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ABSTRACT

Extended superalgebras of types A,B,C, heterotic and type-I are all derived
as solutions to a BPS equation in 14 dimensions with signature (11, 3) . The
BPS equation as well as the solutions are covariant under SO(11, 3) . This
shows how supersymmetries with N ≤ 8 in four dimensions have their origin
in the same superalgebra in 14D. The solutions provide different bases for the
same superalgebra in 4D, and the transformations among bases correspond
to various dualities.
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1 64 supercharges

It is well known that in four flat dimensions there cannot be more than
eight conserved real (Majorana) supercharges. If one imagines that the 4D
theory comes from some fundamental theory, then the fundamental theory
apparently may not have more than 32 real supercharges in its flat limit: If
it had more than 32 it would imply more than N = 8 in 4D. The physical
basis for this assertion is that in flat 4D spacetime there cannot be massless
interacting particles with helicity higher than 2 and/or that there is only
one graviton. For N ≥ 8, a supermultiplet that includes the graviton in 4D
necessarily contradicts these facts.

A caveat in this argument is that there may be different sets of 32 super-
charges that are equivalent to each other under duality symmetries from the
point of view of a lower dimensional effective theory. We suggest that the ex-
istence of dualities may allow 64 supercharges, and that in dimensions 10 to14
one can embed three sets 32A,32B and 32C as different projections of the 64,
which form three distinct superalgebras of types A,B,C. First examples of
theories containing the 32A,B supercharges are 10D supergravity/superstrings
of type-IIA,B. In 11D supergravity there is 32A. For dimensions 9 and below
the distinction between 32A,B disappears, but the T-duality which is well
known for d ≤ 9 actually performs the transformation 32A ←→ 32B. This
duality was interpreted as a transformation of 64 spinors among themselves
by a transformation of hidden dimensions [1]. Since the various types of
non-perturbative dualities map different forms of theories into each other it
is not clear whether the overall theory behind all of it is a theory with 64
supercharges or a theory with only 32 of them.

Are there 64 supercharges rather 32? What mechanism generates ef-
fectively 32 supercharges in different sectors? As suggested below 64→ 32
happens naturally through a BPS condition that can be formulated as a co-
variant equation in 14 dimensions and which has three distinct branches of
solutions labelled by A,B,C. In this way we answer a related set of questions:
Is there a single set of 528 bosons in the superalgebras A,B,C or are there
three sets 528A,B,C that are mapped to each other by dualities. If they are
different, what is the subset of bosons that is common to various sectors?

In this paper we explore further the possibility that the unknown funda-
mental theory behind non-perturbative string theory and its dualities may
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be a theory more usefully formulated in higher dimensions, perhaps in 14D.
By recognizing its hidden dimensions one may better understand its overall
structure as well as its low energy properties. Since the fundamental theory
is unknown we concentrate only on properties of its supersymmetries. We
assume that in the fundamental theory 32A and 32B are two distinct sets
mapped to each other by a transformation that is interpreted as T-duality
from the point of view of effective theories in lower dimensions. Since T-
duality maps small to large distances, our assumption implies that some
of the 32A supercharges that govern supersymmetry at large distances get
mapped to some of the 32B supercharges that govern supersymmetry at small
distances, and vice versa. In this paper we show how to embed type A,B,C,
heterotic and type-I superalgebras covariantly in the framework of 14 dimen-
sions with signature (11,3) and how to recognize the 14 dimensions when the
theory is compactified to lower dimensions.

2 From 10 to 14 dimensions.

The A(B) superalgebra in 10D contains two 16-component Majorana-Weyl
spinors of opposite (same) chirality 32A(B) = 16L + 16R(L). The A super-
algebra may be rewritten as an 11D superalgebra using a single 32 com-
ponent spinor. In M-theory [2], the anticommutator has all possible 528A
extensions corresponding to the 11D momentum and the 2 and 5 branes [3]
528A = 11+55+462. This hides a 12D structure of the form 528A = 66+462
which corresponds to a 12D superalgebra [4]-[10]

{Qα, Qβ} = γM1M2
αβ ZM1M2 + γM1···M6

αβ Z+
M1···M6

(1)

where α labels the 32 component Weyl spinor of SO(10,2). The (10,2) sig-
nature is necessary to have a real spinor1. The 12th gamma matrix is the
32×32 identity matrix γ0′ = 132 since it is in the Weyl sector2.

