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1 Introduction

In some past investigations of the dynamic aperture of the LHC (Ref. 1), short term calculations

were performed with averages over di�erent seeds for imperfection initialization, in order to

deduce scaling laws with respect to various parameters such as the number of multipoles in the

machine, their strength, and the multipolarity-order. In this context, the combined e�ect of

di�erent multipoles was studied and rules of thumb for the result on the dynamic aperture of

such combinations with di�erent order n were found. These rules were tested for several seeds

and large number of perturbing elements and used to analyse tolerances in the LHC dipoles.

In constructing a heuristic model, the average dynamic aperture d was plotted as a function

of the multipole strength (Ref. 1). Then, in the attempt to �t the obtained curve, the total d

resulting from the combination of the separate d-values associated with two multipoles of order

n and m was assumed to verify the following combination law:

1

d�
=

1

d�
n

+
1

d�
m

; � � 4 (1)

where � is an arbitrary exponent. The best value found for the �t is � = 4 and could

not be justi�ed in a deterministic way, the more so that it happened later to apply to 4D-

tracking simulations as well as to 6D-tracking (synchrotron motion included). This surprising

rule of thumb is intriguing, in particular because it has been satis�ed by subsequent results of

simulations with various imperfections in the LHC elements.

Starting with these observations, we thougth that it would be interesting to understand

somewhat the reasons for the existence of such a rule. In order to have a possible insight into the

mechanisms involved and not to repeat numerical tracking which does not easily deliver them, we

decided to try an analytical approach in spite of its limitations. Indeed, the basic idea consists

in considering an integrable system for which it is possible to get a closed formula for the limit of

stability. Therefore, the model retained deals with a one-dimensional motion, constant focusing

and a at distribution of the multipole �eld, the order and combination of the multipoles being

arbitrary. The explicit solution for the dynamic aperture associated with this motion is given in

Section 2. A particular case of combining distributed sextupole and decapole is treated in Section

3, where the results are then compared with the conjecture recalled hereabove. They show some

interesting features which are discussed in the Conclusions.
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2 Dynamical aperture for distributed single multipoles

The �rst step in the procedure is to compute the dynamical aperture of distributed single mul-

tipoles being superimposed to a constant quadrupole �eld. The equation of motion in the pure

horizontal plane is

x00 +Q2x+Knx
n�1 = 0 (2)

where n describes the order of the multipolare �eld (K3 - sextupole , K4 - octupole a.s.o.)

and Q2 stands for an overall linear focusing acting on the particle motion. As the dynamical

aperture of this system we de�ne the maximum initial value x(0) when _x(0) = 0 that leads to

bounded motion. In the case of Eq. (2) it is relatively easy to compute the dynamical aperture

in closed expressions. The basic strategy is to write down a �rst integral and investigating the

associated invariant curves in the phase space for its property to be closed (stable case) or open

(unstable case) curves. Since Eq. (2) is derivable from a Hamiltonian function

H(x; p) =
1

2
(Q2x2 + p2) +

1

n
Knx

n = Const: (3)

and @H=@t = 0 a �rst integral of motion is given by the Hamiltonian itself. The constant is

evidently given by

Const: =
1

2
Q2x20 +

1

n
Knx

n

0 (4)

Since the invariants (3) are symmetric w.r.t the canonical momentum p, we expect opening of

the curves towards the x direction in the unstable case. We therefore look for a condition of

transition between real and complex solutions of the equation

F (x) = H(x; 0)� Const = 0 (5)

with respect to x. A transition between real and complex solutions takes place if

F 0(x) = 0 =) x = xExtr and F (xExtr) = 0 (6)

For a sextupole n = 3 we obtain

F (x) =
1

2
Q2x2 +

1

3
K3x

3
�

1

2
Q2x20 �

1

3
K3x

3

0 = 0 (7)

Using (6) we �nd

F 0(x) = Q2x+K3x
2 = 0 =) xExtr = �

Q2

K3

(8)

F (xExtr) =
1

6

Q6

K2
3

�
1

2
Q2x20 �

1

3
K3x

3

0 = 0 (9)

The smallest (in absolute value) real solution of this equation is the dynamic aperture. The

solution can easily be found by introducing

x0 = �
Q2

K3

(10)

which gives
1

3
�3 +

1

2
�2 �

1

6
= 0 =) � =

1

2
(11)
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so that �nally

x0Max =
Q2

2K3

(12)

Generalizing this procedure to distributed single multipoles of order n we �nd from (5) that

1

2
Q2x2Extr +

1

n
Knx

n
Extr �

1

2
Q2x20 �

1

n
Knx

n
0 = 0 (13)

with

Q2 +Knx
n�2
Extr = 0 (14)

Eq. (14) can be solved as

xExtr = �

 
Q2

Kn

!1=(n�2)

