INSTITUTE OF NUCLEAR PHYSICS, USSR ACADEN M OF SCIENCES, SIBERIAN DIVISION

Report IYaF 7-72

CERN LIBRARIES, GENEVA

CM-P00100649

STABILITY OF A BUNGHED BEAM
INTERACTING WITH MATCHED LINES

Ya.S. Derbenev, N.S. Dikanskij and D.V. Pestrikov
Novosibirsk 1972

Translated at CERN by R. Luther
(Original: Russian)
Not revised by the Translation Service
(CERN Trans. 72-16)

Geneva
May 1972

The report investigates the stability of a bunched beam interacting with a matched transmission line. The functional dependences of the decrements (increments) of betatron and synchrobetatron oscillations of arbitrary multipolarity on the typical parameters of the problem (length of the plate, length of the bunch, chromatism) are determined.

An experimental investigation of coherent beam stability in storage rings has shown that there are coherent effects, whose decrements and increments do not depend on the selection of the operating point in terms of the particles' oscillation frequencies. The latter indicates that these effects are conditioned by the interaction of the beam with low -Q systems where fields excited by the beam damp out in a shorter time than the particle revolution period (i.e. "single-turn" effects).

The first such effect discovered on the VEPP-2 device, was the so-called 'fast damping' of vertical beam oscillations'/. It was characterized by the fact that oscillation decrements were determined by the total charge of the bunch (Ne) and did not depend on the bunch length ℓ_{b}

$$
\begin{equation*}
\because \sim \frac{N}{E} \tag{1.1}
\end{equation*}
$$

where E is the particle energy. This phenomenon was explained by the interaction of a coherently oscillating beam with the principal wave field (TBM) in matched transmission lines $/ 2 /$.

Slightly later, instabilities in transverse oscillations, which may also be related to the single-turn effects, were discovered on the ACO and ADONE devices. The increments of these instabilities are inversely proportional to the bunch length and depend on the machine's chromatism ($d \ln \nu / d \ln R$) and on the number of particles in a given bunch. The empirical dependence of the threshold current on these parameters has the form $3 /$:

$$
\begin{equation*}
I_{i n} \sim \frac{E \theta_{0} A!}{1-\frac{G,}{\theta_{0} \tan }} \tag{a}
\end{equation*}
$$

where ν is the dimensionless betatron frequency, $\Delta \nu$ the frequency spread and $2 \pi R$ the perimeter of the orbit.

An explanation of the instability mechanism related to the dependence $V(R)$ was given by C. Pellegrini and M. Sands. It was called the head-tail
effect/4/; however, the oscillation decrements obtained by him in specific cases vanish as the bunch length or the machine's chromatism

$$
\begin{equation*}
\mathrm{C} \tag{1.2}
\end{equation*}
$$

approaches zero. In particular, in the case of matched lines, there is no term in the decrement that corresponds to "fast damping" (which does not vanish as $l b \rightarrow 0$). This result is due to the fact that the interaction of the beam with a low-Q element was not taken fully into account.

In earlier papers (/5/, /6/, /7/) a theoretical study was made of the interaction of the bunch with matched lines and a low-Q resonator. It was shown that, by introducing matched lines, it is possible to ensure the damping of the basic type (one-dimensional betatron or synchrotron) of coherent beam oscillations whilst the interaction with the low-Q resonator may lead to instability. Expressions for the decrements of betatron oscillations were obtained
in the limit of a short bunch length and therefore did not contain terms of type (1.2).

This report studies the stability of a bunch of arbitrary length (but not shorter than the chamber's cross-section), interacting with a matched line.

The first part gives a general integral equation defining the spectrum of normal collective beam excitations near a certain stationary state in the presence of an interaction with an exterior system. Using the kinetic equation in canonical variables (previously proposed in $/ 5 /$, a wide range of problems relating to collective beam motion may be examined by one and the same method. This metnod is particularly efficient when the collective interaction affects only slightly the motion of the particles. The non-stationary part of the distribution of particles in phase space, describing the normal collective excitation, takes the form

 where I, Ψ are the action-phase variables of the stationary state (in which, by definition, the distribution is uniform over the phases);
 ω_{k} are the partial frequencies of the unperturbed particle motion, and m_{k} integers defining the excitation's multipolarity. In particular, the dipole excitation corresponds to the case ...fin.: :

In the second part we investigate the decrement expressions for the δ-type function distribution of synchrotron oscillation amplitudes in the stationary state. It is shown that the excitation decrement of arbitrary multipolarity may, generally speaking, be represented by the sum of two terms, one of which corresponds to fast damping / $5 /$ and the other depends on the machine's chromatism ($d \ln v / d \ln R)$.

The first term is related to the excitation of the principal(TEM) wave by the transverse betatron motion and is therefore always positive. The second is linked to the excitation of the principal wave by the longitudinal motion at the ends of the plates.

The betatron phase shift along the bunch, necessary for instability, is produced by the energy dependence of the betatron frequency. Depending on the ratio of the beam and plate length and also on the type of excitation, the decrement's value is determined either by the first or the second term.

Thus, in the case of vertical betatron excitations
 the parameters of the machine and bunch has the form

a) 6 relativistic case $\left(\gamma=E / m_{0} c^{2}, m_{0}\right.$ is the particle's mass).

$$
\begin{equation*}
\delta \sim \frac{N}{Q} \frac{\theta}{2 \pi}\left(A-\frac{1}{6} \frac{1}{v_{z}} \frac{d \omega_{z}}{6 \omega_{0}}\right) \tag{1.3}
\end{equation*}
$$

where l is the plate's length.
It can be seen from (1.3) that as $d \omega_{z} / d \omega_{0}$ approaches zero, the decrement is determined by the first term. Instability may occur when the following inequality is fulfilled

$$
\begin{aligned}
& \frac{c^{2} \theta_{0}}{d_{0}>}>\frac{2_{6}^{2}}{8 Q_{2}}
\end{aligned}
$$

$$
\begin{align*}
& \delta \sim \frac{N}{\theta^{2}} \cdot \frac{e}{e_{0}} \cdot \frac{e}{2 m}\left(1+2 \cdot \frac{1}{d}\right) \cdot a \cdot() \tag{1.4}
\end{align*}
$$

It is clear that in the presence of a non-vanishing chromatism, the decrement's sign may be determined by the second term.

The paper also investigates two-dimensional synchro-betatron oscillations $\left(\omega=m_{k} \omega_{k}+m_{k} \omega_{c}+\Delta \omega ; k=z, z\right)$. This type of oscillation is characterized by the fact that the beam performs coherent oscillations both in the transverse and in the longitudinal directions with the multipolarities m_{k} and m_{c} respectively. In this case, if the betatron oscillations are monitored with a pickup electrode of corresponding multipolarity, the frequency of the signal obtained will be modulated by the frequency $m_{c} \omega_{c}$.

If the plate is longer than the bunch $\left(l_{b}<\ell\left(\left|m_{c}\right|+1\right)\right.$ then the decrement of synchrobetatron excitation is proportional to the quantity

$$
\begin{equation*}
\frac{v}{b} \cdot \frac{\bar{D}_{3}}{P_{x}} \cdot \frac{1 v_{2}}{d \omega_{0}} \frac{1}{4 m_{c}^{2}-1} \tag{1.5}
\end{equation*}
$$

and the contribution of "fast damping" is negligible.

If the plate is short, then the expression for the decrement practically coincides with (1.4).

For strong-focusing machines it may be interesting to study
 condition the decrement is proportional with logarithmic accuracy to the quantity
and the contribution of "fast damping" may be ignored.

When examining the radial and longitudinal excitations, it is essential to take into account the accelerator's inherent coupling of these degrees of freedom. Without allowing for this coupling the expressions for the decrements of radial betatron and synchrotron excitations are analogous to (1.3), (1.6), with a substitution of indexes $Z \rightarrow Z$, provided the decrements of synchrotron excitations are small.

The coupling of radial and longitudinal motions, due to the dependence of coherent energy losses on the radial position of particles when a line is excited (by the beam), leads to a redistribution of the decrements, as a result of which, generally speaking, the radial betatron or synchrotron excitations may become unstable.

This mechanism may be used to damp the beam's synchrotron oscillations. If the decrements are redistributed by means of
matched lines, then for all excitations with multipolarity $\left|m_{c}\right|<m_{\text {max }}=\ell_{b} \mid \ell_{\perp}$, where ℓ_{\perp} is the chamber's cross-section, the damping decrements do not depend on m_{c}. (In this case, the oscillations of the separate bunches are damped independently). The maximum value of a decrement is limited by the stability condition of the radial betatron and synchro-betatron oscillations.

In the third and fourth parts of the paper, qualitative methods are used to investigate the stability of a beam having a smooth equilibrium distribution of synchrotron oscillation amplitudes.

For limiting cases (short or long plate) the integral
equation investigated is converted into an integral equation with a symmetrical positive kernel. This property enables the stability of coherent excitations to be examined in a general form of arbitrary smooth distributions of synchrotron amplitude oscillation in a stationary state. In the last part of the paper we investigate the solution of the dispersion equation taking into account the frequency spread of betatron oscillations.

The results of this paper show that the use of matched plates may be particularly effective for damping the basic types of oscillations (single-dimensional betatron and synchrotron). Simultaneous stability of the radial and axial synchro-betatron oscillations is already guaranteed at low levels of machine chromatism.

1. NETHOD

The state of a beam interacting with an external system may be described by the equations:

$$
\begin{gather*}
\frac{\partial F}{\partial t}+\{\hat{\partial} ; F\}=0 \tag{1}\\
\Delta \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\frac{4 \pi e}{c} \int d^{3} \vec{v} F+\frac{1}{c} \vec{\nabla} \frac{\partial \varphi}{\partial t} ; \tag{2}\\
\Delta W=-4 \pi E \int d^{3} \vec{A} ; d i v A=0 .
\end{gather*}
$$

Here \vec{A} and φ are the vector and scalar potentials of the fields induced by the beam which satisfy the boundary conditions $\overrightarrow{A_{t}}=0$, $\varphi=0$ at the electrodes; $\{;\}$ are the Poisson brackets:

$$
\{X ;\}=\frac{\partial \theta}{\partial, j} \cdot \frac{\partial}{\partial z} \cdot \frac{\partial \theta}{\partial \theta} \cdot \frac{\partial}{\partial \omega}
$$

$\vec{\theta}=\vec{p}+\frac{5}{\theta}\left(\overrightarrow{A_{\phi}}+\vec{A}\right)$ is the canonical, and $\hat{\beta}-H_{0} \vec{v}\left(f-v^{2 /-2}\right)^{-1 / 2}$ is the kinetic momentum, A_{φ} is the potential of the focusing fields; \mathcal{H} is the Hamiltonian describing the motion of an individual particle in the focusing and beam-induced fields;

$$
\begin{equation*}
r=c \sqrt{ }\left(\left(g^{3}-(\cos +1)^{2}+d_{0}^{2} c^{2}\right.\right. \tag{3}
\end{equation*}
$$

m_{0}, \boldsymbol{e} are the mass and charge of a particle, and c is the speed of light; $F=F(\vec{P}, \vec{r}, t) \quad$ is the particle distribution function normalized to the total number of particles in the bunch $N:$

$$
\int d^{3} d^{3} p \theta^{2}=\int d I^{7}=A
$$

In this paper we shall examine the stability of stationary beam states with respect to small coherent excitations. In the absence of coherent oscillations, the fields acting on the particle are periodically dependent on time (where the frequency equals the rotation frequency ω_{S}). In this case the particles perform oscillations around a particular equilibrium trajectory. It is convenient to describe these oscillations in action-phase variables (I, Ψ), which are related to $\overrightarrow{\mathcal{P}}$ and \vec{Z} by a canonical transformation. In the stationary state I^{i} and Ψ_{i} are integrals of motion, and the Hamiltonian in these variables depends only on $\overline{I: \mathscr{H}_{s t} \rightarrow \mathcal{H}_{0}(I):}$

$$
\begin{aligned}
& I\left(\vec{\theta}, \widetilde{z}, a_{c}\right)=\operatorname{const}, \\
& \dot{V}_{i}=\omega_{i}(1)=\frac{\partial \partial_{s}}{\partial I^{i}} \quad, \quad i=1,2,3
\end{aligned}
$$

Therefore, the distribution function in the stationary state which satisfies the system of equations (1) and (2) will depend only on the I action variables.