1Bott periodicity indicates that the reality properties of spinors are similar for
SO(10, 1) ∼ SO(2, 1) =SL(2, R) and SO(10, 2) ∼ SO(2, 2) =SL(2, R)× SL(2, R) and
SO(11, 2) ∼ SO(3, 2) =Sp(4, R) and SO(11, 3) ∼ SO(3, 3) =SL(4, R).

2In terms of 11D one obtains ZM1M2 → Pµ ⊕ Zµ1µ2 and Z+
M1···M6

→ Zµ1···µ5 . If non-
zero, the 2 and 5 branes are sources coupled to the 11D antisymmetric gauge potential
Aµ0µ1µ2 and its magnetic dual Aµ0µ1µ2···µ5 . The Lorentz generator Lµ1µ2 is outside of this
algebra since Zµ1µ2 interpreted as above cannot coincide with Lµ1µ2 . Therefore the 11 or
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The 10D type-IIB superalgebra is not included in the 11D or 12D super-
algebra above. The B superalgebra with its 528B bosonic generators can be
written in a form that exhibits higher dimensions [1]{
Qᾱā, Qβ̄b̄

}
= (iτ2τi)āb̄

[
γ̄µ̄
ᾱβ̄
P i
µ̄ + γ̄µ̄1···µ̄5

ᾱβ̄
X i
µ̄1···µ̄5

]
+ γ̄µ̄1µ̄2µ̄3

ᾱβ̄
(iτ2)āb̄ Yµ̄1µ̄2µ̄3 .

(2)
where ᾱ, β̄ = 1, 2, · · · , 16 and ā, b̄ = 1, 2 are spinor indices, while µ̄ =
0, 1, · · · , 9 and i = 0′, 1′, 2′ are vector indices for SO(9, 1) × SO(2, 1). The
τi are given by Pauli matrices τi = (−iτ2, τ1, τ3) . The P i

µ̄ is a SO(2, 1) triplet

containing the momentum pµ̄ and two 1-brane sources w1,2
µ̄ that couple to

the two antisymmetric gauge potentials B1,2
µ0µ1

in type-IIB superstring theory
3. In [1] the SO(2, 1) symmetry was interpreted as Lorentz transformations

12D superalgebra is not related to the superconformal algebra that has operators labelled
in a similar way. There is an extended superconformal algebra with the same structure
[11] but it has different physical content. One may wonder about the closure and Jacobi
identities since such properties determine the representations of the superalgebra. For our
present discussion this question may be left open since there are various possibilities [12].
The simplest case is to take Abelian extensions corresponding to a linearized flat limit of
the theory. A model for a curved space may correspond to OSp(1/32) which satisfies all
Jacobi identities. Intermediate cases are obtained by considering various contractions of
OSp(1/32). However, there are more possibilities since the operators may close into an even
larger set of operators in the quantum theory of interacting p-branes. The anticommutator
considered in our discussion applies to all cases.

3It may seem unusual that the 10D momentum operator is a member of the SO(2, 1)
triplet P iµ̄, but this is clearly true. This SO(2, 1) should not be confused with the U

duality group SL(2,Z). U acts on the gauge potentials B1,2
µ0µ1

and sources w1,2
µ̄ but leaves

the metric and momentum pµ̄ invariant. The transformation known as S duality fits in the
maximal compact subgroup of both the SO(2, 1) and SL(2,Z). What is the relation between
these groups? To distentagle them one may expand P iµ̄ = pµ̄v

i + w1
µ̄v
i
1 + w1

µ̄v
i
2 by using

a basis of three orthogonal SO(2, 1) vectors (vi, vi1, v
i
2) where vi is timelike and vi1,2 are

spacelike. Then pµ̄ is the 10D momentum and vi is a 3D “momentum” [13] both of which
are singlet under SL(2,Z) while the spacelike vectors (w1