(15)

The positive sign relates to even multipoles (octupoles,dodecapoles..) while the negative sign is

valid for odd multipoles (sextupoles,decapoles ...). Inserting xExtr into (13) �nally results in a

de�nition equation for the dynamical aperture x0 as

�Kn
xn0
n
�

1

2
Q2x20 �

Q2n=(n�2)

nK
2=(n�2)
n

+
Q2n=(n�2)

2K
2=(n�2)
n

= 0 (16)

Using the substitution

x0 = �
Q2=(n�2)

K
1=(n�2)
n

(17)

a new equation for � not depending on Q and Kn can be established:�
1

2
�

1

n

�
�

1

2
�2 �

1

n
�n = 0 (18)

Again the plus sign relates to even and the negative sign to odd multipoles. It turns out that for

even multipoles � = 1 is always the smallest positive solution,hence the general relation for the

dynamical aperture in this case is

x0Max =
Q2=(n�2)

K
1=(n�2)
n

; n even (19)

For odd multipole however, the smallest positive solution di�ers from unity. In the case of a

sextupole � = �3 = 1=2. In the case of a decapole it is still possible to express � in term of roots

and we obtain

�5 =
2 + 101=3

3
= 0:72212::: (20)

This has been possible since one solution of the �fth order equation is equal to �1 and the problem

is reducible to a fourth order polynomial. As n increases �n approaches +1 which indeed becomes

solution of (18) as n tends to in�nity. In Fig. 1 we plot the coe�cient �n against n (n odd).
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Fig.1 Coe�cient �n for odd n

It should also be noted that the functional dependence of the single multipole aperture on Q

and Kn as given in (17) agrees with the one given in (Ref. 1).

3 Test of a combined case

In the next step, we test the case of a horizontal motion with constant sextupole and decapole

components (K3 and K5). The purpose is to compute analytically the single multipole apertures

related to these multipole types as well as the aperture for the combined case. This should �nally

enable us to check the conjecture given in Ref. 1 that the inverse dynamical apertures due to

single multipoles to some power simply add to give the inverse total aperture to the same power,

1

d�
=

1

d�
3

+
1

d�
5

; � � 4 (21)

The di�erential equation for this case is given by

�x+Q2x+K3x
2 +K5x

4 = 0 (22)

while its Hamiltonian reads as

H(x; p) =
1

2
(p2 +Q2x2) +

1

3
K3x

3 +
1

5
K5x

5 = Const: =
1

2
(p2

0
+Q2x2

0
) +

1

3
K3x

3

0
+

1

5
K5x

5

0
(23)

As before we restrict ourselves to the case p0 = 0 and we look for the opening of the invariant

curves in the x direction. Hence. eq. (23) reduces to

F (x) =
1

2
Q2x2 +

1

3
K3x

3 +
1

5
K5x

5 =
1

2
Q2x2

0
+

1

3
K3x

3

0
+

1

5
K5x

5

0
= C (24)

Using again the conditions for unbounded motion,

F (xExtr) = C (25)

F 0(xExtr) = 0 (26)
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we �nd a �fth order equation for the limiting amplitude x0 that is written as follows

1

2
Q2x2

0
+

1

3
K3x

3

0
+

1

5
K5x

5

0
= F (xExtr) (27)

where xExtr satis�es the following cubic equation:

K5x
3

Extr +K3xExtr +Q2 = 0 (28)

which has a real Cardanian solution

xExtr = �21=3K3

�
+

�

3K521=3
(29)

where

� =
h
U � 27(QK5)

2

i
1=3

(30)

and

U = 3
p
3
q
4(K3K5)3 + 27(QK5)4 (31)

The dynamical aperture d for the combined case is then the smallest real solution of the �fth

order equation (27).

3.1 Check of the law of superposition

We now use the results of the previous section in order to check the empirical law of superposition

(21). In the assumption that this law is exactly valid, the following equation must hold:

1

d�c
=

1

[Q2=(2K3)]�
+

1

[(2 + 101=3)Q2=3=(3K
1=3
5

)]�
(32)

where dc is the minumum-amplitude solution of the �fth order equation (27). At this stage

already, we can conclude that (32) can never hold exactly for any number �. The reason is

that the combined aperture dc is the solution of a general �fth order equation, the coe�cients of

which depend on the multipole strengths K3 and K5. It is indeed well known that the general

solution of a �fth order polynomial equation cannot be expressed in terms of roots but only in

terms of Jacobian elliptic functions. Hence, the left hand side of (32) will depend on elliptic

functions in K3 , K5 and Q while the right hand side just depends on square and cubic roots in

these variables. So from the strictly mathematical point of view, the proposed superposition law

is already disproved.

