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ABSTRACT

The report investigates the stability of a bunched beam
interacting with a matched transmission line. The functional depen-
dences of the decrements (increments) of betatron and synchro-
betatron oscillations of arbitrary multipolarity on the typical
parameters of the problem (length of the plate, length of the bunch,

chromatism) are detemined.



An experimental investigation of coherent beam stability in
storage ringshas shown that there are coherent effects, whose decrements
and increments do not depend on the selection of the operating point
in terms of the particles' oscillation frequencies. The latter
indicates that these effects are conditioned by the interaction of the
beam with low-Q systems where fields excited by the beam dampout ir a
shorter time than the particle revolution period (i.e. "single-turn"

effects).

The first such effect discovered on the VEPP-2 device, was the
so-called 'fast damping' of vertical beam oscillations/l/. It was
characterized by the fact that oscillation decrements were determined
by the total charge of the bunch (Ne) and did not depend on the bunch
length ?b

N (1.1)

where E is the particle energy. This phenomenon was explained by the
interaction of a coherently oscillating beam with the principal wave

field (7EN) in matched transmission lines /2/.

Slightly later, instabilities in transverse oscillations,
which may also be related to the single-turn effects, were discovered
on the ACO and ADONE devices. The increments of these instabilities
are inversely proportional to the bunch length and depend on the
machine's chromatism (da'l\) /denR) and on the number of particles
in a given bunch. The empirical dependence of the threshold current

on these parameters has the form/s/:

where VY is the dimensionless betatron frequency, AV the frequency

spread and 2R the perimeter of the orbit.

An explanation of the instability mechanism related to the
dependence v(R) was given by C. Pellegrini and M. Sands. It was called
the head-tail
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effect/4/; however, the oscillation decrements obtained by him in

specific cases vanish as the bunch length or the machine's chromatism

(1.2)

approaches zero. In particular, in the case of matched lines, there is
no term in the decrement that corresponds to "fast damping" (which does
not ' vanish as ﬂlh—)O). This result is due to the fact that the inter-
action of the beam with a low-Q element was not taken fully into

account.

In earlier papers (/5/, /6/y /1/) a theoretical study was
made of the interaction of the bunch with matched lines and a low-Q
resonator, It was shown that, by introducing matched lines, it is
possible to ensure the damping of the basic type (one-dimensional
betatron or synchrotron) of coherent beam oscillations whilst the
interaction with the low-Q resonator may lead to instability.
Expressions for the decrements of betatron oscillations were obtained

in the limit of a short buneh length and therefore did not contain
terms of type (1.2).

This report studies the stability of a bunch of arbitrary
length (but not shorter than the chamber's cross—section), interacting

with a matched line.

The first part gives a general integral equation defining the
spectrum of normal collective beam excitations near a certain stationary
state in the presence of an interaction with an exterior system.

Using the kinetic equation in canonical variables (previously proposed
in /5/% a wide range of problems relating to collective beam motion
may be examined by one and the same method. This method is particularly
efficient when the collective interaction affects only slightly the
motion of the particles. The non-stationary part of the distribution

of particles in phase space, describing the normal collective

excitation, takes the form
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where I ,kP are the actlon—phase variables of the stationary state

fu

(in which, by definition, the distribution is uniform over the phases);
Wy are the partial frequencies of the unperturbed partiele motion,
and My integers defining the excitation's multipolarity. In parti-

cular, the dipole excitation corresponds to the case ."fﬁf.( i,

In the second part we investigate the decrement expressions
for the 8‘-type funection distribution of
synchrotron oscillation amplitudes in the stationary state. It is
shown that the excitation decrement of arbitrary multipolarity may,
generally speaking, be represented by the sum of two terms, one of

which corresponds to fast damping /5/ and the other depends on the

machine's chromatism (d&w / d&‘lR )

The first term is related to the excitation of the principal(TEM)
wave by the transverse betatron motion and is therefore always
positive. The second is linked to the excitation of the principal
wave by the longitudinal mction at the ends of the plates.

The betatfon phase shift along the bunch, necessary for
instability, is produced by the energy dependence of the betatron
frequency. Depending on the ratio of the beam and plate length and
also on the type of excitation, the decrement's value is determined

either by the first or the second term.