µ̄, w
2
µ̄) and (vi1, v

i
2) form doublets

under SL(2,Z) such that P iµ̄ is a singlet of SL(2,Z). This is the B basis that exhibits the
Lorentz symmetry SO(2, 1) while hiding the duality symmetry. In the the rest frame of
the internal “momentum” one may take vi = (1, 0, 0) so that the superalgebra takes the

more familiar form
{
Qāᾱ, Q

b̄
β̄

}
= γ̄µ̄

ᾱβ̄
(iτ2τi)

āb̄
pµ̄v

i + · · · = γ̄µ̄
ᾱβ̄

δāb̄pµ̄ + · · ·. This latter

form exhibits the SL(2,Z) basis rather than the Lorentz basis. Therefore the duality and
the Lorentz bases are related to each other by a boost in SO(2,1).

This is a general situation that applies in every dimension as explained in [15]. Namely,
the basis in which the momentum is a singlet under dualities is defined to be the duality
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in 3 additional dimensions beyond the usual 10D. In the present paper it
will be more properly interpreted as the SL(2, R)+ embedded in SO(2, 2) =
SL(2, R)+× SL(2, R)− . Then the triplet index i will be replaced by the self
dual SO(2, 2) tensor [mn]+ which is a triplet of SL(2, R)+ when the vec-
tor index m = 11, 12, 13, 14 spans the extra 4 dimensions with signature
(+,−,+,−) .

Based on T duality we suggest that the A,B superalgebras are different
sectors of the same fundamental theory as explained in the previous section.
To unify them in the same theory one is led to 64 supercharges classified as
the spinor in 14D with signature (11, 3) as a generalization of S theory [1].
This is possible since SO(11, 3) also has a Majorana-Weyl spinor of dimension
64 (see footnote 1).

There should exist a mechanism that provides two distinct projectors that
cuts down 64 to the branches 32A,B. We will see soon that there is a third
distinct projector that leads to a third branch C with 32C fermions. The
heterotic and type-I superalgebras are secondary branches attached to the
main A,B,C branches. As will be shown, all such branches and sub-branches
may be embedded covariantly in SO(11, 3) .

We remind the reader of the non-covariant A and B projectors. By using
the SO(11, 2) 64×64 gamma matrices ΓM as in the appendix of [1], the A
projector is given by 1 + Γ13. It distinguishes the spacelike 13th dimension.
The B projector is ( 1+Γ11Γ12Γ13) = (1+Γ0 · · ·Γ9). It distinguishes the (2,1)
from the (9,1) dimensions. Thus, as exhibited in the superalgebras above,
they are covariant under the groups A =SO(10, 2) and B =SO(9, 1)×SO(2, 1)
respectively, while they are both embedded in SO (11, 2) . How do these fit in
14D? It is possible to go up one more dimension because the 64 component
real spinor may also be regarded as the Weyl spinor of SO(11, 3) . In the
Weyl sector the timelike 14th gamma matrix is given by the identity matrix
Γ14 = 164. Then the projector to the A sector is really lightlike (Γ14 + Γ13)
leaving behind SO(10, 2) covariance as desired. From the point of view of
14D→ (9, 1)+(2, 2) note that the A projector is a lightlike vector embedded
in (2, 2) . This projector cuts down 64 to 32A which consists of two opposite
chirality 16 component spinors in 10D.

basis. In the A or B bases the momentum is a member of a multiplet that transforms
under an internal Lorentz group. In the rest frame of an internal momentum one recovers
the duality basis. Hence A and B bases are connected to the duality basis with boosts
and they are related to each other by T-duality.
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For the B sector consider also SO(11, 3) −→ SO(9, 1)× SO(2, 2) and note
that there are two possibilities for embedding the SO(2, 1) that appears in
eq.(2). It could be identified either with the vectorial SL(2,R)V or with the
chiral-like SL(2, R)+ embedded in SO(2, 2)

SO (2, 2) = SL(2, R)+ × SL(2, R)− ⊃ SL(2, R)V . (3)

However, as we will see in footnote 5 below, there is no difference of content
between the two and the proper interpretation is the SL(2, R)+. This chiral
embedding is fully covariant under SO(9, 1)× SO(2, 2). The B projector
which is consistent with this invariance is (1+Γ11Γ12Γ13Γ14) = (1+Γ0 · · ·Γ9).

