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1. Let us examine the following problem: 
dx = F ( t , x, x), (0)=X0, ( 1 ) dt 

= F ( t , x, x), (0)=X0, ( 1 ) 

where the function F(t, x, y) is determined in R = [0, T ]× , [x 0 - r , x 0+ r ] ×[x0 — r, 

x0± r] and is continuous in terms of the combination of variables. 

We shall assume that the problem 
dx = F [ t , η ( t ) . x ( 0 ) = x 0 (2) dt 

= F [ t , η ( t ) . x ( 0 ) = x 0 (2) 

has a single solution ( t ) ( |— x0|≤r) at any fixed continuous 
function η (t) (|η — xn| .≤ r) and it may be found. 

To solve problem (1), we shall construct the sequence of xn(t) 
functions in the following way: 

x 0 ( t )=x 0 , x n ( 0 ) = x 0 , 

} (3) x ' n ( t )=F[t , x n - 1 ( t ) , ( t ) ] (n=1, 2 , ) } (3) 

We shall prove the following theorems which give sufficient 
conditions for the convergence of the constructed approximations (3) 
to the solution of problem (1). 

T h e o r e m l. Let the function F (t, x, y) be defined in 
R, continuous in terms of the combination of variables and satisfy 
the condition 

F ( t , , ) - F ( t , x, y) |≤φ(t , | - x | , |-y|), 

where the function φ|(t u ν) is defined at 0 ≤ t ≤ T; 0≤, ν≤2r, 
is continuous in terms of the combination of variables and does not 
disappear in terms of u. Moreover, it is assumed that, at any fixed 
continuous function β (t) (≤t≤T;0 ≤ β (t) ≤ 2r)|, the problem 

du = φ [ t , β(t), u], u ( 0 ) = 0 (4 ) 
dt 

= φ [ t , β(t), u], u ( 0 ) = 0 (4 ) 

has a single solution from [0, 2r] and the problem 
du = φ(t, u, u), u ( 0 ) = 0 (5) (5) dt = φ(t, u, u), u ( 0 ) = 0 (5) (5) 

has only a zero solution. 



- 2 -

Then problem (l) has a single solution and this solution is 
the boundary (uniformly in t ) of approximations (3). The rate of 
convergence of x n ( t ) to the solution x ( t ) is determined from the 
inequality 

|xn(t)-x(t)|≤εn(t) (6) 
where 

ε0(t)=2r, 
εn(t)=φ[t, εn-1(t) εn(t)], (7) 
ε n (0)=0 (n = 1, 2 , ) 

P r o o f . The existence and singleness of the solution to 
problem (1) are clear. Let νn(t) — |xn (t) — x ( t ) , where x n (t) — i s the 
sequence of functions defined by equalities (3) and x ( t ) is the 
solution to problem (1). Then we have 

D*νn (t) ≤ [ x'n (t) - x ' (t) | = |F [t, xn_1x (t). xn(t)] - F [ t , x ( t ) , x(0] | 
(8 ) 

D*νn (t) ≤ φ [t, νn_1 (t), νn (t)], νn (0) = 0 . 
(8 ) 

Let us assume that n = 1, Then 
D*ν1 (t) ≤ φ [t, ν0 (t), ν1 (t)] ≤ φ [t, ε0 (t), ν (t)], ν1 (0) = 0. 

By applying the theorem of differential inequalities and considering 
that ε1(t) is the only solution to problem 

du = φ[t, ε0(t), u], u(0)=0, dt = φ[t, ε0(t), u], u(0)=0, 

we obtain ν1(t)≤ε1(t) Let us assume that νn-1 (t)≤εn-1(t), 
; then from inequality ( 8 ) , 

D*νn (t) ≤ φ [t, εn-1(t),νn (t)], νn (0) = 0. 