However, we may look for the number � (at some given Q) that minimizes the expression

S(K3;K5) =
1

d�c
� 1

[Q2=(2K3)]�
� 1

[(2 + 101=3)Q2=3=(3K
1=3
5

)]�
(33)

within some interval for the multipole strengths K3 and K5. In order to do this systematically

we choose the following procedure:

� We loop over the linear focusing Q in the interval (5; 30) in steps of �Q = 1

� For every value of Q we loop over the sextupoleK3 and decapole strength K5 in the interval

(0:5; 5:0) in steps of 0:1.

� For each pair of K3 and K5, we compute the dynamical apertures for the single multipoles

(d3 and d5) as well as the combined aperture dc, by solving the �fth order equation (27).
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� We loop over various exponents �n, and compute the quantities Gn and Dn for each �n

Gn =
kmaxX
k=1

�
1

d�nc (k)
�

1

d�n
3
(k)

�
1

d�n
5
(k)

�
2

(34)

Dn =
kmaxX
k=1

�
1

d�nc (k)

�
2

(35)

� We next introduce a quantity that characterizes the quality of the �tting of the exponent

� to the proposed superposition law, i.e.

� =
Minn(Gn)

Dnmin

(36)

A good �t is therefore associated with the condition k�k << 1.

� We eventually plot the best �tting value of � against the focusing force Q.

In Fig.2 we see that the best �tting exponent � varies by about a factor 2 within the chosen

interval of Q indicating that the law of superposition does not work well if the linear focusing is

strongly varied, keeping constant the interval for the strengths K3 and K5.
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Fig.2 Best �tting exponent � versus the linear focusing Q

In Fig. 3 �nally we show the obtained value of � against Q and we realize that the �t obtained

for every value of the linear focusing in the chosen interval is very good. Thus we conclude that

for a given constant linear focusing (only the multipole strengths being varied), the proposed

superposition law applies very well.

Next, we have to note that the increase of the best �tting � for smaller Q corresponds to a

similar rise of the quality factor �, associated in turn to the fact that the multipole strength Kn

is almost comparable to Q, making the ratio Kn=Q
2 which enters the equation (32) as large as 1

to 10 %. Considering the systematic sextupole component in the dipoles of the LHC, we notice

that this ratio is smaller than 0.1 %, and even smaller for the decapole component. Hence, for a

more realistic description of the LHC case, we have to vary the focusing Q and the component
Kn together, while maintaining the ratio de�ned above about constant and small.
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We e�ectively did this exercise, still repeating the exact procedure described previously and

minimizing the expression (33) within now a limited interval for K3 and K5 of �10% around

the values corresponding to a constant ratio. We have considered two values for the ratio equal

to either 0.1 % or even 5 times smaller which corresponds to the two curves on Fig. 4. This

�gure gives the best �tting values of � in these conditions for a Q-interval from 10 to 50. Now

the quality factor � remains always smaller than 0.001 and the exponent almost constantly equal
to 0.4. Note that the Q-value of our model that corresponds to the LHC should be the total

wave-number coming from the 8 arcs, i.e. � 46, and the multipole component should then be

the integral over the arcs of the systematic dipole errors.
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For large variations of the focusing and multipole strength, the best found �tting-values of

� lie in the interval 0:4 < � < 0:9 and remain close to 0.4 for a small ratio Kn=Q
2. These

values do seriously disagree with the one given in Ref. 1, which is equal to 4. Following the

argumentation in this reference, we could think that the exponent 4 is equal to the number of

phase space dimensions for the coupled horizontal and vertical betatron motion. Consequently,

in our one-dimensional model of a pure horizontal motion we should obtain an exponent � = 2,

which is not the case in our results. We therefore conclude that the form of the superposition

law given in Ref. 1 seems basically to hold as long as the linear beam focusing is held constant

or the multipole strength is small with respect to the wave-number Q, but with an exponent �

not equal to the value expected from a crude reasoning.

4 Conclusions

As resulting from our analytical investigations with a simpli�ed equation of motion, the following

points are particularly interesting to underline. Though the conjecture cannot be proved in

general, it holds remarkably well within some assumptions. At constant focusing strength Q, it

is possible to �nd a unique value of the exponent � which satis�es the conjecture for a range of

amplitudes of the multipole components Kn relatively large and with a good quality of the �t

conditions (i.e. small � values). This exponent � however varies expectedly with the ratio Kn=Q
2

which enters the expression for the dynamical aperture. Both the exponent and the �t error �

increase rapidly when Kn becomes comparable to Q, which is an irrealistic case. Nevertheless,

if this ratio is smaller than a fraction of a permil as is the case in a collider like LHC, the �t

is always good and � remains close to an asymptotic value for any focusing wave-number Q.

The fact that this value is approximately equal to 0.4 in a one-dimensional motion could not be

explained.
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