In the excited state

$$
F^{\prime}=\epsilon_{a}^{\prime}(r)+\vec{F}
$$

and

$$
(\vec{A}, \varphi)=(\vec{A}, \varphi)_{5, t}+(\widetilde{A}, \tilde{p})
$$

To investigate the stability of small oscillations the system of equations (1) and (2) may be linearized in terms of the deviations from the stationary state $(\vec{F}, \widetilde{\vec{A}}, \widetilde{\varphi})$. In the linear approximation

$$
\mathscr{H}=\mathscr{H}_{s t}+\tilde{V}=\mathscr{A}_{s t}-\hat{C}\left(\tilde{V_{A}}\right)+\tilde{C}
$$

In the variables (I, Ψ) the linearized equation for \tilde{F} takes the form:

$$
\begin{equation*}
\frac{\partial \tilde{F}}{\partial \underline{\partial}}+\omega_{k} \frac{\partial \tilde{F}}{\partial \psi_{k}}-\frac{\partial \tilde{V}}{\partial \sigma_{k}} \cdot \frac{\partial \tilde{S}_{k}}{\partial \sigma_{k}}=0 \tag{4}
\end{equation*}
$$

and the potentials \vec{A} and $\tilde{\varphi}$ satisfy the equations (2), where in the right hand part \mathcal{F} is replaced by $\tilde{\boldsymbol{F}}$

The normal solution of system (4), (2) has the form

$$
\begin{gathered}
X_{\omega}\left(I, \gamma ; \theta_{s}\right) \epsilon-\dot{Q} t \\
\text { where } \quad X_{\omega s}\left(I, \psi, \theta_{s}+2 \pi\right)=X_{\omega}(T, \psi+2 \pi, \theta)=X_{\omega}(I, \psi, Q) \\
\text { (here symbol } X \text { denotes any of the quantities } \tilde{F}, \vec{A}, \tilde{\varphi}) .
\end{gathered}
$$

In the absence of interaction ($N \rightarrow 0$), the spectrum of normal beam oscillations ($\tilde{F} \sim \exp .\left(-i \omega t+i m_{k} \psi^{k}\right)$ is $\omega=m_{k} \omega_{k}$, m_{k} are integers).

If the interaction of the beam with induced fields is weak,
i.e. the particle motion is only slightly distorted during one oscillation period ($\sim 2 \pi / \omega_{k}$), then the spectrum and form of the excitations must be close to the unperturbed values. This means that the main contribution to the normal excitation $F \omega$ close to $m_{K} \omega_{K}\left(\omega=m_{K} \omega_{K}+\Delta \omega\right.$: $\left.|\Delta \omega| \ll \min .\left\{\omega_{k}\right\}\right)$
is given by the harmonic (5)

$$
F_{\omega, m} \sim \exp .\left(i m_{K} \Psi_{K}\right)
$$

and the effect of the others may be neglected.

Thus, in order to determine the spectrum of excitations due to a first order interaction, the approximated equations may be used:

$$
\begin{align*}
& \left(\omega-m_{k} \omega_{n}\right) F_{\omega, m}=-m_{k} \cdot \frac{\partial V_{0}}{\partial I^{L}} \tilde{V_{\omega} m}(\bar{L}) ; \tag{6}\\
& \Delta A-\frac{1}{\theta^{2}} \cdot \frac{\partial^{2} \tilde{A}}{\partial t^{2}}=-\frac{4 \pi e}{C} \int d^{3} \rho \vec{\sigma} F_{\omega, m} \cdot e^{i \sigma_{\alpha} \frac{1}{k}-i \omega t}+\frac{1}{c} \vec{\nabla} \frac{\partial \tilde{\varphi}}{\partial t} ;
\end{align*}
$$

where

$$
X_{(\omega, m}=\int_{0}^{2 \pi} \frac{d \theta_{s}}{2 \pi} \int_{0}^{2 \pi} \frac{d^{3} v^{3}}{(2 \pi)^{3}} X_{w}\left(t, \psi_{3}\right) \theta^{-i m_{k} Y_{k}}
$$

The relative error occuring in the determination of the shift $\Delta \omega=\omega-m_{K} \omega_{K} \quad$ will be of the order $|\Delta \omega| /\left|\ell \omega_{S}+P_{K} \omega_{K}\right|$.

We shall be interested in effects caused by low-frequency interactions of the bean excitations with the principal-wave field of an ideally matched double-connected* wave guide. The remaining part of the fields in the system where the beam is at rest, is of a quasi-static nature, and therefore will not be taken into account in what follows.
*) i.e. the boundary of its transverse cross-section is a doubleconnected contour.

The potential of the "principal (TEM) wave" in an infinite doubly-connected wave guide has the form:

$$
\begin{equation*}
\vec{A}\left(\overrightarrow{r_{2}}, t\right)=C \frac{\overrightarrow{A_{0}}\left(\overrightarrow{\tilde{c}_{1}}\right)}{\sqrt{2 i}} \int_{-\infty}^{\infty} d t Q_{s}(t) e^{i k y} \tag{8}
\end{equation*}
$$

where $\vec{A}_{0}\left(\vec{Z}_{\perp}\right)$ is proportional to the electric field set up by the potential difference U_{0} between the electrodes;

$$
\vec{A}_{0}\left(\vec{z}_{\perp}\right)=\left(c Z_{0}\right)^{1 / 2} \cdot \frac{\vec{E}\left(\vec{G}_{L}\right)}{U_{0}} ; \quad \Delta_{\Lambda} \vec{E}\left(\vec{z}_{L}\right)=0
$$

$Z_{0} \quad$ is the wave impedance and c is the speed of 1 light.

Under real conditions the beam interacts with a wave guide segment, the ends of which are terminated with the characteristic resistance $\left(Z_{0}\right)$. For low frequency oscillations $\left(\omega l_{\perp} / c \ll 1\right)$ the wave guide's potential may be represented by expression (8) where $\vec{A}_{0}(\overrightarrow{2}) \quad$ is the real electrostatic field exponentially decreasing on a length of the order of the transverse dimensions of the chamber (ℓ_{\perp}), as one moves along the wave-guide chamber, away from the terminating sections. It is significant that in the boundary domains the electric field of the"principal wave" has a longitudinal component; therefore it may be excited by the longitudinal motion of the particles.

The value $Q_{K}(t)$ from (8) satisfies the equation

$$
\begin{equation*}
\ddot{Q}_{k}+c^{2} \kappa^{2} Q_{k}=e \int d \Gamma^{r} \vec{b} \vec{A}_{0}\left(\tilde{r}^{2}\right) e^{-i k y \cdot L_{\omega, m}} e^{i m_{k} \psi_{k}-i \omega t} \tag{9}
\end{equation*}
$$

the solution of which may be written in the form

$$
\begin{equation*}
Q_{k}(t)=\sum_{n=-\infty}^{\infty} Q_{k, n} \exp \left(-i \omega t-i n \omega_{s} t\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{k, n}=e \frac{\int d \Gamma\left(v A_{0} e^{i k y}\right)_{m, n}^{*} \cdot F_{\omega, m}}{C^{2} \kappa^{2}-\left(\omega+n \omega_{3}\right)^{2}} \tag{11}
\end{equation*}
$$

Substituting (10) into (8) we obtain from (6) the integral equation for $F_{\omega, m}$:

$$
\begin{align*}
\left(\omega-m_{k} \omega_{k}\right) F_{\omega, m}=e^{2} m_{k} \cdot \frac{\partial F_{s t}}{\partial \eta^{k}} & \sum_{n} \int_{-\infty}^{\infty} \frac{d k\left(\vec{v} \vec{A}_{0} c^{i k}\right)^{i k} m_{1}}{c^{2} k^{2}-\left(\omega+n \omega_{s}\right)^{2}} \tag{12}\\
& \cdot \int d \Gamma\left(v A_{0} e^{\left.i k g^{\prime}\right)_{n, n}^{*} F_{\omega, m}^{\prime}}\right.
\end{align*}
$$

For further calculations we shall require formulae for the transition from the co-nrdinates and momenta $(\overrightarrow{2}, \vec{\rho})$ of the particle to the action-phase variables (I, Ψ). The effect of stationary induced fields on particle motion may be ignored when the operating point is far from the machine's resonances. Then the transition formulae have the usual form:

$$
\begin{align*}
& \tau=Z_{B}+\eta_{c}, \quad \tilde{c}_{c}=R_{0} \psi(0) \frac{\Delta \rho_{1 \prime}}{\rho_{s}}, \quad \Delta \rho_{11}=\rho-\rho_{s}, \tag{13}
\end{align*}
$$

$$
\begin{aligned}
& \vartheta_{b}=\frac{1}{R_{0}}\left(\psi(0) \cdot \frac{d z_{s}}{d \theta}-v_{0} \frac{d \psi}{d \theta}\right) ; \varphi_{c}=; \theta \cdot \sin \psi_{c} ; \dot{\psi}_{i}=\omega_{c}\left(\rho_{s}\right), i=v, z, c \\
& \frac{d \omega_{s_{2} z}}{d \omega_{0}}=\left(\frac{d \omega_{s} v^{z}}{d \rho} / \frac{d \omega_{0}}{d \rho}\right)_{s} ; \quad a_{z_{r} z}=2\left|f_{z_{, ~} z}\right|_{\text {max }} \sqrt{2 I_{2, z} \frac{p_{0}}{p_{5}}} .
\end{aligned}
$$

Here the subscript S denotes the values relating to the equilibrium particle; $2 \pi R_{0}$ is the machine's perimeter; $\omega_{0}(p)$ is the revolution frequency of the particles; $\mu_{c}=\left(d \omega_{\circ}(d p)_{S}^{-1}\right.$ is the mass of synchrotron motion; f_{2}, z are the Floquet functions fulfilling the normalization conditions:

$$
f_{k} \cdot\left(f_{k}^{\prime}+i v_{k} f_{n}\right)^{\dot{w}}-k \cdot c=-2 i \quad(k=x, 2)
$$

$\nu_{\mathbf{z}, \boldsymbol{z}}=\left(\omega_{2, z} \mid \omega_{0}\right)_{s}$ is the number of betatron oscillations per turn; $\left|f_{r, z}\right|$ max. is the greatest value of the modulus of the Floquet function over one machine period;
periodic solution of the equation:

$$
\frac{d^{2}}{d \theta^{2}} \psi+\frac{R_{0}^{2}}{R^{2}(\theta)} \cdot(1 \cdot a(\theta)) Y(\theta)=\frac{R_{0}}{A(0)}
$$

where $n(\theta)$ is the guide field index and $R(\theta)$
is the orbit's radius of curvature.