By again applying the theorem of differential inequalities and 
considering that ε n ( t ) is the only solution to the problem 

du = φ[t, εn-1(t), u], u(0) = 0, dt = φ[t, εn-1(t), u], u(0) = 0, 

we obtain νn(t)≤εn(t)· 

We have thus proved that inequality (6) occurs at aln = 1, 2, ... 



- 3 -

It is easy to check that {εn (t)} does not increase and εn(t)≥0, 
therefore it converges. From (7) we have 

εn (t) = 
t 

φ[S, εn-1(S),εn(S)]ds. εn (t) = ∫ φ[S, εn-1(S),εn(S)]ds. εn (t) = 
0 

φ[S, εn-1(S),εn(S)]ds. 

By crossing to the limit in these inequalities, we obtain 

ε(t).= 
t 

φ [s, ε (s), ε (s)] ds, ε(t).= ∫ φ [s, ε (s), ε (s)] ds, ε(t).= 
0 

φ [s, ε (s), ε (s)] ds, 

where ε(t) = limn-∞ εn(t). Consequently, ε(t) is the solution to problem 
(5). As ε(t)=0, therefore limn-∞εn(t) = 0 . According 
to the Dini theorem, this convergence will be uniform in terms of t. 
The theorem is completely proved. 

We now give other sufficient conditions for the convergence of 
the successive approximations (3)· 

T h e o r e m 2. Let the function F(t, x, y) be defined in R, 
continuous in the combination of variables and satisfy the conditions 

| F (t, , y ) - F (t, x, y)| ≤ φ, ( t , | - x|), 
(9) 

sgn(— y) [F(t, x, )—F(t, x, y)]≤ φ2(t,|—y|), 
(9) 

where the functions φ1 (t, u) (0 ≤t≤T; 0≤u ≤2r; i = 1, 2)are continuous in the 
combination of variables and φ1(t,u) does not disappear in terms of u. 

Let the problem 

du = φ 2 (t, u) + α (t), u (0) = 0 (10) 
dt 

= φ 2 (t, u) + α (t), u (0) = 0 (10) 

for any fixed continuous function α(t) (0≤ α (t) ≤ Ν, N = max φ1(t,2r)) 
0≤t≤T· 

have a single solution from [0, 2r], and the problem 

du 
= φ1(t, u ) + ( t , u). u(0)=0 (11) 

dt = φ1(t, u ) + ( t , u). u(0)=0 (11) 

has only a zero solution. 

Then problem (1) has a single solution: this solution may be 
found by means of successive approximations (3) and the convergence 
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rate is defined as follows: 

|Xn(t)-x(t)|≤εn-1-(t), 
where 

"ε'0(t) = φ2[t, ε 0 ( t ) ] + N , ε 0 ( 0 ) = 0 , 

ε'
n(t)= φ2[t, εn(t)]+ φ1[t,εn-1(t)] 

' ε n ( 0 ) = 0 (n = 1 , 2 , . . . ) . (12) 

P r o o f . Let us introduce the notation νn( t ) = | x n ( t ) — x ( t ) | , 
where xn(t) is the sequence of functions defined by equalities (3), 

x ( t ) - i s the solution to problem (1) (the existence and singleness 
of x(t) are easily proven) and then we have 

D*νn (t) ≤ sgn (xn — x) (x'n — x') = sgn (xn — x)[F (t, xn_1 xn) — F (t, x, x)] = 

= sgn (xn — x) [F (t x n _ 1 x ) — F (t, x x] + sgn (xn — x)× 

X [F(t, x n - 1 , Xn)-F( t , xn_ l , x)] ≤|F(t, xn_1, x ) - F ( t . x, x)| + 

+ φ2 (t |xn - x|) ≤ φ1 (t, | xn_1 — x|) + φ2 (t, |xn — x|), 

D*νn (t) ≤ φ1 [t, νn_1 (t) -+ φ2 [t, νn (t)] (t)], νn (0) = 0. 