Thus, in the case of vertical betatron excitations
( &lfﬂ"GAgFACUJ, the functional dependence of the decrement on

the parameters pf the machine and bunch has the form
ool ’ )/ / \)" '-"/l!‘lf/‘ \\
) ll; !{’(-ual '}‘ s ;h‘ [ U(wl < O !

q)rj .fij«:?“' long plate, ultra-

relativistic case ('Z)”; E/mocz, m, is the particle's mass).



(1.3)
where 2 is the plate's length.
It can be seen from (1.3) that as lez / dw,
approaches zero, the decrement is determined by the first term.
Instability may occur when the following inequality is fulfilled
¢l ’Z’;’ /v ’
aéls §&
.8 - £
b) €t,>f” 2}(& s> & "short plate"
~ N £ P i+ o O
L I el B il g - - ~,:.:;.‘ oy -‘\m.,..
O Te ww S A (1.4)

It is clear that in the presence of a non-vanishing chromatism,

the decrement's sign may be determined by the second term,

The paper also investigates two-dimensional synchro«betatron
oscillations(w:mkwk +Me e+, k=%,28 ). This type of osecillation
is characterized by the fact that the beam performs coherent
oscillations both in the transverse and in the longitudinal directions
with the multipolarities My and Mg respectively. In this case,
if the betatron oscillations are monitored with a pick-up electrode
of corresponding multipolarity, the frequency of the signal obtained
will be modulated by the frequency m, We¢ .
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If the plate is longer than the bunch (25<E(lmc| + 1 ) then

the decrement of synchrobetatron excitation is proportional to the

quantity
g ,’\,/ r/? 0o a 1
B I i my-as
VT RVs deos GmfPed (1.5)

and the contribution of "fast damping" is negligible.

If the plate is short, then the expression for the decrement

practically coincides with (1.4).

For strong-focusing machines it may be interesting to study

e oY X, .
a case where the chromatism is large ( &ﬁ‘ﬁ95$J>¢Z/). Under this

A ezl
condition the decrement is proportional with logarithmic accuracy
to the quantity ‘
. AR s /G, s
Sy o L L L / Mg
U (’:” 9 Ol T \/2,({!7?{'3‘?’} of e s
S ’ "9 L‘/{do (1.6)

and the contribution of "fast damping'" may be ignored.

When examining the radial and longitudinal excitations, it
is  essential to take into account the accelerator's inherent coupling
of these degrees of freedom. Without allowing
for this coupling the expressions for the decrements of radial
betatron and synchrotron excitations are analogous to (1.3), (1.6),
with a substitution of indexes 2 —» 2, provided the decrements of

synchrotron excitations are small.

The coupling of radial and longitudinal motions, due to the
dependence of coherent energy losses on the radial position of
particles when a line is excited (by the beam), leads to a redistri-
bution of the decrements, as a result of which, generally speaking,

the radial betatron or synchrotron excitations may become unstable.

This mechanism'may be used to damp the beam's synchrotron

oscillations. If the decrements are redistributed by means of
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matched lines, then for all excitations with multipolarity

(Ml Moy, = eb IQ_L , where l‘L is the chamber's cross-section,
the damping decrements-do not depend on Me¢. (In this case, the
oscillations of the separate bunches are damped independently).

The maximum value of a decrement is limited by the stability

condition of the radial betatron and synchro-betatron oscillations.

In the third and fourth parts of the paper, qualitative
methods are used to investigate the stability of a beam having a

smooth equilibrium distribution of synchrotron oscillation amplitudes,

For limiting cases (short or long plate) the integral
equation investigated is converted into an integral equation with
a symmetrical positive kernel. This property enables the stability
of coherent excitations to be examined in & general form of arbitrary
smooth distributions of synchrotron amplitude oscillation in a
stationary state. In the last part of the paper we investigate
the solution of the dispersion equation taking into account the

frequency spread of betatron oscillations.

The results of this paper show that the use of matched
plates may be particularly effective for damping the basic types of
oscillations (single-dimensional betatron and synchrotron).
Simultaneous stability of the radial and axial synechro-betatron

oscillations is already guaranteed at low levels of machine

chromatism;
1. METHOD

The state of a beam interacting with an external system may

be described by the equations:

S’? +{ HFf=o (1)
I  =?,4., . ";’.‘~‘—-—~ N &,W .
>y 1. wf,l. - “.f_" 2 3- . _L Sl 5
A ?812 “-.—c‘ﬁf’"j/)zj/[ C 4 (2)
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Here A and 'f are the vector and scalar potentials of the