The phase modulation of the transverse oscillation is related to the energy dependence of the irequencies ω_{2} and ω_{2};

$$
\omega_{k}(E)=\omega_{0}(E) \nu_{k}(E) ; A=x_{1} z
$$

The calculation of the harmonics entering (12) may be simplified by using the field potentiality (field derived from a potential) $\vec{\varepsilon}(\vec{r})$

$$
\vec{c}(\vec{r})=-\frac{U_{0}}{\left(c Z_{0}\right)^{\prime 2}} \vec{\nabla} U(\vec{z})
$$

By definition of the Fourier harmonic, we have:

$$
\begin{equation*}
\left(\overrightarrow{i A_{0}} e^{i k y}\right)_{m_{n}}=\left(\frac{d U\left(\vec{z}^{n}(t)\right)}{d t} e^{i k R_{0} \theta(t)-i m_{x} H x(t)-i \theta_{s}}\right), \tag{14}
\end{equation*}
$$

where the line denotes the time averaging along the particle trajectory. By performing the time integration by parts in (14), we can rewrite this expression in the form

$$
\begin{align*}
& \left(\vec{b}_{\vec{a}}^{A_{0}} e^{i k y}\right)_{m, n}=-i \omega_{s}\left(R_{0} K-n-i_{k} z_{k}\right) \cdot V_{m, n}^{K}(I), \tag{15}\\
& V / n, n=\int_{0}^{2 \pi} \frac{d^{3} \psi}{(2 n)^{3}} \int_{-\pi}^{\pi} \frac{d \theta_{5}}{2 \pi} e^{i k n_{0} \theta-i n \theta_{n}-i m_{k} \psi \psi} \cdot U\left(\xi_{i}(\theta), \theta\right) \tag{15a}
\end{align*}
$$

For low-frequency field excitations $\left(K l_{\perp} \ll 1\right)$ the azimuthal dependence U may be approximated by the expression

$$
U\left(\vec{r}_{1}, \theta\right)= \begin{cases}U\left(\vec{r}_{1}\right) & ,|0| \leqslant e / 2 R_{0} \tag{16}\\ 0 & ,|\theta|>e / 2 R_{0}\end{cases}
$$

where ℓ is the plate length and it is assumed that θ is measured from the middle of the wave guide.

The harmonic $V_{m, n}^{k}(I)$ may then be calculated by means of a Taylor expansion of (15a) in terms of power of the amplitudes of the transverse oscillations (I_{\perp}). The resulting expression is extremely cumbersome and therefore we shall give it only later for particular values of m, where necessary.

In formula (15) the term proportional to ($\boldsymbol{R}_{0} K-\boldsymbol{n}$), corresponds to the interaction of a bearn with the edge fields and the term proportional to $m_{k} \nu_{k}$ describes the interaction over the plate length.

We note that when the beam interacts with a system "without a memory", the sum over Ω in (12) depends weakly on the accurate value of ω and therefore for a first order accuracy $|\Delta \omega| / \omega_{i}$ the frequency ω in the right hand part of (12) may be replaced by $m_{i} \omega_{i}$. When calculating sums over n we shall use the summation formula

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} G_{n}=\sum_{q=-\infty}^{\infty} \int_{-\infty}^{\infty} d n g(n) e^{2 \pi i q n} \tag{17}
\end{equation*}
$$

By directly substituting (17) into (12), it can be seen
that all the terms of the sum with $q \neq 0$ vanish i.e. the integrands in the integrals over n have no singularities in the plane of the complex variable \boldsymbol{n}. In physical terms this corresponds to a total damping of the induced fields during the period corresponding to one revolution of the beam.

Taking into account the above, we rewrite the integral equation for $F_{w, m}$ in the form
where $\Delta \omega_{m}=\omega-m_{i} \omega_{i} ; \varepsilon \rightarrow+0$ defines the integration contour. The function V_{m}^{K}, n may be represented in the form

$$
Y_{m_{1} n_{1}}^{K}\left(a_{y}, a_{z}, \varphi\right)=\frac{a_{z}^{\left|m_{2}\right|} \cdot a_{z}^{\left|m_{2}\right|}}{\left|m_{z}\right|!\cdot\left|m_{z}\right|}: g_{m, n}^{k}(\varphi)+O\left(a_{1}^{\mid m_{z i+1 m_{z} \mid+1}}\right)
$$

where

$$
\begin{gathered}
q_{1}^{k}, n, \varphi=\left.\frac{\partial^{\left|m_{z}\right|+\left|m_{2}\right|} V_{m, n}^{k}}{\partial a_{z}^{\left|m_{2}\right|} \partial a_{z}^{\left|m_{z}\right|}}\right|_{a_{z}=a_{z}=0} \\
a_{1} \quad \text { depends only on the amplitude of the synchrotron cscillations } \varphi ;
\end{gathered}
$$

In this paper we shall examine only those cases where only the betatron oscillations are non-linear in the stationary state and the non-linearity of the synchrotron oscillations may be ignored.

Then, by means of the substitution

$$
F_{a, m}\left(a_{r}, a_{z}, \varphi\right)=\frac{a_{z}^{\left|m_{2}\right|} \cdot a_{z}^{\mid m}}{a_{0}-m_{k} \mid m_{n}(r)} \cdot x_{m}(p)
$$

leaving only the lowest powers of the amplitude of transverse oscillations in (28), we obtain the equation fo $X_{m}(\varphi)$;

$$
\begin{align*}
& \int_{0}^{\infty} \sigma^{\circ} p^{\prime} g^{n} n, n\left(\varphi^{\prime}\right) x_{m}\left(\varphi^{\prime}\right) . \tag{18a}
\end{align*}
$$

Here we introduced the following notation:

$$
\begin{align*}
& \frac{1}{\Omega_{m}}=-\frac{1}{A_{m_{L}}}\left\langle m_{K} \cdot \frac{\partial \quad a_{2}^{1 m_{2} \mid} a_{z}^{l m_{z} \mid}}{\partial I^{2} \omega-m_{i} \omega_{i}(\Omega)}\right\rangle, \\
& A_{m_{1}}=\left\langle m_{\kappa} \cdot \frac{3}{\partial J^{k}}\left[a_{2}^{2 / m_{2}} \cdot!a_{2}^{2 l m_{2}}\right]\right\rangle ; \tag{18b}
\end{align*}
$$

$\beta=v / c$, the brackets 〈 >denote the mean of $F_{0}\left(I_{\perp}\right)$ (we assume here that $F_{s t}\left(I_{\perp}, I_{c}\right)$ can be factorized);

$$
F_{s t}\left(I_{1}, l_{c}\right) f_{0}\left(l_{1}\right), p\left(I_{0}\right) .
$$

With no frequency spread (the oscillations in the stationary state are linear) the spectrum of normal collective excitations coincides with the moctrum of eigenvalues of equation (18a):

$$
\text { a) } \cdots n_{k} c_{0} \cdots: n+m
$$

If the oscillations in the stationary state are non-linear, the frequencies of normal oscillations ω may be found from the dispersion equation (18b), having found first the eigenvalues of equation (18a).

Generally speaking, the solution of the integral equation (18a) with some smooth distributions $\boldsymbol{\rho}(\boldsymbol{\varphi})$ requires the application of numerical methods. We shall investigate below a series of cases where the qualitative dependence of the spectrum of normal oscillations on the characteristic parameters of the problem (length of plate, length of bunch, $\left.d \omega_{\perp} / d \omega_{s} e t c.\right)$ can be obtained analytically.

II. MODEL SOIJJTIONS

For simplicity's sake, we shall examine only those excitations for which the collective betatron oscillations in the beam are onedimensional, ie. $m_{z} . m_{z}=0,\left|m_{z}\right|+\left|m_{z}\right|>0$.

1. Axial and axial-longitudinal excitations

First let $m_{2}=0$ (axial-longitudinal excitations). The formula for $\Delta \omega$ is easily obtained for a model distribution

$$
\begin{equation*}
N(P)=\left(\gamma^{\prime 2} \cdot \Delta^{2}\right) \tag{19}
\end{equation*}
$$

where Δ is linked with the beam's "length" $\ell_{b}=2 R_{0} \Delta$. In this case $g_{m, n}^{u}(\varphi)$ is equal to
where the notation $\bar{F}_{z}(\theta)=F_{z}(\theta) /\left|F_{z}\right|$ max. is introduced.
By substituting (19) and (20) into (18a), in the ultrarelativistic case $\left(\gamma^{2} l_{b} \gg l, \gamma=E_{s} \mid m_{0} c^{2}\right)$, we obtain the decrements $\left(\delta=-I_{m} \omega\right)$ of the axial-longitudinal excitations;

Here $J_{m}(x)$ is the Bessel function of order m;

$$
\begin{aligned}
& r_{0}=\frac{e^{2}}{m_{0} c^{2}} \text { is the classical radius of a particle. } \\
& \text { Formula (21) simplifies in two limiting cases: }
\end{aligned}
$$

a) $\ell_{b} \ll\left(\left|m_{c}\right|+1\right) \ell \quad$ short burch. After integration over n, we obtain

$$
\begin{equation*}
\delta_{m}=N \delta_{0} m_{2}\left(\frac{n Q}{2 R_{0}} d_{i}+\frac{4 Q_{0}}{n_{1},}\left[Q_{2}-\frac{d v_{2}}{d Q_{i} R_{0}} \cdot R_{3}\right] \frac{1}{4 m_{2}^{2}-1}\right) \tag{22}
\end{equation*}
$$

The factors ϕ_{1}, ϕ_{2} and ϕ_{3} are equal to

$$
\begin{aligned}
& \bar{g}_{3}=\left|\bar{f}_{z}\left(\theta_{2}\right)\right|^{2\left|m_{z}\right|}+\mid \overline{f_{z}}\left(\left.\theta_{1}\right|^{2\left|m_{z}\right|},\right.
\end{aligned}
$$

where $\theta_{2}=l / 2 R_{0}, \theta_{1}=-l / 2 R_{0}$ are the coordinates of the ends of the plate.

Formula (22) differs from the corresponding formula from paper (4), in the terms proportional to ϕ_{1} and ϕ_{2}.

The first term in (22), proportional to the length of the plate, represents the damping decrement of the coherent motion of the beam due to the energy loss into the matched line due to the transverse motion of the bunch. We should point out that this decrement is always positive and corresponds to the "fast damping" previously obtained in (5). The second term, which does not depend on the length of the plate, corresponds to the so-called "head-tail" effect. This term's sign depends on the type of excitetion and the sign and value of $d v_{z} \mid d \ln R_{0}$. Its occurrence is physically linked to the fact that at the edges of the plate, where the electric field of the "main wave" has a longitudinal component, a (TEM) wave is excited by longitudinal motion.

For $m_{c} \neq 0$ the factor ϕ_{1} is proportional to the value ($\left.\frac{m_{1} l_{s}}{2} \cdot \frac{d V_{2}}{d \mathcal{R}_{B}}\right)^{2 / m_{c} /}$ and therefore the synchrobetatron excitations may become unstable. However, excitations with $m_{c}=0$ may always be made stable by selecting an adauate plate length.

We should point out in particular that the value of the "boondeary" terms is proportional to the $2\left|m_{z}\right|$-order of the Floquet function modulus at the edges of the line. This factor may be decisave in the selection of the position of the plates in machines with large beats of the Floquet function (machines with low β - functimon values).

In the azimuthally-symmetrical case, if the guide field is linear, then

$$
\frac{d v_{2}}{d \operatorname{lon} R_{0}}=\frac{n(1+n)}{2 v_{2}} ; \quad f_{z}=\frac{1}{v_{2}^{\prime}} ; \quad 0<i<1
$$

n is the guide field exponent. The stability condition has the form $\delta>0$

$$
\begin{align*}
& \text { 2) } \quad m_{\mathrm{c}} \neq 0 \quad \frac{1}{y_{2}} \cdot \frac{d \omega_{z}}{d \omega_{5}}=\frac{1 \cdots h}{a}>0 \text {, } \tag{23}
\end{align*}
$$

that is, in this case, the axial-longitudinal excitations are stable. A more general stability condition (for arbitrary focusing) may be obtained directly from (22).
We shall give also the formula for the decrement for the most important type of oscillation when $\left|m_{z}\right|=1$:

If the machine's chromatism is large

$$
\frac{e_{s}}{R_{0}}\left|m_{z} \frac{d \omega_{z}}{d \omega_{3}}\right| \gg 1
$$

(as is the case in strong-focusing machines), then the decrement of a short bunch may be estimated with logarithmic accuracy by means of the formula

In obtaining (22a), it was assumed that the guide field was azimuthal by uniform.