It is easy to prove that it follows from these inequalities 
that νn (t) ≤ εn_1 (t), i. e. |xn (t) - x (t) | ≤ εn-1(t) (t), 
where εn-1(t) is determined from (12). As problem (11) has only a 
zero solution according to the condition of the theorem and limn→∞ εn (t) = ε ( t ) 

(this is because {εn(t)}does not increase and εn (t) ≥0), 
therefore, by crossing to the limit in the inequalities 

εn(t) = 
t 

{φ2 [s , εη (s)] + φ1 [s, εn_1 (s)]} ds, εn(t) = ∫ {φ2 [s , εη (s)] + φ1 [s, εn_1 (s)]} ds, εn(t) = 
0 

{φ2 [s , εη (s)] + φ1 [s, εn_1 (s)]} ds, 

we find that ε(t)=0, and consequently limn→∞ xn (t) = x (t) 
is uniform in terms of tЄ[0, Τ]. 

2. Now let 
MT≤r, Μ = max |F(t, x, y)| 

(13) (t,x,y)ЄR (13) 

and we define the successive approximations for the solution to 
problem (1) as follows: 
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x0 (t) = x0 (0 ≤ t ≤ Τ), xn (t) =x0 (0 ≤ t ≤ T 
) (14) 

x0 (t) = x0 (0 ≤ t ≤ Τ), xn (t) =x0 (0 ≤ t ≤ 
n ) (14) 

x'n (t) = F[t, xn-1' (t), xn (t- T 
)]( 

T ≤t≤T) 
(14) 

x'n (t) = F[t, xn-1' (t), xn (t-
n )]( n 

≤t≤T) 
(14) 

From condition (13) it follows that |x n ( t ) -x 0| ≤ r r, i.e. 
the inequalities (14) have a meaning. 

T h e o r e m 3·Let all the conditions of theorem 2 be 
fulfilled, except that problem (10) has a single solution from [0, 2r] 
for any fixed continuous functional α(t)(0 ≤ α (t)≤N + δ1) 
and the sequence of functions εn (t) is defined thus: 

ε0' (t) = φ2 [t, ε0 (t)]+ Ν + δ1' ε0 (0) = 0, } 

(15) ε'n (t) = φ2 [t, εn (t)] +φ1 [t, εn-1 (t)] + δn, 

} 

(15) 

ε n ( 0 ) = 0 ( n = 1 , 2, . . . ) , 

} 

(15) 

where 
δn = sup max | F[t, xm-1(t), x m ( t ) ] -F 

[ 
t , x m — 1 ( t ) , x m ( t-T )] 

m:≥n 0 ≤ 1 ≤ T 
| F[t, xm-1(t), x m ( t ) ] -F 

[ 
t , x m — 1 ( t ) , x m ( m 

)] 

Then problem (1) has a single solution and this solution is the 
limit (uniform in t ) of approximations (l4) and 

|xn(t)-x(t)|≤εn-l(t). (16) 

P r o o f . Let νn (t) = |xn (t) — x(t)|.; then 

D*νn(t)≤.sgn[xn(t)-x(t)] { F 
[ 

t, xn-1 (t), xn ( 
t — Τ )] — D*νn(t)≤.sgn[xn(t)-x(t)] { F 

[ 
t, xn-1 (t), xn ( 

t — 
n )] — 

- F [t, x (t), x (t)]} ≤ sgn [xn (t) - x (t)] × 

× {F[t, xn-1(t), xn(t)] - F [t. xn-1(t), x(t)]} + 
+ | F [(t, xn_1 (t), x (t)] - F [t, x (t), x (t)] | + 

+ |F[t, xn-1(t), xn(t-
T )] - F [ t , xn-1(t), xn(t)]| + |F[t, xn-1(t), xn(t- n )] - F [ t , xn-1(t), xn(t)]| 

D*νn (t) ≤ φ2 [t, νn (t)} + φ1 [t, νn_1 (t)] +δn νn (0) =0. (17) 