Are there any other main branches? A main branch will be defined as a
superalgebra that has symmetries that cannot be contained as a subgroup
of the symmetries of another branch. The symmetries should be realized
on only 32 real fermions, not 64. Only symmetries of the form SO(n, 1)×
SO(11− n, 2) or SO(n, 3)× SO(11− n, 0) that fit within SO(11, 3) need to
be considered4. Since the symmetries SO(10, 2) and SO(9, 1)×SO(2, 2) are
not contained in each other, the A,B branches are distinct main branches.
We have found that there is only one other main branch with symmetry
SO(3, 3)× SO(8) that satisfies the C superalgebra

{Qαa, Qβb} = γµαβγ
ij
abPµij + γµ1µ2µ3

αβ δabT
+
µ1µ2µ3

+ γµ1µ2µ3

αβ γijklab Z
+
µ1µ2µ3ijkl

(4)

Here α, β are spinor indices for SO(3, 3) = SL(4, R) , and a, b are 8+ spinor
indices for SO(8). Both of these spinors are Majorana-Weyl, therefore there
are 4×8=32 real components. The indices µ, i are vector indices for SO(3, 3) ,
SO(8) respectively. The gamma matrices γµ1µ2µ3

αβ , γijklab are automatically self
dual in the indices [µ1µ2µ3] and [ijkl] since they are in the Weyl sectors.
Therefore the tensors T+

µ1µ2µ3
, Z+

µ1µ2µ3ijkl
are self dual in the corresponding

indices. The number of bosons may be counted as follows: for Pµij 6×28 =
168, for T+

µ1µ2µ3

1
2

6×5×4
1×2×3

= 10, for Z+
µ1µ2µ3ijkl

10×1
2

8×7×6×5
1×2×3×4

= 350. The total is
528C.

The heterotic and type-I superalgebras in 10D may be obtained as sub-
branches of the main branches. Also different compactifications are sub-

4We have in mind a theory of various interacting p-branes formulated in some way in
terms of XM(τ, σ1, · · · , σp), where the coordinate index M provides the basis for SO(n,m)
transformations. When we refer to “dimensions” we mean XM , and the symmetries we
are discussing are rotations of these coordinates.
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branches. We will present them below as sub-branches in a 14D covariant
formalism of the main branches.

3 14D covariance

The superalgebra with 64 spinors may be written covariantly for SO(11, 3)
in the form {Qα, Qβ} = S64

αβ with

S64
αβ = ΓM̄1M̄2M̄3

αβ EM̄1M̄2M̄3
+ ΓM̄1M̄2···M̄7

αβ F+
M̄1M̄2···M̄7

, (5)

where M̄ labels the vector of SO(11, 3) . The tensor F+ is self dual because
the seven index antisymmetric gamma matrix in the Weyl sector is automati-
cally self dual in 14D. This superalgebra contains 2080 bosons (=364+1716).
If reduced to 13D one obtains antisymmetric tensors with 2,3,6 indices cor-
responding to the decomposition 2080 = 78+286+1716.

We suggest that, independent of the details of the fundamental theory,
the mechanism that cuts 64→ 32 can be formulated as a SO(11, 3) covariant
BPS equation in the form

det
(
S64
αβ

)
= 0. (6)

The multiplicity of the zero eigenvalues of this equation corresponds to the
number of supercharges that vanish on the BPS states.