We note that the decrement $\delta \quad$ is inversely proportional to the length of the bunch l_{b} and the quantity $d \omega_{z} / d \omega_{s}$ related to the machine's chromatism (the dependence of the numerator in (22a) on ℓ_{b} is weak, because it is logarithmic).
b) $\ell_{b} \gg \ell\left(\left|m_{c}\right|+1\right)-$ a long bunch. For simplicity's sake we shall assume that the guide field is a azimuthal-uniform. We then obtain from (21)

It is clear that instability may occur when the machine's chromatism ($\left.d \ln \nu_{z} \mid d \ln R_{0}\right)$ is negative. We should draw attention to the fact that the decrement in (25) is inversely proportional to the bunch length ℓ_{b}. This is related to the fact that at $l_{b} \gg \ell\left(\left|m_{c}\right|+1\right)$, thefmain contribution to the integral (21) is made by the harmonic interval $\Delta n \sim R_{0} / l_{b}$; the contribution of each harmonic in this interval is of the order of $\left(\left(\ell \mid 2 R_{0}\right)^{2}\right)$, so that

$$
\delta \sim \frac{P_{0}}{B}
$$

2. Radial-longitudinal excitations ($m_{z}=0$)

Collective excitations of this type may differ substantially from axial-longitudinal excitations due to the coupling of radial and longitudinal particie motion in the storage ring. Therefore, when calculating $g_{m, n}^{u}(\varphi)\left(m=\left\{m_{2}, m_{c}, 0\right\}\right.$ modulation of the azimuth by betatron motion needs to be taken into account. The function $g_{m, n}^{u}(\varphi)$ is represented by the sum

$$
\begin{equation*}
g_{m, 2}^{(i)}(p)+g_{m, 0}^{(2)}(p) \tag{26}
\end{equation*}
$$

where $g_{m, n}^{u(1)}(\varphi)$ is obtained from (20) by substituting the index
$Z \quad$ for r and $g_{m, n}^{u(2)}(\varphi)$, which describes the effect of radiallongitudinal coupling, is given by

$$
\begin{align*}
& \left(\left.\frac{\partial^{2 m_{2}-1} U}{\partial 2^{m m_{i}-1}}\right|_{c=0}\right) \tag{27}
\end{align*}
$$

where

After substituting (27) and (19) into (18a), we obtain the formula for the decrements

$$
\hat{\delta}_{m}=\hat{\delta}_{m}^{(0)}-\delta_{m}^{(1)}
$$

in which $\delta_{m}{ }^{(0)}$ is obtained from (21) by substituting the index z for $r, \quad \hat{\delta}_{m}^{(1)}$ equals

$$
\begin{equation*}
\left.\delta_{m}^{(1)}=1 / \delta_{0} \int_{-\infty}^{\infty} d n d_{n}\left(n+n v_{2}\right) y_{0}^{2}\left(d n+m_{2} \frac{d d_{0}}{d \alpha_{3}}\right]\right) \tag{28}
\end{equation*}
$$

where

$$
\cdot \forall_{n}\left\{G_{u, n}^{(2)} \cdot b_{u, i}^{(3)} \int_{i \ell=}^{(i)} /\right.
$$

The integral over n in formula (28) diverges logarithmically. However, in a real case, where the "length" of decrease of the edge field is finite, the integrand in (2e) can be multiplied by a factor which cuts off the integral over n at a value of the order $n_{0} \sim R_{0} / l_{\perp}$. In order to estimate the decrement in terms of its order of magnitude, the specific form of this factor is not important. In particular, the infinite limits of integration in (28) may simply be replaced by finite limits with $|n \max |=.n_{0}$.
We shall give the formulae of the decrements in two limiting
cases:
a)

$$
\begin{aligned}
& \theta_{i=1} \ll\left(\mid m_{c} / i 1\right) \theta
\end{aligned}
$$

where

We note that $\delta_{m}^{(1)}$ does not depend on $d \omega_{2}^{\prime} d \omega_{s}$ and, at

$$
\begin{equation*}
\left.\partial_{4} \cdot \frac{\partial}{\partial \eta}\left(\frac{\theta^{1 m_{2} 1-1}}{\partial \tau^{m_{2} 1-1}}\right)\right|_{z=0} ^{3}>0 \tag{30}
\end{equation*}
$$

it reduces the decrement of the radial oscillations.
If $\delta_{m}^{(0)}$ is positive, then, by comparing (29) and (22), we see that the radial oscillations $\left(m_{c}=0\right)$ may become unstable when

$$
\overline{\psi \prime} \cdot \frac{R_{1} R_{0}}{Q_{3} \cdot M R_{1}\left\{Q_{1}\left[c_{0}^{\prime} \omega_{3}\right]\right\}}>1
$$

and the radial-phase oscillations when

$$
\cdots \frac{Q_{0}}{Q_{0}^{2}\left|\frac{R_{0}}{d u_{0}}\right|}>i
$$

In this case, the increments of normal oscillations are inversely proportional to the length of the bunch l_{b}. We shall give the decrement expression for the most important type of oscilIation $\left|m_{r}\right|=1$.

$$
\begin{equation*}
\left.\delta_{m}^{(1)} \frac{N(x c}{4 a^{3} \eta} \cdot \frac{\psi\left(\theta_{1}\right)+\psi\left(\theta_{b}\right)}{e_{b}} \cdot e_{n}\left[\frac{e_{b}}{e_{1}\left(\ln m_{c}+1\right)}\right] \cdot \frac{\partial V^{2}}{\partial \eta}\right|_{z=0} \tag{31}
\end{equation*}
$$

b) $l_{b} \gg\left(\left|m_{c}\right|+1\right) \ell$. For an azimuthally-uniform machine

It must be pointed out that the appearance of large logarithms in formulae (25), (29) and (32) is a specific peculiarity of distribution (19). This is so because the decrements in formulae (25), (29) and (32) for an arbitrary smooth distribution $\rho(\varphi)$, determine the sums of the decrements of normal beam excitations.

At large excitation (mode) numbers the separate decrements decrease slowly as the mode number $K\left(\hat{O}_{k} \sim 1 / K\right)$ increases, so that the sum turns out to be logarithmically large.

3 Synchrotron excitations

For excitations with $\omega \simeq m_{c} \omega_{c}, m_{2}=m_{z}=0$ with an accuracy up to the order $\left(a_{\perp}, l_{\perp}\right)\left(a_{\perp}\right.$ is the tranverse beam's width),
equation (18a) may be written in the form
where

In this case, we shall use the assumptions that the guide field is azimuthal by uniform and that the bunch moves parallel to the axis of the wave guide. In view of the low value of the synchrotron frequency $\left(\omega_{c} \ll \omega_{S}\right)$, the function \mathscr{L} mav be represen ted as:

$$
\begin{aligned}
& \left.\quad(x)=\frac{A}{4} \cdot \frac{\sin \left(\frac{4}{2} x\right)}{x} \frac{4 \Delta}{2} \cdot \frac{2 x}{2}\right) \\
& \text { In this section, we obtain a solution for (33) for a case where } \\
& q(y) \text { is a "step", }
\end{aligned}
$$

$$
q(y)= \begin{cases}2 & , \quad 0 \leqslant 4 \leqslant 2 \tag{34}\\ 0 & , \quad, \quad 1\end{cases}
$$

From (33), we immediately obtain the dispersion equation

As $J_{m} \mathscr{L}(X)$ is an odd function of X, the first term in (35), which is directly due to the total energy losses, contributes only to the real part of the frequency shift. The second term, which is proportional to the loss gradient, determines the excitation decrements, equalling:

The above expression simplifies substantially in two limiting cases:
a) $\ell_{b} \ll{ }^{\prime} m_{c} \mid l$ "long" plate. When tris condition is fulfilled, the square of the sine in (36) oscillates rapidly and it me replaced by the mean val ue:

$$
\begin{equation*}
\overrightarrow{i n}_{n}=\frac{\theta^{\prime a} c}{\theta^{3}} \frac{\square}{2 b}\left(\left.\frac{\partial U^{2}}{\partial Z}\right|_{z=0}\right) \tag{37}
\end{equation*}
$$

The condition for the damping of coherent symchrotron oscillations is

$$
\begin{equation*}
\left.\bar{\psi}\left(\frac{20}{2}\right)_{2=0}\right)>0 \tag{38}
\end{equation*}
$$

This signifies that, for $\bar{\psi}>0$, the plates must be situated on the outside of the equilibrium orbit. The physical reasons for this are obvious the modulation of the coherent (energy) losses must be such that when the energy increases these loses increase. We wish to draw particular attention to the outstanding characteristic of this method of damping: for all excitations $c\left|m_{c}\right|<l_{b} / l_{1}$ the decrement's value does not depend ont the multipolarity number (the constraint on $\quad m_{c} \quad$ is related to the fact that at $\left|m_{c}\right|>l_{b} \mid l_{1}$ the excitation of other types of wave has to be taken into acoount). This is because the radiation formatior length equals the "length" of the edge.

$$
\theta_{0} \times Q_{4}<\therefore \frac{e_{0}}{m_{0} \mid}
$$

that is, separate "bunches" radiate independently (6).
b) $\ell_{b} \gg\left|m_{c}\right| \ell$ short plate. In this case, the mair contribution to the integral in (36) is made oy the region ' $n \cdot \mid<x<!!l$. We then obtain with logarithmic accuracy:

The condition for the stability of excitations, as in the case of a short bunch, is also given by inequality (38).
III. QUALITATIVE PICTURE OF THE ENOIPATION SPECTRUM FOR SMOOTH $\rho(\varphi)$

In this section, ve siall examine a serie of limiting cases where equation (18a) may be converted into an equation with a real symmetrical kernel. The spectra of the eigenvalues of such equations have been well-studied (viz. for example (8)), so that it is possible to study the stability of eycitations for a comparatively wide range of smooth consider an azimuthally-symmetrical guide field ana assume that $P(4)$ depends on one parameter: the"width" Δ. That is,

$$
\begin{equation*}
O(O)=\frac{1}{A^{2}} \eta(\theta) ; \quad \int_{0}^{\infty} d(\theta, i \not \theta) \cdots 1 \tag{40}
\end{equation*}
$$

For the time being we shall assume that $=0$, and then equation (18a) may be written in the form
where

$$
\begin{aligned}
& A_{m}=-\frac{\Delta}{N \delta_{f}}\left(\omega-m_{i} \omega_{i}\right),
\end{aligned}
$$

The function $\mathscr{L}_{\perp}(x)$ equals:

$$
\begin{aligned}
& +2 i\left(x+m_{x} v_{k}\right) \cdot \frac{\sin ^{2} \frac{e}{2 R_{0}}\left(2 \pi+\pi n_{x} x\right)}{\left(2 x+m_{x} v_{k}\right)^{2}}, k=z, z
\end{aligned}
$$

The kernel $\mathcal{K}_{\perp}\left(y / y^{\prime}\right) \quad i:$ clearly: symmetrical:

$$
\mathscr{U}_{s}\left(y / y^{\prime}\right)=K_{1}\left(y^{\prime}, y\right)
$$

1. Betatron excitations ($m_{c}=0$)

Let us first examine one-dimensionzl, say axial excitations of a short bunch $\ell_{b}<\ell$. Ignoring quantities of the order

$$
\frac{e_{3}}{e}, d l_{2}^{d} R_{0}<1 ; \frac{e_{b} V_{2}}{e}<1
$$

we rewrite $\mathbb{K}_{\perp}\left(y / y^{\prime}\right)$ in the form

$$
\begin{array}{r}
K_{L}\left(y / y^{\prime}\right)=i \frac{A \cdot m_{2} \cdot v_{2} e}{R_{0}} V_{b}\left(y / y^{\prime \prime}\right) \\
W_{L}(y \mid y)=\int_{0}^{\infty} d x \frac{S x^{2} x}{x^{2}} V_{0}\left(\frac{x y e_{0}}{2 e}\right) y_{0}\left(\frac{x y^{\prime} e_{b}}{2 e}\right)
\end{array}
$$

(41) is transformed into the equation

$$
\bar{\lambda}_{m_{2}} x_{m}(y)=\int_{n}^{\infty} y^{\prime} y^{\prime} y^{\prime} q\left(y^{\prime}\right){\overline{k_{1}}}_{1}\left(y^{\prime}\left(y^{\prime}\right) \lambda_{n 1}\left(y^{\prime}\right), \bar{\lambda}_{m}=-\frac{i \lambda \hat{R}_{0}}{\Delta m_{ \pm} v_{z} \ell}\right.
$$

in which the function $q(y)$ is positive by definition. It is shown in the annex that all the characteristic roots of such an equation are positive numbers.

