space distortions is clearly
visible in Fig. (4). In the tracking [Tab. 1] we could demonstrate that the double resonance
correction led to an improvement of the dynamic aperture of almost 10%.
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4 Conclusions

We have shown that the tune line spectrum can serve as a powerful tool to deal with
strong nonlinearities in single particle motion. It is appealing for the accelerator designer
to have a tool that works without involved mathematical apparatus. It works very well
in simulations and is expected to be equally useful in machine experiments. We have
demonstrated that these lines can be used to suppress unwanted phase space distortions
and to correct resonances in a non-perturbative manner.
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Figure 1: The H�enon 2D map

Part a.): Dynamic Aperture versus Tune
Part b.): Phase dependence of the line �2�
Part c.): same for �3�
Part d.): same for �4�

5



a.) b.)

c.) d.)

Figure 2: Reducing Phase Space Distortions by Subtraction of dominant Lines

Part a.) shows a typical horizontal phase space plot of nonlinear particle motion in a LHC
structure. The linear increase of the distance of two initially close-by particles indicates
that the motion is regular, that is to say stable forever. Taking out the most dominant
lines (with the exception of the tune line) reduces the phase space to a near perfect circle
[part c.)]. Moreover the increase of the distance in phase space, which is shaped like a
wedge as seen in part b.), reduces to a thin line after the subtraction [part d.)].
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a.) b.)

c.) d.)

Figure 3: Reducing Phase Space Distortions close to 5th Order Resonance

The motion close to a 5th order resonance is shown in part a.). Taking out the 100 largest
lines while keeping the tune line reduces the islands to points which are just visible
in part b.). The method works of course only for regular motion. Once chaotic motion
is considered, here by approaching the separatrix [part c.)], the subtraction of lines no
longer leads to point-like objects [part d.)]. On the contrary, one can argue that the phase
space has become more distorted after this subtraction.
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Position of Correctors for (3,0) Resonance
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Figure 4: Choosing best places for correcting the (3,0) resonances with sex-

tupoles

a.) b.)

Figure 5:Reduction of Phase Space Distortion due to Correction of Resonances

In part a.) the horizontal phase space of particle motion is shown in a LHC lattice with
the (3,0) and the (1,2) resonance strongly excited. These resonances have been corrected
resulting in the corresponding phase space projection as depicted in part b.).
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