3.1 A branch

The solution of eq.(6) corresponding to the A branch may be written in a
14D covariant notation as follows(

S64
A

)
αβ

= ΓM̄1M̄2M̄3
αβ ZM̄1M̄2

VM̄3
+ ΓM̄1M̄2···M̄7

αβ Z+
M̄1M̄2···M̄6

VM̄7
, (7)

VM̄V
M̄ = ZM̄1M̄2

V M̄2 = Z+
M̄1M̄2···M̄6

V M̄6 = 0,

where VM̄ is a 14D lightlike vector and the antisymmetric tensors Z,Z+ are
orthogonal to it. Thanks to orthogonality one may factor out the light-
like projector ΓM̄V

M̄ as an overall factor in S64
A , showing that 32 super-

charges vanish. Although orthogonality allows components in Z,Z+ that
point along VM̄ , those drop out due to the antisymmetric indices M̄k on
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ΓM̄1M̄2M̄3
αβ , ΓM̄1M̄2···M̄7

αβ . The remaining effective subspace of (10, 2) indices or-
thogonal to VM̄ give precisely 528A bosons. Z+

M̄1M̄2···M̄6
is self dual in the

(10, 2) subspace because the six-index gamma matrices in the 14D Weyl ba-

sis ΓM̄1M̄2···M̄7
αβ VM̄7

are automatically self dual in the (10, 2) subspace thanks
to the lightlike vector.

Using the SO(11, 3) covariance one can choose a special frame in which VM̄
points along the 13th+14th dimensions with signature (1, 1). Then ΓM̄V

M̄ ∼
Γ13 +Γ14 and S64

A takes the block diagonal form S64
A = (S32

A , 0) where we have
used Γ14 = 164. Then S32

A is precisely the right hand side of eq.(1).
In a general frame the full SO(11, 3) covariance is possible provided the

lightlike vector is an operator rather than a fixed vector frozen in some di-
rection. The presence of such operators lead to more general superalgebras.
Examples, possible interpretations and physical roles of such operators may
be found in [14] [13].

3.2 B branch

Introduce four orthogonal SO(11, 3) unit vectors V m
M̄ , with m = 1, 2, 3, 4.

Let V 1, V 3 be spacelike and V 2, V 4 timelike. Then the m label defines an
auxiliary SO(2, 2)′ . Construct SO(11, 3)× SO(2, 2)′ covariant antisymmetric
tensors

F
[mn]+
M̄N̄

= V m
[M̄V

n
N̄ ] +

1

2
εmnpqV

p

[M̄
V q

N̄ ]
. (8)

They are self dual tensors for the auxiliary SO(2, 2)′ =SL(2, R)′+× SL(2, R)′−,

so they form a triplet of the auxiliary SL(2, R)′+. The covariant superalge-
bra for the B sector can now be written by giving the solution to the BPS
equation in the form

(
S64
B

)
αβ

= ΓM̄1M̄2···M̄7
αβ

(
Z

[mn]+
M̄1M̄2···M̄5

FM̄6M̄7[mn]+
+ YM̄1M̄2M̄3

V 1
M̄4
V 2
M̄5
V 3
M̄6
V 4
M̄7

)
+ΓM̄1M̄2M̄3

αβ

(
P

[mn]+
M̄1

FM̄2M̄3[mn]+
+ YM̄1M̄2M̄3

)
, (9)

where the bosons P, Y, Z are orthogonal to all four vectors

P
[pq]+
M̄1

V M̄1
m = YM̄1M̄2M̄3

V M̄3
m = Z

[pq]+
M̄1M̄2···M̄5

V M̄5
m = 0. (10)
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Due to orthogonality, the YM̄1M̄2M̄3
term in S64

B is proportional to the projec-
tor (

1 + V 1V 2V 3V 4
)
, (11)

where the V m ≡ V m
M̄ ΓM̄ anticommute V 1V 2 = −V 2V 1. Also, because of the

self duality of FM̄6M̄7[mn]+
the other terms may be multiplied by the same

projector without changing anything. Therefore, the full S64
B is proportional

to the same projector, signaling the vanishing of 32 supercharges.
The projector is invariant under SO(11, 3)× SO(2, 2)′. This symmetry