Therefore, in the given approximation, the decrements of one-dimensional excitations are positive and equal to

$$
\begin{aligned}
& \left(\left.\frac{1}{\left(1 M_{2} \mid \cdots 1\right)!} \cdot \frac{\partial^{\left|m_{2}\right|}!^{T}}{\partial 2^{1 m_{2}}}\right|_{2=0}\right)^{2} ; K=1,2,3, \ldots,
\end{aligned}
$$

As the eigenvalues $\quad \bar{\lambda}_{k}$ satisfy the inequality
$\bar{\lambda}_{k} \leqslant \pi / 2$ (viz. (A. 6)), the decrements fulfil of $\therefore \delta \cdot 0$ where δ_{0} is the decrement of one-dimensional betatron excitations obtained in (5).

When $\frac{l_{b}}{l}\left|\frac{d \omega_{z}}{d \omega_{s}}\right|$ is of the order of unity, the numerical solution (4I) is required in order to investigate the stability of the excitations.

In the case of two-dimensional betatron excitations $\left(\left|m_{r} \cdot m_{z}\right|>0\right)$, the coherent oscillations may become instable. The excitation decrements equal:

Hence we immediately obtain the oscillations stability condition

$$
\begin{aligned}
& \left\langle\frac{\sin n^{\prime}\left(m_{2}\right)}{z_{2}}\left(\frac{a_{2}}{m_{z}}\right)^{2}, \frac{: g_{2}\left(m_{2}\right)}{z_{2}} \cdot\left(\frac{a_{2}}{m_{2}}\right)^{2}\right] . \\
& \left.\cdot\left(\frac{a_{2}}{2}\right)^{2 / m_{2} 1-2} \cdot\left(\frac{g a_{2}}{2}\right)^{2 / m_{2} 1-2}\right) \cdot\left(m_{2} v_{2}+m_{2} v_{2}\right)>0
\end{aligned}
$$

coinciding with that obtained in $/ 5 /$.

$$
\text { 2. Axial-longitudinal excitations }\left(m_{2}=0\right)
$$

a) Short bunch $l_{b} \ll\left(\left|m_{c}\right|+1\right) l$. In this case, with accuracy up to the order of $\left(\ell_{b} \cdot d \nu_{z} / d R_{0}\right)^{2} / 4 \ll 1$, the k ernel $K_{\perp}\left(y / y^{\prime}\right)$ equals:

Therefore, the excitation decrements may be written in the form
where λ_{k} are the characteristic roots of the equation

$$
\begin{equation*}
\lambda x x_{n}(y)=\int_{0}^{\infty} \frac{d x}{x^{\prime}} y_{m, k}(x y) \int_{0}^{\infty} y_{y} g\left(y^{\prime}\right) y_{c}\left(x y^{\prime}\right) x_{m}\left(y^{\prime}\right) \tag{44}
\end{equation*}
$$

which are clearly real positive numbers (viz annex). Consequently, the condition for the stability of excitations takes the form:

$$
\begin{equation*}
\frac{d \omega_{2}}{d \omega_{5}}>0 \tag{45}
\end{equation*}
$$

as for a δ-type distribution.
If the excitation is unstable $\left(d \omega_{F} / d \omega_{s}<c\right)$, then it is interesting to know the region containing the numerical value of the maximum increment. According to the formula (43) $\delta_{\text {max. }}$ is determined by the maximum eigenvalue of equation (44) $\lambda_{\text {max }}$ for which the inequalities (A.6) of the annex are correct.

This estimate depends both on the type of distribution and also on the type of "test" function $p_{m}(y)$ (viz.(A.5)). For example, for the distribution $a=2 \varepsilon \times p$ and the test function $\left(-y^{2}\right)$

$$
\begin{aligned}
& q=a-2 x\left(1-y^{2}\right) \\
& \rho_{m}(y)=\left(\frac{2}{\left|m_{c}\right|!}\right)^{\frac{1}{2}} y^{\left\lvert\, m_{k} 1+\frac{1}{2}\right.} e^{-4^{2}}
\end{aligned}
$$

we ootaln inequalities for λ_{mc},

$$
\sqrt{\frac{n}{2}} \cdot \frac{2^{-a \mid m 1}\left(2 \mid m_{c} 1-1\right)!!}{\mid m_{c} 1!\cdot\left(2 \mid m_{c} 1-1\right)} \leqslant \lambda_{m a w} \leqslant \frac{2}{1 / r^{n}} \cdot \frac{1}{4 m_{c}^{2}-1}
$$

b) Lastly, we shall examine the axial-longitudinal excitation of a long bunch $l_{b} \gg l\left(\left|m_{c}\right|+1\right)$. In this case, the main contribution to the interaction of the bunch with the line is made by the region of the harmonics of the revolution frequency ($n=X / \Delta$)

$$
\begin{equation*}
|n|<R_{0}^{\prime} l \tag{46}
\end{equation*}
$$

In this case the kernel $\mathfrak{K}_{\perp}\left(y^{\prime} y^{\prime}\right) \underset{\substack{\text { manco }}}{\text { may }}$ written in the form
where $X_{\text {max }}=\frac{l}{l_{b}}$.

Using the standard method (viz. above), equation (47) leads to an equation with a positive symmetrical kernel. Therefore, the stability of the excitations is determined only by the sign of the dhromatism ($\left.d \nu_{z} / d \ln R_{0}\right)$.

The excitation decrements, equal to

$$
\begin{align*}
& U_{K}=\frac{\lambda_{s} N \lambda_{0} c}{\pi \eta}\left(\frac{e}{2 \pi R_{0}}\right) \cdot \frac{n_{d} t}{e_{0}} \cdot \frac{d^{\prime} \nu_{3}}{d^{\prime} \ln R_{0}}\left\langle\left(\frac{a_{2}}{2}\right)^{2 / m_{2} 1 \cdot 2}\right\rangle . \tag{48}\\
& \cdot\left(\frac{1}{\left(\mid n_{z} 1-i\right)!} \cdot \frac{\partial^{/ m_{z} /} U}{\left.\partial z^{m_{i}}\right|_{z=0}}\right)^{2}
\end{align*}
$$

are expressed by means of the eigenvalues of the equation

$$
\lambda_{k} \gamma_{m}(y)=\int_{0}^{x} d x Y_{m_{c}}\left(x_{j} y_{0}^{\infty} y_{0}^{\prime} y^{\prime} q\left(y^{\prime}\right) y_{m_{c}}\left(y^{\prime}\right) x_{n}\left(y^{\prime}\right)\right.
$$

which is easily obtainéd from (41), ta丸ing into account (47). The corresponding estimate for tine maximum increment will be given below (viz. point 4).

3. Radial-longitudinal excitations ($m_{7}=0$)

As mentionned above, this type of excitation differs from axial-longitudinal excitationsin storage rings by the presence of coupling between radial and longitudinal collective bunch motion.

Taking into account the modulation of the azimuth θ by the radial oscillations, we rewrite (18a) in the form

$$
\begin{equation*}
\left.A_{m} x_{m}(y)=\int_{0}^{\infty} d_{y^{\prime}}^{\prime} y^{\prime} q\left(y^{\prime}\right) y_{1}^{\prime}\left(y y^{\prime}\right)-x_{1}\left(y / y^{\prime}\right)\right) x_{m}\left(y^{\prime}\right) \tag{49}
\end{equation*}
$$

where λ_{m} and $K_{\perp} \backslash$ 'y' are obtained from the corresponding values in (33) by replacing the incest $Z \quad \therefore \quad \therefore$, and \mathbb{K}_{11}

The equality (50) is obtained by ta ing into account the fact that $K_{11}\left(y / y^{\prime}\right)$ describes the interaction of the bunch with tie boundary fields, when harmonics of the revolution frequency with $n ; \mathscr{F}_{0}$, min. $\left\{\ell_{b}, l\right\}$ are significant. The nature of the excitation spectrum is determined by the value

$$
\xi_{m}=\frac{\xi_{0} e_{0}}{\theta_{0} e^{(m)}}
$$

where

If the value ξ_{m} is low $\left(\xi_{m}\right.$ i<<1 i, then it is clear that the influence of , \mathbb{Z} ! on the solution of (49) is weak and it can be taken into account in terms of perturbation theory. In this case the stability of excitation c is determine a by the properties of the kernel $K_{\perp}\left(y_{l}^{\prime}, \quad\right.$, so that the stability conditions have the same form as in the above section.

We shall calculate the distortion of the spectrum \mathcal{K}_{\perp} due to K_{11}. For simplicity's sake, we shall assume that the eigenvalues of $K_{\perp}\left(y / y^{\prime}\right)$ are non-degenerate. Fie then have in the first order of the perturbation theory
where $\lambda_{X_{(K)}^{(K)}}^{\lambda_{m}^{K}, 0}$ and $X_{m, 0}^{(k)}$ are determined from (49) at $K_{11}\left(y / y^{\prime}\right)=0$, and $X_{m, 0}^{(K)}$ satiety the normalization conditions

By comparing (51) with (42), (43) or (48) we find that the ratio $\left|\lambda_{m}^{k}-\lambda_{m_{1} 0}^{k}\right| / \lambda_{m, 0}^{k}$ equals $\left|\xi_{m}\right| \quad$ in the order of magnitude.

In the inverse limiting case $\left(\left|\xi_{m}\right| \gg 1 ;\right.$ solutions of (49) are mainly determined by $\mathcal{K}_{11}\left(y / y^{\prime}\right)$, and K_{\perp} may be considered as a small perturbation.

Without perturbation $\left(d_{1}=0\right)$ the excitation spectrum is determined by the equation
where $\lambda=\lambda_{m} / \zeta_{11}$. By means of tile substitution

$$
x_{m}(y)=\sqrt{y} \bar{y} x_{n}(y)
$$

the above equation is transformed into an equation with a positive symmetrical kernel. Therefore, all the di devalues of (52) are positive. The excitation decrements equal:
where λ_{k} is the eigenvalue of (47) with the number k.
The stability condition $\left(\delta_{K}>0\right)$ has the form

$$
\begin{equation*}
\bar{\psi} \cdot \frac{\partial}{\partial z}\left(\frac{\partial^{\operatorname{lm} 1-1} U}{\partial \varepsilon^{1 m_{2}} 1-1}\right)^{2}<0 \tag{54}
\end{equation*}
$$

Generally spearing, :re eigervizues of equation (52) depend on the parameter $\hat{X}_{b} ; \hat{i}$. hoover, it is clear \because rom (52) that this
 completely.

4. Syncsirotron exicitations

 should point out that if \mathcal{P} 'f ${ }^{\prime}$; iepradi orly o: on: parameter, then, for a convergence of the romaines urtermi or \mathcal{F}, the following is generally restiixed

$$
\frac{d x}{d y}<0
$$

$$
0 \leq y \leq \infty
$$

For such $q(y)$ distributions, ir i the case ci extremely short $\left(l_{b} \ll\left|m_{c}\right| l\right)$ or extremely long $\left(l_{b} \gg m_{c} \mid \ell\right)$ buriehes, the stability condition of the synchrotron excitations coincides with (38) and does not depend on the form oi the $i i_{s}$ tribution in terms of the amplituctes of the synchrotron osixiletions.