Let us show that νn(t) ≤εn_1(t). Obviously, ν1(t)≤ε0(t). 
In fact, from (l7) we have 

D*ν1 (t) ≤ φ2 [t ν1 (t)] + φ1 [t, ν0 (t)] + δ1, 
D*ν1 (t) ≤ φ2 [t, ν1(t)] +N + δ1,ν1. (0) = 0. 
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By applying the theorem of differential inequalities, we obtain 
ν1,(t)≤ε0(t), as the problem 

du 
= φ2(t, u)+ N+ δ1 u(0)=0 

dt 
= φ2(t, u)+ N+ δ1 u(0)=0 

has a single solution ε0(t). 

Let νn-1(t) ≤εn_2(t). Then, considering that φ1 (t, u) 
does not vanish in terms of u,, we obtain from (l7) 
D*νn (t) ≤ φ2 [t. νn (t)] + φ1, [t, εn_2 (t)] + δn-1, νn (0)=0, 

By applying once more the theorem of differential inequalities, we 
thus obtain νn (t) ≤. εn-1 (t). Inequalities (16) are thus proved 

It follows from the incontinuity F (t, x, y) and from the 
equicontinuity of the series of functions {xn(t)} that limn→∞δn = 0. 
Taking this into account, we obtain from (l5) limen→∞εn (t) = ε ( t ) ,= 0. 
Crossing to the limit at n→∞ in (16), we confirm the theorem. 

N o t e . We should point out that if condition (9) in theorem 
3 is replaced by the condition 

|F(t, x, ) - F ( t , x, y)|≤φ2(t, | - y | ) , ' 

where φ2(t, u) does not vanish in terms of u, then the δn  
sequence may be determined in the following way: 

δ n ' = max φ2(t, 
0≤t≤T 

MT 
) 

δ n ' = max φ2(t, 
0≤t≤T n ) as 

|xn.(t-
T )-xn(t)|≤ 

MT 
|xn.(t- n 

)-xn(t)|≤ 
n 

3. Let us now examine the problem 
dx = f(t, x), x (0 )=x 0 . (18) 
dt 

= f(t, x), x (0 )=x 0 . (18) 

where the continuous function f(t,x) is twice continuously differentiable 
in terms of x. 

For an approximate solution to problem (18), let us construct 
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successive approximations by the Newton-Kantorovich method: 
dxn = f'x (t, xn-1) (xn - xn-1) + f (t, xn_1), xn (0) = x0. (19) 
dt = f'x (t, xn-1) (xn - xn-1) + f (t, xn_1), xn (0) = x0. (19) 

We introduce the notation 

F(t,-x, y) = f'x(t, x ) ( y - x ) + f(t, x). 

Then problem (18) and the successive approximations (19) for 
that problem may be written as follows: 

dx = F ( t , x, x), x (0) = x0, (20) 
dt 

= F ( t , x, x), x (0) = x0, (20) 

dxn = F ( t , x n _ 1 xn), xn(0) = x0. (21) dt = F ( t , x n _ 1 xn), xn(0) = x0. (21) 

Thus, the problem of convergence of the Newton-Kantorovich 
approximations to the solution to problem (18) is reduced to a proof 
of the convergence of approximations (21) to the solution to problem 
(20). To do this, it is sufficient to prove that the function F(t, x, y) 

meets all the conditions of one of the proven theorems 1 - 3 . 

We shall now construct the successive approximations for 
the solution of problem (18) as follows: 

dxn 
= fx (t', x0) ( x n — x n _ l ) + f ( t . x n - l ) . X n (0) = x0 dt = fx (t', x0) ( x n — x n _ l ) + f ( t . x n - l ) . X n (0) = x0 

This is a modification of the Newton-Kantorovich approximations for 
the solution to problem (18). In this case we must put 

F (t, x, y) = f'x(t, x0) ( y - x ) + f (t, x). 
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