can be used to gauge fix the V m
M̄ to a special frame V m

M̄ → δ10+m
M̄

in which
the orthogonal 14D vectors V 1

M̄ , V
2
M̄ , V

3
M̄ , V

4
M̄ point along the 11th,12th,13th

and 14th dimensions respectively. In this frame the auxiliary SO(2, 2)′ co-
incides with the SO(2, 2) embedded in SO(11, 3) . The projector becomes
(1 + Γ11Γ12Γ13Γ14) = (1 + Γ0 · · ·Γ9), which is recognized as the B projector
of the previous section. The superalgebra then collapses to the non-covariant
form in eq.(2) with remaining explicit symmetry SO(9, 1)× SO(2, 2) , after
replacing the triplet index i with the triplet index [mn]+.

In the general frame there are 32B fermions and 528B bosons P, Y, Z
covariantly embedded in SO(11, 3) . In addition there are also the 56(=4×14)
components of the vectors V m

M̄ . For the full covariance to be valid these must
be operators rather than fixed vectors, as in the examples of [14] [13].

3.3 C branch

Consider 8 orthogonal spacelike unit vectors V i
M̄ . There is an auxiliary SO(8)′

defined on the indices i. The C branch solution to the BPS equation is
covariant under SO(11, 3)× SO(8)′(

S64
C

)
αβ

= ΓM̄1M̄2M̄3
αβ

(
PM̄1ijV

i
M̄2
V j

M̄3
+ T+

M̄1M̄2M̄3

)
(12)

+ΓM̄1M̄2···M̄7
αβ Z+

M̄1M̄2M̄3ijkl
V i
M̄2
V j

M̄3
V k
M̄2
V l
M̄3

+
1

7!
ΓM̄1M̄2···M̄7
αβ P i8i1

M̄1
V i2
M̄2
· · ·V i7

M̄7
εi8i1···i7 (13)

where the tensors P, T, Z are orthogonal to the V i
M̄ . There are self duality

conditions: Z+
M̄1M̄2M̄3ijkl

is SO(8)′ self dual in the [ijkl] indices, and the tensor
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T+
M̄1M̄2M̄3

satisfies the 14D duality condition

T+M̄1M̄2M̄3 =
1

3!
εM̄1M̄2M̄3N̄1N̄2N̄3K1···K8T+

N̄1N̄2N̄3
V 1
K̄1
· · ·V 8

K̄8
. (14)

Due to orthogonality the terms involving P can be rewritten in the form

ΓM̄1M̄2M̄3
αβ PM̄1ijV

i
M̄2
V j

M̄3

(
1 + V 1 · · ·V 8

)
. (15)

where the V i ≡ V i
M̄ΓM̄ anticommute among themselves V 1V 2 = −V 2V 1.

Using the duality properties of T, Z given above, the remaining terms in
S64
C may be multiplied by the same projector without changing anything.

Therefore the full S64
C is proportional to the same projector, showing that

only 32C supercharges survive. If one recalls that ΓM̄1M̄2···M̄7
αβ is self dual in

14D then the presence of the projector forces Z+
M̄1M̄2M̄3ijkl

to satisfy a duality

condition on the M̄ indices similar to the one satisfied by T+M̄1M̄2M̄3 . One
may then verify that the number of bosons P, T, Z is 528C. In addition there
are 112 (=8×14) bosons describing the spacelike unit vectors V i

M̄ .
The projector (1 + V 1 · · ·V 8) is invariant under SO(11, 3)× SO(8)′ . Us-

ing the symmetry one may gauge fix to V i
M̄ = δiM̄ . The projector becomes

(1 + Γ1 · · ·Γ8) = (1 + Γ9Γ0Γ11Γ12Γ13Γ14) showing that it projects to the self
dual sectors of SO(6, 6)× SO(8) which is the surviving symmetry in the spe-
cial frame. Then the superalgebra C collapses to the non-covariant form of
eq.(4).