—ly
fields induced by the beam which satisfy the boundary conditions At=o,

'f,O at the electrodes; {; ] are the Poisson bracketvs:

PN B R
SRR R B
I L S i, (1 V7 ) "
,O = (Ag - ,% /is the canonical, and @7

is the klnetlc momentum, Acp is the potential of the focusing
fields; H is the Hamiltonian describing the motion of an

individual particle in the focusing and beam-induced fields;

— ——— e B ;AR s T ey
e "y "

S b 7 BN ) N o
AL = C}/(" .. é."/x ] .rfl i) /:.'v e (3)
My, € are the mags and charge of a particle, and ¢ is the speed of
light; F = F(§ 2, ’t) is the particle distribution function

normalized to the total number of particles in the bunch N:

5 o 2 d?) /"’? o gd/r /‘V foed ﬁ/

In this paper we shall examine the stability of stationary
beam states with respect to small coherent excitations. In the
absence of coherent oscillations, the fields acting on the particle
are periodically dependent on time (where the fregquency equals the
rotation frequenéy 0.)5 Jo In this case the particles perform
oscillations around a particular equilibrium trajectory. It is
convenient to describe these osc:.llatlc_)_gs in action-phase variables
(I,¥), which are related to .P and % by a canonical trans-
formation. In the stationary state I and LPL are integrals of

motion, and the Hamiltonian in these variables depends only on

I . ';?St_"' WO{J)

,‘ i ad \ -y .
T"(m z ) = const,

A ‘f‘
.....

s oW S R
\"t .": C&} ((l') — T e .__SL LI &~ ‘!) } ‘3
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Therefore, the distribution function in the stationary state
which satisfies the system of equations (1) and (2) will depend only

on the I action variables,

In the excited state

F= £+
(Ap)= (4 w), +

¢

5
.

and

To investigate the stability of small oscillations the system

of equations (1) and (2) may be llnearlzed in terms of the

deviations from the stationary state (F A ‘f’ ). In the linear

approximation
} "{S 'i-"\f = 'L: - (u’/i‘) :1:
~J
In the variables (I, ‘f’ the linearized equation for F takes
the form:
~ f? '7 -
F’ or 8V By _
_,__. 0r . 05t =) (4)

“g v dy ol

and Y satisfy the equations (2), where
_~g

F

W

and the potentials A
in the right hand part Fis replaced by

The normal solution of system (4), (2) has the form

S

where : o .,\ o - ¥
XeolT, 0, 0:025) = XeolT, 10427, 8) = Xl T, 8
~ ~

FLA ).

the spectrum of

(nere symbol X denotes any of the quantities

In the absence of interaction { N=20),
pormal beam oscillations (F-~v exp.(= Ll +imy wE)s

mk are integers).
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If the interaction of the beam with induced fields is weak,
i.e. the particle motion is only slightly distorted during one oscillation
period (-\.QJT/wK), then the spectrum and form of the excitations
must be close to the unperturbed values. This means that the main
contribution to the normal excitation FW close to Mkwk(w=mkwK+Aw:
lawl« minfw,})

is given by the harmonic (5)
Fu,m ~ exp. (imy %)

and the effect of the others may be neglected.

Thus, in order to determine the spectirum of excitations due

to a first order interaction, the approximated equations may be used:

Qe 7 +) .
([() 177 L0, ),/';," ﬂ-"'/‘/i d]‘: E/’.‘d},m //) ’ (6)
~ et~ ol — 9 5
N 5‘ ” ( "k +i ¥
-7 -
LA g2 op ""‘“f"’/” wm® ¢ at
£ ~
~ s 3 s {,u‘i U) =i =
X :_4;;@3& Fo,m€ 7T ; divA =0 -

where 2/

The relative error occuring in the determination of the
shift Aw =w —mkwk will be of the order (Aw|/l?ws "’Pkwkl :

We shall be interested in effects caused by low-frequency
interactions of the beam excitations with the principal-wave field of
an ideally matched double-connected* wave guide. The remaining part of
the fields in the system where the beam is at rest, is of a quasi-static

nature, and therefore will not be taken into account in what follows.

*) i.e. the boundary of its transverse cross-section is a double-
connected contour.
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The potential of the "principal (TEM) wave" in an infinite

doubly-connected wave guide has the form:

—

AsleL 5 Y
,4 c,h)“f’«-—g-(; )§ /% _;;(l‘.)e J (8)

i

-~ O
> ’
where Ao ('21) is proportional to the electriec field set up by the

potential difference Ua between the electrodes;

A =(e2) 4 . E@)=0

Zo is the wave impedance and ¢ is the speed of light.