First let $l_{b} \ll\left|m_{c}\right|\{$. Then equation : : α my be rewritten in the form:

$$
\begin{equation*}
\lambda_{1} x_{m}(y)=\int_{0}^{\infty} \frac{c x}{x^{2}} y_{m_{c}}(x y) \int_{0}^{\infty} d y^{\prime} y^{\prime}\left|\frac{d q}{d y^{\prime}}\right| y_{m_{c}}\left(x y^{\prime}\right) x_{m}\left(y^{\prime}\right) \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{1}=i \frac{\left(\omega-m_{c} \omega\right) \pi^{2} \gamma l_{\Delta}}{\mu r_{0} c m_{r}^{2}} \cdot\left(\left.\bar{\psi} \cdot \frac{\partial V^{2}}{\partial r}\right|_{r=0}\right)^{-1} \tag{56}
\end{equation*}
$$

Equation (55) leads easily* to the integral equation with a symmetrical positive kernel. Therefore all its characteristic roots are positive numbers.

[^0]The excitation decrement a are expressed b_{0} : values of equation (55) accorinns to the formula
K is the solution number (53). Hence it is clear that δ_{k} will be positive if (28) is :ul:rileu.

The numbers $\lambda_{1 k} \quad$ sounder from above by the value (viz.(A.6))

$$
\begin{equation*}
\frac{1}{n} \int_{0}^{\infty}-y p(y) /\left(x^{3}-14\right) \tag{58}
\end{equation*}
$$

ard the integral in the numerator of (50) depends :earl," weakly on the specific form of the function $q(y)$. Therefore, the decrement δ given by (37) may be considered to be the upper limit for (55). If the burch is longer than the plate $\ell_{b} \gg \ell^{\prime} m_{c} \mid$, then eustion (33) may also be transformed (with accuracy up' to terms of the order $\left.\left|m_{c}\right| \ell / \ell_{b}\right)$ to an equation with a real positive kernel. Therefore, the stability condition in this case also has the form (ie).

In this section we obtain the spect,"um of excitations caused by the interaction of a bunch with the higr-frequency part of the induced fields $\left(n \gg\left(\left|m_{c}\right|+1\right) / \Delta\right)$.

Let us first examine the axial-ione tudinal excitations.
By introducing the new unknown function

$$
\operatorname{C}_{m}(x) \cdots \int_{0}^{\infty} d y y(y) x m(y) x_{m+c}(x y)
$$

we rewrite equation (41) in the form:

$$
\begin{equation*}
\operatorname{in} 6 \sin (x)=\int_{0}^{\infty} \cos ^{\prime} \cos ^{t}\left(x^{\prime}\right) g\left(x \mid x^{\prime}\right) \sin \left(x^{\prime}\right) \tag{Ala}
\end{equation*}
$$

where

$$
\begin{align*}
& g\left(x \mid x^{\prime}\right)=\int_{0}^{x} y_{j}^{\infty} q(y) \tilde{y}_{m_{c}}(x y) y_{m_{c}}\left(x^{\prime} y\right) ; \\
& \theta(x)=\mathscr{L}_{1}\left(\frac{x}{\Delta} \cdots n_{2} \cdot \frac{d \omega_{s}}{d \omega_{s}}\right)+\mathscr{o}_{L}\left(-\frac{x}{a}-m m_{2} \cdot \frac{d \omega_{2}}{d \omega_{s}}\right) \tag{59}
\end{align*}
$$

and $\mathscr{L}_{\perp}(x)$ is determined by formula (42).

In the high-frequency region ($x ;$ irn., \hat{i}), the function $\partial\left(X \mid x^{\prime}\right)$ has a sharp maximum (with a width of the order of one unit) at $X^{\prime} \simeq X$, and $g\left(X \mid x^{\prime}\right)$ decreases quickly as X moves away from X *.

It is possible to obtain the short-wavelength part of the spectrum in two limiting cases:
a) $l_{b} \ll l$ Fast oscillations of $q(y)$ may be ignored in the range $\Delta x \sim 1$ which corresponds to the substitution

$$
\dot{\phi}(x)=\bar{b}(x)=\int_{\Delta x^{\prime} \simeq 1} d x^{i} \sigma\left(x+\Delta x^{\prime}\right)
$$

b) In the opposite limiting case ($\sum_{0} \gg \hat{l}$), as can be seen from (42), the variation of ϕ, \therefore, may be ignored in the range $\Delta x^{\prime} \sim 1$:

$$
\phi^{\prime}\left(x^{\prime \prime} ; \longrightarrow \boldsymbol{p}, x\right)
$$

Therefore, in the case under investigation, we nay write approximately

$$
\begin{equation*}
g\left(x \mid x^{\prime}\right) \simeq \frac{1}{x} \delta\left(x-x^{\prime}\right) ; x \gg \operatorname{lit} 1+1 \tag{60}
\end{equation*}
$$

*For example for

$$
\begin{gathered}
q(y)=2 \exp \left(-y^{2}\right) ; \\
\text { for } \quad g\left(x \mid x^{\prime}\right) \sim-1 \cdot \exp \left(-\left(x-x^{\prime}\right)^{2} / 4\right), \quad x \gg\left|m_{c}\right|+1 ; \\
q(y)=\frac{1}{1+y^{2}}, g\left(x / x^{\prime}\right) \sim \operatorname{ex} / 2\left(-\left|x-x^{\prime}\right|\right) / x, x \gg\left|m_{c}\right|+1
\end{gathered}
$$

By substituting (50) into : An wo obtain fe spectrum of excitations in the short-wave morion

$$
A_{m}(x)= \begin{cases}\frac{\overline{b(x)}}{x}, & e_{0} \lll \tag{61}\\ \frac{\phi p(x)}{x}, & e_{b} \gg\end{cases}
$$

The decrease of the correlation of the revolution Exariericy harmonics $C_{m}(X)$ when $X \gg\left|m_{6}\right|+1$ means ir physics terns that the normal excitations due to tret interaction of the bun en with the high-frequency part ot the indus ed \because fields are a lose vo "plane waves":

$$
F_{i, m}\left(I_{1}, i_{i}\right) \sim\left(e^{i \pi i=-i \omega t}\right)_{m_{c}},\left(n \gg \frac{\left|m_{c} / v\right|}{A}\right)
$$

In this case the "distance" between the separate modes is of the order of the width $g\left(x \mid x^{\prime}\right)\left(A x^{\prime} \geq 1\right)$ which corresponds to $\Delta n \simeq 1 / \Delta \quad(X=n \Delta)$.

The calculation of the decrements is simplified ir two limiting cases:
a) $\ell_{b} \ll \ell$. The function $\overline{\phi(X ;}$ may io writ te: il tine form

$$
\begin{aligned}
& \vec{D}(x)= \begin{cases}\frac{i \Delta^{2}}{2} \cdot \frac{m_{2}}{x^{2}} \cdot \frac{d \omega_{2}}{d \omega_{5}}, & x \gg / m_{2} / j_{2} \Delta ; \Delta\left|m_{2} \cdot \frac{d \omega_{2}}{d \omega_{3}}\right| \\
-\frac{i}{2} \cdot \frac{1}{m_{2}} \cdot \frac{d \omega_{2}}{d \omega_{s}}, & x<\Delta\left|m_{z} \cdot \frac{d \omega_{2}}{d \omega_{3}}\right|\end{cases} \\
& \text { By substituting } \overline{\Phi(X)} \text { into (61), es obtain the expressions } \\
& \text { for the decrements }\left(\delta=J_{m} \omega\right)
\end{aligned}
$$

By integrating the decrement e (62) over X it is easy to obtain the corresponding sums of the decrements $\left(\left|m_{c}\right| \neq 0\right)$:
 The above formulae coincide well (at $m_{c} \neq 0$) with (22) and (22a) respectively. This coincidence is conditioned by the fact that the main contribution to the sjnchrobetatron excitation of a short bunch is made by the interaction with boundary fields which are substantially nonuniform in θ. Therefore, the spectrum of the high-frequency excitations is expected to join directly the spectrum of the low-frequency excitations.

Hence it follows that formulae ($6: 2$), extrapolated into the low-frequency region $X \simeq\left|m_{c}\right|>0$, should give (in order of magnitude) the maximum decrement (increment) of the axiallongitudinal excitations 0 = short bunch:*

$$
\delta_{\max } \simeq\left\{\begin{array}{l}
\frac{N \delta_{0} m_{z}}{2\left|m_{c}\right|^{3}} \Delta \frac{d \omega_{s}}{d \omega_{s}}, \quad\left|m_{c}\right|>\Delta\left|m_{z} \frac{d \omega_{z}}{d \omega_{s}}\right| \\
-\frac{N \delta_{0}}{m_{z} \Delta \frac{d \omega_{s}}{d \omega_{s}}} \cdot \frac{1}{2\left|m_{c}\right|},
\end{array} \quad \Delta\left|m_{3} \frac{d \omega_{s}}{d \omega_{s}}\right|>\left|m_{c}\right|\right.
$$

b) $l_{b} \gg l$. In this case, the most interesting region from the point of view of the estimate of the oscillation's maximum increment, is $\ell_{b}\left|\ell \gg x \gg m_{c}\right| \quad$. Using (59), we may write $\not \subset(X)$ in this

* For excitations with $m_{C}=0$ unis extrapolation is not valid as the determining contribution to the decrements of long-wave excitations is made by the harmonics $n \leqslant R_{0} / 6 \leqslant \frac{1}{\Delta}$.
region in the form:

$$
\Phi(x)=i\left(\frac{e}{R_{0}}\right)^{2} m_{t} \cdot \frac{a^{\prime} v_{1}}{d R_{n} R_{0}} \quad, \quad \frac{e_{s}}{e}>x>\left|m_{1}\right|
$$

In this case, the maximum increment may be estimated by formula:

$$
\delta_{m a x}=2 N \delta_{s} m_{2} \cdot \frac{e_{2}}{\theta_{0}} \cdot \frac{e}{e_{0}} \frac{d}{\sin R_{0} \mid m_{c} 1+1}
$$

For radial-longitudiral excitations the function $\phi(x)$ in equation (41a) is replaced by

$$
D(x)-E_{3} \sin ^{2} \frac{2 e_{x}}{l_{b}}
$$

In this case the decrements of high-frequency excitations may be written in the form:

$$
\delta_{m}(x)=\delta_{L}(x)-\delta_{!!}(x)
$$

where $\delta_{\perp}(X)$ is obtained from the decrement of axial-longitudinal excitations by substituting the index Z for $r, \delta_{11}(X)$ describes the effect of radial-iongitudinai coupling.

For a short bunch $\left(l_{b} \ll l\right)$ the quantity $\tilde{\delta}_{11}(x)$ may be calculated using the formula

$$
\begin{equation*}
\delta_{11}(x) \simeq \frac{\delta_{4}^{(0)}}{2 x}, \quad \frac{e_{j}}{e_{L}}>x \gg 1 m_{0} \tag{63}
\end{equation*}
$$

where

The maximum decrement in order of magnitude equals

$$
\delta_{\| i n a x}=\frac{\delta_{i i}^{(o l}}{\left.2(\mid m)_{2} / i \|\right)}
$$

If the bunch is longer the: the plate $\hat{x}_{b} \gg!m_{0} \mid \hat{i}$, then.

In this case the maximum decrement in order o: magnitude equals:

V. ON THE EFFECT OF QREXEROY SPREAD

In this paper we shall investigate only those cases where the oscillation's frequency spread i! the stationary state is determined only by the non-1inearity of transverse motion, and the nonlinearity of longitudinal motion may be ignored. For an excitation of arbitrary multipolarit $\ddot{\ddot{\prime}}$, the dispersion equation (viz. (186)) has the form
where A_{m} is the normalizing constant final to

$$
\left\langle\left(m_{2} \mid m_{z} / I_{r}+m_{r} / m_{z} / I_{z}\right) I_{z}^{\left|m_{z}\right|-1} \cdot I_{2}^{\left|m_{z}\right|-1}\right\rangle
$$

Ω_{k} is the eigenvalue of equation (lea) with the number K (which is the solution of equation (64) without spread).