3.4 Heterotic and type-I sub-branches

Just as the 32A,B,C fermions are distinct embeddings in 64, the 528A,B,C
bosons are distinct embeddings in the 2080. However, some of the fermions
and bosons are common among the various sets. To identify the common
ones one may use the following method. Consider the A,B subsets in the
special frames and use the SO(9, 1)× SL(2, R)+× SL(2, R)− basis embedded
in SO(11, 3) 5. The 64 Weyl fermions and 2080(=364+1716) bosons are
reclassified as follows

64 = (16+, 2, 1) + (16−, 1, 2) ,

5Due to the lack of space we will not discuss the CB or CA pairs. The method is
similar and a useful common basis is SO(8)× SO (1, 1)× SO(2, 2) .
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364 = (120, 1, 1) + (45, 2, 2) + (10, 3, 1) + (10, 1, 3) + (1, 2, 2) , (16)

1716 = (120, 1, 1)′ + (210, 2, 2) + (126+, 3, 1) + (126−, 1, 3) .

The A projection keeps two 10D fermions of opposite chirality 32A =
(16+,+, 1) + (16−, 1,+) where we have denoted each 2 = ± and kept only
the + component. The A projection gives the bosons

528A = (45,+,+) + (10,++, 1) + (10, 1,++) + (1,+,+) (17)

+ (210,+,+) + (126+,++, 1) + (126−, 1,++)

The B projector keeps two 10D fermions of the same chirality which also
happen to be singlets of SL(2, R)− , namely 32B = (16+, 2, 1) . Then the 528B
bosons are6

528B =
1

2

[
(120, 1, 1) + (120, 1, 1)′

]
+ (10, 3, 1) + (126+, 3, 1) . (18)

By comparing the two sets 528A,B one finds that the common subset is the
heterotic fermions (16+,+, 1) and bosons (10,++, 1) + (126+,++, 0) which
form the heterotic superalgebra in 10D. This provides the key for the embed-
ding of the heterotic superalgebra covariantly in 14D. It is obtained by start-
ing with the solution S64

B and keeping only the bosons that couple to the com-

bination F+
M̄N̄
≡ 1

2

(
F 42
M̄N̄ + F 41

M̄N̄

)
while setting all others equal to zero. This

combination picks up only the components (10,++, 1)+(126+,++, 1) among
the bosons when written in the special frame. More simply, one can show
that F+

M̄N̄
= V[M̄V

′
N̄] where VM̄ ∼

1√
2

(
V 4
M̄ + V 3

M̄

)
and VM̄ ∼

1√
2

(
V 2
M̄ + V 1

M̄

)
are the lightcone combinations which are orthogonal but not parallel to each
other V ·V = V ′ ·V ′ = V ·V ′ = 0. In terms of these the heterotic superalgebra
is embedded covariantly in 14D as follows(

S64
Het

)
αβ

= ΓM̄1M̄2M̄3
αβ PM̄1

VM̄2
V ′M̄3

+ ΓM̄1M̄2···M̄7
αβ Z+

M̄1···M̄5
VM̄6

V ′M̄7
, (19)

PM̄1
V M̄1 = PM̄1

V ′M̄1 = Z+
M̄1···M̄5

V M̄5 = Z+
M̄1···M̄5

V ′M̄5 = 0.

6Can one find a B projector that identifies the SO(2, 1) of eq.(2) with SL(2, R)V of eq.(3)
rather than SL(2, R)+? To answer the question reduce the representations of SL(2, R)+×
SL(2, R)− to SL(2, R)V and then pick the the two 16+ fermions. Evidently the fermions
are the same ones since there are only two of them. But then the bosons must also
be unambigously the same as those in eq.(18) since they appear in the products of the
same fermions that were previously classified as (16+, 2, 1) . Therefore there is no other B
projector, and the symmetry of eq.(2) is automatically SL(2, R)+ embedded in SO(2, 2) ,

not SL(2, R)V .
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Although orthogonality permits components in P,Z+ along the lightlike di-
rections V, V ′, these drop out due to the antisymmetry of the gamma ma-
trices. There remains an effective (9, 1) subspace. Z+ is automatically self
dual in the (9, 1) subspace thanks to the lightlike nature of the vectors in

ΓM̄1M̄2···M̄7
αβ VM̄6

V ′M̄7
and the self duality of ΓM̄1M̄2···M̄7

αβ in the 14D Weyl sector.
The number of independent components in P,Z+ is 136.