Under real conditions the beam interacts with a wave guide
segment, the ends of which are terminated with the characteristic
resistance 20 « For low frequency oscillations (0.)[_" /C {{ 1 ) the
waye gulde s potential may be represented by expression (8) where

A ('7,) is the real electrostatic field exponentially
decreasing on a length of the order of the transverse dimensions of the
chamber ( «e_L ),as one moves along the wave~guide chamber, away from
the terminating sections, It is significant that in the boundary domains
the electric field of the'"principal wave" has a longitudinal component;

therefore it may be excited by the longitudinal motion of the particles.,

The value Qx(f) from (8) satisfies the equation

s <k € im, gl,{,ﬂii?
b + K Qe [ BAE) e L, e TR (9)

)

the solution of which may be written in the form

f)= 5 G penpict-insd), (10)

=0
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and

YARY
Sd/' (UAOe‘ké)m,rL 'F;»”"
% _—(‘0 + ”‘%)2

Substituting (10) into (8) we obtain from (6) the integral equation

Gn=¢ (11)

for Fw, m:

_ = %y 0t 5 (i (FACE )
(@-m ;) fc:;,m € #: 0’11“256 2= (&)4 e ,) (12)

'fO//_’(UAoe(A')m,/z w,m

For further calculations we shall require i:grmu&’ae for
the transition from the co-ordinates and momenta (% ,3’ ) of the
particle to the action-phase variables (I ,Y% ). The effect of
stationary induced fields on particle motion may be ignored when
the operating point is far from the machine's resonances. Then the

transition formulae have the usual form:

,Z:': .},"" I\C , :?C-_—_:/? -‘(l[/(@)ﬁﬂ > Aﬂ ;_4/0-‘/(3 ‘s

4

(2%,8)= == /1 [f,z(é’/ AP, +<5<«--—~/) sxcf (13)
I ﬂmx

=~ o d& ]

/Q:_r‘ 7/§1 13.) "“p”::/l’{(‘}(% / (9: (95,"":';.0 7‘*2‘; 5 é?) “:iz )

,e,(w;'igt— ALY, fom st s Him aa), e

S/ﬁj.&z/ C]/-c)»a O//):s) ; P/f{z/ /‘)Ig '?a

dew, /s C//a ap % rax ¥ /'3

Here the subscript S denotes the values relating to the equilibrium
particle; 27 Ro is the machine's perimeter; W (F) is the revolution
frequency of the particles; Mc -(d.wo {dP) -1 is the mass of synchro-
tron motlon,f:;_ 2 are the Floquet functions fulfilling the normalization
conditions: : -
\)3,3-'-'-((02'3,(09)5 is the number of betatron oscillations per turn;
Hz,z‘ ‘Mmax. is the greatest value of the modulus of the Floquet

function over one machine period; ;P(e> is the 1inhomogeneous
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periodic solution of the equatlon

- Ao
5/ v ew (1-n08) Ve) = 3,
where ‘Y\.(e) is the guide field 1index  and R(e)

is the orbit's radius of curvature,
The phase modulation of the transverse oscillation is related to the
energy dependence of the frequencies )z and U)vz 3

HAE )= W (E)Y(E) ; k=22

The calculation of the harmonics entering (12) may be simplified

by using the field potentiality (field derived from a potential)E(’L)

&F) = - =, VU(E)
By definition of the Fourier harmonic, we have:

(,,» ck/\ G/U Z(é) kRO ()~ ‘”’kﬂ(é)”"?*)) (14)

vA4,¢ /m n dt

where the line denotes the time averaging along the particle
trajectory. By performing the time integration by parts in (14), we can

rewrite this expression in the form

(UAo P‘ky) 7,71 = =t Ca).s (”?"k =R ;k). V”;ﬂ‘z (Z), (15)

K 2 d& ko @i 8, = iim
y Sc/ ‘r\’; se< { Ry U’( (Q/ 9) (15a)
wm,n &9/7/ (/,
._// e
For low-frequency field excitations (k L &L 4 ) the

azimuthal dependence U may be approximated by the expression

UF) | |0l E/RR,
7, .16l > &2k,

= (16)
U(?:,e)-_{
where 2 is the plate length and it is assumed that € is measured

from the middle of the wave guide.
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The harmonic Vr-n,n (I) may then be calculated by means of
a Taylor expansion of (15a) in terms of power of the amplitudes of
the transverse oscillations (I_L ). The resulting expression is
extremely cumbersome and therefore we shall give it only later for

particular values of M , where necessary.