Despite its apparent complexity, equation (04) may be easily reduced to a standard form. To do so let us introduce a new variable into (64)

$$
\varepsilon_{2}^{2}=\varepsilon_{s}=\sum_{i=z_{1} z} m_{i}\left[\omega_{i}\left(I_{2}, I_{A}\right)-\omega_{i}(0,0)\right] ; x=x_{0}\left(I_{z}, I_{z}\right)
$$

where the variable $X_{0}\left(I_{r}, I_{z}\right)$ may be chosen such that the Jacobian of the transformation (65) is unity:

$$
\frac{\partial(\varepsilon, x)}{\partial\left(\overline{I_{z}}, \tilde{I_{z}}\right)}=1
$$

Bquation (54) then chances to

$$
\begin{equation*}
1=\Omega_{k} \int_{-\infty}^{\infty} d \varepsilon \frac{g(\varepsilon)}{\omega-\omega_{0}-\varepsilon} \tag{36}
\end{equation*}
$$

where $\omega_{0}=M_{z} \omega_{z}(0,0)+M_{\xi} \omega_{\varepsilon}(0,0)$ end the auntity $g(\xi)$ corresponding to t..e "effective" frequency distribution density, is determined by the equali+..

$$
\begin{align*}
g(\varepsilon)=- & \frac{1}{A_{m}} \int d I_{z} d I_{z} \int_{-\infty}^{\infty} d x^{\prime} \delta\left(\varepsilon-\varepsilon_{0}\left(\bar{I}_{z}, I_{z}\right)\right) \cdot \delta\left(x^{\prime}-x_{0}\left(I_{z}, I_{z}\right)\right) \tag{67}\\
& \cdot I_{\varepsilon}^{\prime \prime * z z!} I_{z}^{\left|m_{z}\right|}\left(m_{z} \cdot \frac{\partial F_{0}}{\partial I_{z}}+m_{z} \cdot \frac{\partial F_{0}}{\partial I_{z}}\right) .
\end{align*}
$$

The function $g(\varepsilon)$, by definition, is nomalized to unity:

$$
\int_{-\infty}^{\infty} d \varepsilon g(\varepsilon)=1
$$

Equation (6б) may be investigated by standerd methods. sing Myquist's criterion, it is easy to establish that, in order that all the roots of ($6 \bar{\sigma}$) iie on the lower nelc-plene, (ω), it is sufficient to fulfil the inequalitur

$$
\begin{equation*}
1-\pi \frac{\left|\Omega_{\alpha}\right|^{2}}{J_{m} \Omega_{x}} g\left(\varepsilon_{i}\right)>0 \tag{58}
\end{equation*}
$$

where \mathcal{E}_{i} are real numbers detemaned rro . oe equazon

$$
I_{m} \Omega_{k} \int_{-0} \frac{d \varepsilon g(\varepsilon)}{\varepsilon_{i}-\varepsilon}-i R_{e} \Omega_{i} g_{g}\left(\varepsilon_{i}\right)=0
$$

Here f signifies that the interral are calulted es a principal value.

In particular, the inequality (68)

$$
\begin{equation*}
1-\pi \frac{|\Omega \pi|^{2}}{\theta_{m} a_{k}} g_{\max }>0 \tag{68a}
\end{equation*}
$$

holds certainly,
where g max. is the largest vel ϵ of g over the entire range of variation of ε. Gherefore, if the inequality(58a) is fulfilled, the coherent os cillations are damped.

Whis means that the stability of conerent notion may be Euaranteed by selecting parameter: of the external system so that the complex conerent Irequency shitt Ω_{k} ealls within the circle:

$$
\left|\Omega x-\frac{i}{2 \pi g \operatorname{mox} x}\right|<\frac{1}{2 \ln \max }
$$

\#e should point out that conditions (58) and (68a), generally speaking, are not necessury. Aerefore, i: they are violcted, it does not follow that t.e oscille Eons will be unsteble.

Jonditions for ohe stability oi conerent oscilletions when there is a spread, may also be ootained by investicating equation (68) close to the instability threshold ($\omega-\omega_{0} \rightarrow \omega_{\phi h}+i \delta, \delta \rightarrow 0$) (5). squation (66) then breaks up into to equations:

$$
\begin{gather*}
\pi g\left(\omega_{\omega_{k}}\right)=\frac{\lambda_{m} \Omega_{k}}{\left|\Omega_{k}\right|^{2}} \tag{69}\\
\rho_{\mathcal{L}}^{\infty}\left(\omega_{t h}\right)=\int_{-\infty}^{\infty} \frac{d_{\varepsilon} g(\varepsilon)}{\omega_{i h}-\varepsilon}=\frac{R e \Omega_{k}}{\left|\Omega_{k}\right|^{2}}
\end{gather*}
$$

For a given distribution function $g(E)$, the system of equation (69) defines in a parametric form the boundary of the stability region in the plane $0 \because$ the complex variabie Ω_{k}. The position of the stability region i. relation to the jow....dary curve is determined by the relationshi. / / /

$$
\begin{equation*}
\left(\frac{\eta_{m} \cdot \Omega^{\prime}}{\left|\Omega^{\prime}\right|^{2}}-\pi g\left(\omega_{i k}\right)\right) \cdot \frac{\partial \rho_{(}\left(\omega_{k A}\right)}{\partial \omega_{t h}}>0 \tag{70}
\end{equation*}
$$

In the above relationship Ω^{\prime} is a point in u plane of the complex variable Ω_{k} situated nerr the boundiry on we stavility rezion and ω_{t} corresponds to \Rightarrow poirt on the do idary curve.

For given parameters of the external sustems, equations (69) may be used to calculate the threshold current ens conerent frequency shift at the instability thresiold. or jois purvoze it is more
convenient to rewrite (ba) in the tom:

$$
\begin{align*}
& \tilde{i} \frac{g\left(\omega_{\omega}\right)}{g\left(\omega_{i k}\right)}=\frac{y_{m} \bar{\Omega}_{k}}{\operatorname{Re}_{k} \bar{\Omega}_{k}}, \tag{692}\\
& N_{t_{k}}=\frac{y_{m} \bar{\Omega}_{k}}{\left|\bar{\Omega}_{k}\right|^{2}} \cdot \frac{1}{\operatorname{H}_{g}\left(\omega_{\omega_{k}}\right)}
\end{align*}
$$

where the $=$ oI lowing notation? is intromaced $\Omega_{k}=N \bar{\Omega}_{k}$.
 density $g(\mathcal{E})$. Vet us ermine, or arable, twu-dimewsional sunchrobetatron excitations $\left(\omega=m_{z} \omega_{z}+m_{c} \omega_{c}+\Delta \omega \quad\right.$ av assize, moreover, that the non-linearity u ration in the stationary state is determined by the cubic nonlinearity of the ounce field. inca

$$
\begin{equation*}
\omega_{z}\left(I_{z}, I_{z}\right)=\omega_{2}+\frac{\partial \omega_{z}}{\partial I_{z}} I_{z}+\frac{\partial \alpha z}{\partial I_{z}} Y_{z} \tag{71}
\end{equation*}
$$

The form of the distribution function $g(\varepsilon)$ depencis substantially on the beam dimension determining the frequency spread vertical or radial).

Let us say that tine spread is "intrinsic" ia

$$
\left.\left\langle I_{z}\right\rangle\left|\frac{\partial \omega_{z}}{\partial I_{z}}\right|\right\rangle \left.\left\langle\left\langle I_{\tau}\right\rangle\right| \frac{\partial \omega_{z}}{\partial I_{\zeta}} \right\rvert\,
$$

In this case the dispersion equation may be written in the
form
where

$$
\alpha_{z z}=\frac{\partial \omega_{z}}{\partial I_{z}}, \quad t=\left(\omega_{0}-\omega_{0}\right) / \alpha_{z ?}
$$

In this case, $g(\varepsilon)$ equals:

$$
\begin{equation*}
g(\varepsilon)=-\frac{\varepsilon^{\left|m_{z}\right|}}{m_{i} \alpha_{z z} A_{m_{z}}} \theta(\varepsilon) \cdot \frac{\partial r_{0}^{\prime}}{\partial \varepsilon} \tag{72}
\end{equation*}
$$

where

$$
\theta(x)= \begin{cases}1, & x>0 \\ 0, & x<0\end{cases}
$$

In the inverse limiting case:

$$
\left\langle I_{z}\right\rangle\left|\frac{\partial \omega_{z}}{\partial I_{z}}\right| \ll\left\langle I_{c}\right\rangle \cdot\left|\frac{\partial \omega_{t}}{\partial I_{r}}\right|
$$

we shall call the spread extrinsic. In this case the function $g(\varepsilon)$ is:

$$
\begin{equation*}
g(\varepsilon)=\frac{1}{m_{i} c_{r, 2}} \theta(\varepsilon) F_{0}(\varepsilon) \tag{73}
\end{equation*}
$$

From (72) it is clear that the form of the frequency distribution is determined not only by the particle distribution in terms of the oscillation amplitudes but aiso, generally speaking, by the multipolarity number $m_{Z}\left(m_{2}\right.$ in the case of radiallongitudinal excitations). We should point out in particular that the"effective" distribution width g, \quad increases approximately like $\left(\left|m_{z}\right| 1 / 2\right)$. Moreover, $g(\varepsilon)$ has at least one maximum which, for monotonic $F_{0}(I)$ occurs approximately at $\varepsilon \simeq\left|m_{z}\right|\left\langle I_{z}\right\rangle$.

An important factor is the fact that $g(\varepsilon)$ is generally not symmetrical to its maximum. Therefore, the boundary of the stability region is given by

$$
\begin{align*}
& \frac{y_{m} \Omega_{k}}{\left|\Omega_{k}\right|^{2}}=-\frac{\theta(\varepsilon) \varepsilon^{\left|m_{z}\right|}}{\left|m_{z} \alpha_{z z}\right| A_{m_{z}}} \cdot \frac{\partial f_{0}}{\partial \varepsilon} \\
& \frac{\rho e \Omega_{k}}{\left|\Omega_{k}\right|^{2}}=\frac{G_{\mathcal{L}}(\varepsilon)}{m_{z} \alpha_{z z}} \tag{74}
\end{align*}
$$

It is not symmetrical to the axis $\mathrm{Im}_{\mathrm{r}} \mathrm{Si}_{k}$ (viz. Fig. 2, 3). In particular, it coincides with the axis $R e \Omega \times$ for

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{K}} \Omega_{k} \leqslant \operatorname{Re}_{\mathrm{R}} \Omega_{\varepsilon_{p}}=\frac{m_{z} \alpha_{z z}}{\rho_{\mathcal{L}}(0)} \tag{75}
\end{equation*}
$$

Consequently, if the value of the conerent frequency shift introduced by the system is such that inequelity (75) is fulfilled, it is impossible to stabilize coherent oscillations by means of a spread.

From the equations (74) it is clear that when the sign of $\chi_{z s}$ is reversed, the stability region is reflected around the axis $\beth_{m} \Omega_{K}$. Jue to tine asymmetry witi respect to the Im Ω_{k} axis, the stebility recion does not transiorm into itself. This means thet for extermal systems (in the case of "intrinsic" spread) with

$$
\left|\operatorname{Re} \Omega_{k}\right|>\mid \operatorname{Re} \Omega_{k \operatorname{Lim} .}
$$

the coherent oscillations may jecome unstable aiter cinenging the sign of $\alpha_{z z}$

In the case of extrinsic snread, the integral $P(\varepsilon)$ diverges logarithmically when $\varepsilon \rightarrow 0$. Gowever, this only af゙さects the value of the coherent frequency shift iimit $\operatorname{Re} \Omega_{K} \lim$. , which must not now be calculeted by means of (\%). ualitatively, the results remain as before.