Using orthogonality one sees that S64
Het is proportional to the projector

(V · Γ) (V ′ · Γ) which is invariant under SO(11, 3) . The double lightcone pro-
jections cut down 64 to 16 non-zero supercharges. In the special frame the
projector becomes (Γ12 + Γ11) (Γ14 + Γ13) showing that the remaining sym-
metry is SO(9, 1) and that the superalgebra reduces to the usual heterotic
superalgebra in the non-zero 16×16 block embedded in 64×64.

The type-I superalgebra may be obtained from the B superalgebra by
identifying the two supercharges (16+, 2, 1). In the non-covariant eq.(2) this
requires a right hand side that is proportional to δāb̄, which means only
the i = 0′ term contributes since (τ2τ2)āb̄ = δāb̄. In the SO(2, 2) notation
this is equivalent to the term [mn]+ = [42]+ = [13]+ . Thus, the covariant
embedding of the type-I superalgebra in 14D is(

S64
I

)
αβ

= ΓM̄1M̄2M̄3
αβ PM̄1

F 42
M̄2M̄3

+ ΓM̄1M̄2···M̄7
αβ Z+

M̄1···M̄5
F 42
M̄6M̄7

(20)

Due to orthogonality there is an overall F 42
M̄N̄ΓM̄N̄ factor that corresponds

to the projector. In the special frame the projector becomes F 42
M̄N̄ΓM̄N̄ =

(Γ14Γ12 + Γ13Γ11) . This seems to cut down 64 to 32, not to 16. However, the
non-zero 32×32 sector is equivalent to two identical 16×16 blocks, showing
that only 16 supercharges of type-I are non-zero. The two identical block
structure is produced because the two 16+’s were identified.

3.5 Compactifications

Every branch has compactifications down to 4D with SO(3, 1) Lorentz sym-
metry and the internal symmetries inherited from the A,B,C main branches
(see e.g. [14] where the compactified A,B branches in 4D are written out
explicitly). Therefore one finds that the same 4D extended superalgebra has
several reclassifications which might be called A,B,C, each one containing
a maximum of 32 fermions and 528 bosons, corresponding to a maximum
of 8 supersymmetries in 4D . Each one has also a duality basis which is

11



obtained by a boost transformation in the internal Lorenz dimensions (see
[15] and footnote 3 ). The maps among these classifications are related to
various duality transformations. The compactification sub-branches to vari-
ous dimensions will not be discussed here since they are obtained by naively
compactifying the main branches.

We have shown that all known superalgebras derive from a single one
in 14D as solutions to the BPS equation. To exhibit the 14D nature of
the solutions some vectors V were needed. If the various vectors V are
frozen constants the symmetry is broken to some subgroup of SO(11, 3) ,
and the superalgebra collapses to the familiar one. If the vectors V are also
operators then the SO(11, 3) symmetry is not broken, on the contrary there
are more symmetries that we called “auxiliary”. Possible interpretations of
such operators have been given elsewhere in several contexts [15] [14] [13].

Our construction leads us to speculate that a fundamental theory in
(11, 3) dimensions may be behind string and p-brane duality properties. The
presence of extra timelike dimensions seems to pose a problem for such a
theory. However, in recent papers [13] we have shown that extra timelike
dimensions can be interpreted without the obvious problems. The inter-
pretation is done in the context of models that involve several interacting
particles or p-branes forming different physical sectors, each with its own
timelike dimension. The superalgebra of such systems has the types of sig-
natures and operators V discussed in this paper. The models have sufficient
gauge symmetries to eliminate redundant timelike degrees of freedom. A
cosmological scenario may also be invoked to arrive at the single time sector
which describes our current universe.

Note Added: While this paper was under preparation ref.[16] appeared.
This work was apparently stimulated by a brief announcement in [13] of our
present work on (11, 3) dimensions. The embedding of 10D Yang-Mills theory
in (11, 3) dimensions lends support to the ideas expressed here.
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