The value of the throsolc ability current may be easily calculated zor monotonic $F_{0}(I) \quad n$ the case where $\left|J_{m} \Omega_{k}\right| \gg\left|R_{e} \Omega_{k}\right|$. Here, $g\left(\omega_{t h}\right)>\mathcal{P}\left(\omega_{t h}\right)$, which means that the roots of the first equation (69a) must be close to $\bar{\omega}_{m}$ (corresponding to the maximum of $g(\omega)$), that is $\left|\omega_{t h}-\bar{\omega}_{m}\right| \ll\left(\overline{\Delta \omega_{m}^{2}}\right)^{1 / 2}$. The value of the thressold current may consequently be estimated by meens of ":e formulin:

$$
\begin{align*}
& N_{t h} \simeq \frac{1}{\pi I_{m} \bar{\Omega}_{x} g_{\max }} \simeq \frac{\left(\overline{\Delta \omega_{m}^{2}}\right)^{1 / 2}}{I_{m} \bar{\Omega}_{k}} . \tag{75}\\
& \text { where the quantity } \overline{\Delta \omega_{m}^{2}}=m_{z}^{2} \int_{-\infty}^{\infty} d a(\omega-\bar{\omega})^{2} g(\omega) \\
& \text { determines the frequency spread of betatron osrillations. } \\
& \text { By substitutine in pormula (75), we excitation increments } \\
& \text { obtained in the previous sections, it is possible ontain formulae } \\
& \text { for the jireshold current of a seam interscting wion matched plates. } \\
& \text { Glea-ly, the expression for the maxinum increment, wich may be } \\
& \text { estimated for an arbitrary smooth distrio ion (vie. section III) } \\
& \text { must be inserted into (76). }
\end{align*}
$$

"or explofle, if the ancinel? chromatism is not too great:

$$
\frac{E_{0}}{R_{0}}\left|\frac{c i \omega_{B}}{\sigma_{1} m_{s}}\right| \ll 1
$$

then, for axial loneitudiry evcitstions ! $r_{1}: \neq 0 ; N_{t h}$ may be written in the for
a) $l_{0} \ll\left|m m_{c}\right| l$

$$
\begin{equation*}
N_{t h}=\frac{\gamma^{1}}{\delta_{0}^{\prime} m_{t}} \frac{R_{0}\left(\Delta \omega_{m}^{2}\right)^{1 / 2}}{l_{b}\left(-\frac{d \omega_{i}}{d \omega_{s}}\right)} l_{m}^{(s)}, \delta_{0}^{i}=\gamma \delta_{0} \tag{77}
\end{equation*}
$$

 (for a δ-type distriv..ior $L_{m}^{(s)}=4 m_{c}^{2}-1$.
b) $Q_{i} \rightarrow>1 m_{c} \mid Q$

$$
\begin{equation*}
N_{L_{1}}=\frac{\pi}{\delta_{0}^{\prime} m_{z}} \frac{\pi R_{0} l_{b}\left(\overline{\Delta \sin _{m}^{2}}\right)^{1 / 2}}{e^{2}\left(-2 L_{m}^{(C)} \frac{d^{\prime} l_{n} v_{t}}{d l_{n} R_{0}}-1\right)} \tag{78}
\end{equation*}
$$

Tor p $\delta \quad-$ type distribution the $=\operatorname{cotor} L_{m}^{(\ell)}$ equals $\ln \left(\ell_{b} \mid \ell\left(\left|m_{c}\right|+1\right)\right)$; for a smooth distribution $i \div: 3$ of 4 order $1 /\left(\left|m_{c}\right|+1\right)$. e shoul: point out that the above roma is is good qualitative agreement with the experimental results octeinin $\cdots / 3 /$, $\because / 9 /$ and ? F : $/ 10 /$

Is the machine's cantos: ir sent

$$
\frac{e_{s}}{N_{0}}\left|\frac{d \omega_{2}}{d \omega_{s}}\right| \gg 1
$$

then, in order to estimate the tireswoid current , it is necessary, use formula (22a). In this: cense $N_{\text {th }}$ ines the som:

$$
\begin{equation*}
N_{i n}=\frac{\Gamma_{i n}^{n}}{\delta_{0}^{\prime}} \frac{n_{i} l_{0}}{R_{0}}\left(\frac{d \omega_{2}}{d \omega_{3}}\right)\left(\overline{\Delta \omega_{m}^{2}}\right)^{1 / 2} L_{a n}^{(3)}, \tag{79}
\end{equation*}
$$

(3)
 function of the synchrotron oscillation amplitudes in the stationary state.

From formulae (77)-(79) it is cher the, deperding on the relationship of the characteristic parameters of the robles, the functional dependences of the threshold current (in particular on beam length a \bar{c} on the machine' chromatism) nay vary considerably.

If the value of the coherent frequency sind is rat:
$\left|\operatorname{Re} \Omega_{k}\right| \gg\left|J_{m} \Omega_{k}\right|$, then $\mathcal{P}\left(\omega_{t h}\right) \gg g\left(\omega_{t h}\right) \quad$, wis. is possible only for $\left|\omega_{t h}-\bar{\omega}_{m}\right| \gg\left(\overline{\Delta \omega_{m}^{2}}\right)^{1 / 2}$.

In this case $\mathcal{P}\left(\omega_{t h}\right) \simeq 1 / \omega_{\text {th }}$ and, sccordir to (60), $\omega_{t h} \simeq \operatorname{Re} \Omega_{k} \quad$. In order to determine $N_{t h}$, we theretiore have the transcendence equation

$$
\begin{equation*}
\operatorname{yin} \bar{\Omega}_{k}=\pi \mu_{2 k}\left(A_{0} \bar{\Omega}_{k}\right)^{2} g\left(N_{2} \cdot R_{e} \overline{\Omega_{k}}\right) \tag{80}
\end{equation*}
$$

Annex:

Here we shall show that all the eigenvalues of the integral
equation

$$
\begin{aligned}
& \lambda f(x)=\int_{0}^{\infty} d x^{\prime} x\left(x / x^{\prime}\right) g\left(x^{\prime}\right) f\left(x^{\prime}\right) \\
& \text { on, where } g(x) \text { aves not change si ci i } 0 \leq x<\infty, \text { end }
\end{aligned}
$$

have the same sign, where $q(x)$ does not change sion i. $0 \leq x<\infty$, and the kernel takes the \because orr

$$
\begin{equation*}
J\left(x \mid x^{\prime}\right)=\int_{0}^{\infty} d t c^{2}(t) E(x t) G\left(x^{\prime} c\right) \tag{A.2}
\end{equation*}
$$

where $c(t)$ find $b(x)$ are rest motions.
No be specific, let us acme ant $q(x)>0\left(\int_{0}^{\infty} d \times q=1\right)$.
after multiplying the rand w, $q^{1 / 2}(x)$,
we obtain an equation for

$$
\begin{gather*}
p(x)=q^{\prime \prime} f(x) \\
\lambda(x)=\int_{0}^{\infty} d^{\prime} x^{\prime}\left(x / x^{\prime}\right) \varphi\left(x^{\prime}\right)
\end{gather*}
$$

The s, cotrum for this clesry coinciaes with the spectrum of (A.I) and the kernel $\mathcal{K}_{1}\left(X \mid X^{\prime}\right)$, linked $\mathcal{K}\left(x \mid x^{\prime}\right) D_{y}$ tae relationship

$$
\mathscr{K}_{1}\left(x \mid x^{\prime}\right)=\sqrt{q(x) q\left(x^{\prime}\right)} \mathscr{K}\left(x \mid x^{\prime}\right),
$$

is real and symmetrics.

$$
\text { Nomaily (viz. for example , the square of } \mathcal{K}_{1} \text { is integrable. }
$$

This means that the integral

$$
\left\|\mathscr{K}_{1}\right\|^{2}=\int_{0}^{\infty} d x \int_{0}^{\infty} d x^{\prime} \mathscr{K}_{1}^{2}\left(x \mid x^{\prime}\right)
$$

has an upper limit. This requirement is certainly
fulfilled if the sum of the cnaracteristic roots of (A.... is finite. In - act, takinc into eccount (., 2) ald si f the unjakowshifichware inequality, we obtain

$$
\begin{aligned}
& \left\|W_{1}\right\|^{2}=\int_{0}^{\infty} d t \int_{0}^{\infty} d t^{\prime} c^{2}(t) c^{2}\left(t^{\prime}\right)\left(\int_{0}^{\infty} d x q(x) B(x t) B\left(x t^{\prime}\right)\right)^{2} \leqslant \\
& \leqslant\left(\int_{0}^{\infty} d t c^{2}(t) \int_{0}^{\infty} d x q(x) G^{2}\left(x^{\prime} t\right)\right)^{2}=\left(\int_{0}^{\infty} d x q(x) \mathbb{K}(x \mid x)\right)^{2}
\end{aligned}
$$

- ne last quantity in (.4) evactly equals the square of the sum of the eizenvalues in (A.I). Hence

$$
\left\|M_{i}\right\|^{2} \leq \sigma^{2}=\left(\int_{0}^{\infty} d x q(x) K(x \mid x)\right)^{2}
$$

Whe characteristic numbers o equation (. 3) are reel and positive. That is due to the fact thet viz. $\bar{y}) \mathbb{K}_{1}\left(x / x^{\prime}\right) \quad$ a positive kernel, that is, there exists an intecral

$$
\eta[\rho]=\int_{0}^{\infty} d x \int_{0}^{\infty} d x^{\prime} \mathcal{K}_{1}\left(x \mid x^{\prime}\right) p(x) p\left(x^{\prime}\right)
$$

where $\rho(X)_{\text {is of such a type that it can be expanded in terms of the }}$ eigenfunctions of the integral equation (A.3).

In fact:

$$
J[P]=\int_{0}^{0} d e c^{2}(k)\left(\int_{0}^{\infty} d q^{1 / n}(\pi(a t), N(a))^{2}>0\right.
$$

In order to estimate the increment of the oscillations, the following formula may prove useful

$$
\begin{equation*}
\lambda_{\max } \geqslant \mathcal{J}[\rho], \tag{.5}
\end{equation*}
$$

when

$$
\int_{0}^{\infty} d x \beta^{2}(x)=1
$$

Since all λ are positive, then dearly $\lambda_{\text {max. }}$ is w in the finite

$$
\begin{equation*}
y[p] \leqslant \lambda_{\max } \leqslant \sigma \tag{6.5}
\end{equation*}
$$

The second inequality: in $\because \because: \because \%$, on the other nad, be obtained by the direct application of the w, farowskifocnemz inequclitut to the rightmand part of ($\therefore .5$).

If $q(x)<0$ then $b y$ substituting λ ar $-\lambda$ and $q(x)$ for $|q(x)|^{\text {, it is easy to reduce the equation to the form oi }}$ (H. 3), the spectrum of which is positive. Therefore, tor $q(x)<0$, $0 \leqslant x<\infty \quad$, all the eigenvalues or $(\ldots 1)$ are negative.

2. \because. Dikenskij, N. aniner et al. " \because. 2?, 188 (1967)
3. F. Amman. Liv-69/Lに

5. Ya. S. Verbenev, w. J.

 Gunt 353 (1909 .
 30 5 3 30 (1909;
8. I. Incomi. Integralree uraveniye Inostrenmaya Iiteratura, (1960).
9. Development and Seam tudies in U. VI termational vonference on High Bnergy Acceleret. . reven $10 ;$.
10. A Hofinan, I. uelhaunt. Ill ntemationel jonterence on Hig Sergy Accelerators. "eneva 197i.

rig.l iffective irequency distrioutions for a berm with an exponentisl distribution in temns of tre squares of betatru. oscillations amplituces in the stetionary state (viz. (72) (73)). Curre 1 corresponds to the "extrinsic"spread. Jurves (2) (3), (4) (5) and 6; correspond to the intrinsic spreed and tic mu_tipolarities $M_{z}=1,2,3,4,5$ respectively.

Fig. 2 Boundary of the stenility re Siore for distrioution (1) (aig.1.. The solid curve corresponds to $\left.x_{z ?}\right\rangle$?, the hatched curve to $\alpha_{z z}<0$.

rig. 3 houndary of the staility resion for efective distributions $(2),(3),(4),(5)$ and $(5),\left(\underset{y}{ }(1) x_{z}>0\right.$.

$$
\text { xis. } 4 \text { ye seme }- \text { on } \quad \text { y } \quad \therefore
$$

[^0]: * viz. Annex