In formula (15) the term proportional to (R,OK - n ),
corresponds to the interaction of a beam with the edge fields
and the term proportional to mk \)k describes the interaction over

the plate length.

We note that when the beam interacts with a system "without
a memory", the sum over N in (12) depends weakly on the
accurate value of W and therefore for a first order accuracylAwl/wi
the frequency W in the right hand part of (12) may be replaced by

M Wi . When calculating sums over N we shall use the summation

formula
oo ol g
co 2//(2/1
o~y K/
3 =2 Jdudm)e (17)
s -oo g==eo L,

By directly substituting (17) into (12), it can be seen
that all the terms of the sum with ¢ #Ovanish i.e. the integrands in
the integrals over B have no singularities in the plane of
the complex variable M . In physical terms this corresponds to &
total damping of the induced fields during the period corresponding

to one revolution of the beam.

Taking into account the above, we rewrite the integral

equation for Fw,m in the form

X

4, o/\ ”l ¢ Vss
Z yﬂ,éfd’ [ck(’j =Y Vﬂ;»‘l Olf%z” /Zu, (18)
K(?_[" 2k (“r @), +n(,a+c€)z

‘W—t‘ﬂ

AWl = C 7

where AWm = W-M{wW{ ;€ —=>+0 Gefines the integration contour.

K
The function Yy, n may be represented in the form

Imz/ lmgl lmttflf"é”"")

(0?, az,p)=2 grmnl#) + O(

lmz/’ lm‘,'
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where
K Q/HQ/4PW31\Z;ZM
S FIC PYC P
depends only on the amplitude of the synchrotron mcillations?ﬁ
a; is the maximum beam transverse dimension.

In this paper we shall examine only those cases where only
the betatron oscillations are non-linear in the stationary state
and the non-linearity of the synchrotron oscillations may be

ignored.

Then, by means of the substitution

[ P Y |
zx!ﬁg c Ul

e S (9
’q;nr(a?> 51%0 ‘:g:'”k“&f“) {ﬁz(l)

leaving only the lowest powers of the amplitude of transverse oscillations

in (18),we obtain the equation foth<q9;

T 7 r’”i.*“.’??( 2/) (/7/*".1 VJ}

Qm /é""l (I'/‘ = »,.)(Sﬂ 5 2 ,. /—3; b+ -s”(F)

D

'f/ sowiifrﬂ)ﬂ’m/%”’)- it

Here we introduced the following notation:

, N
2 al¥a

Sl T s ﬁz, —
£2m /JL;,,JL CITE w- ()

; ‘r /lu‘ / 2/1"’75’[\ .
AN Ve . . 3
,Ano = ‘ﬁ%x d[*LCQ Qz /

(18b)

o~ Pl ol ¥ riie -
2 ‘AT ? - & — ¢
84 yc
&(p) =
2 PR ‘
—-i/e/si/f_/}/, AT, )//' ;’)1/(3/;’0
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/8 =v/C, the brackets { ) denote the mean of F;(I..L) (we
assume here that Fst(I-‘- ,Ic) can be factorized);

Foll, L) A (L )

With no frequency srread {(the oscillations in the stationary

“»\

state are linear) the spectrum of normal collective excitations

coincides with the ~~ectrum of eigenvalues of equation (18a):
Q) B GO 7 W,

If the oscillations in the stationary state are non-linear, the

frequencies of normal oscillations () may be found from the

dispersion equation (18b), having found first the eigenvalues of

equation (18a).

Generally speaking, the solution of the integral equation (18a)
with some smooth distributionsf("P)requires the application of
numerical methods. We shall investigate below a series of cases where
the qualitative dependence of the spectrum of normal oscillations on
the characteristic parameters of the problem (length of plate,

length of bunch,dco_,_/dws etc.) can be obtained analytically.

II. MODEL SCLUTIONS

For simplicity‘s sake, we shall examine only those excitations
for which the collective betatron oscillations in the beam are one-

dimensional, i.e. M, .Mz = o , lmil +|mzl >0 .

1. Axial and axial-longitudinal excitations

First let My = 0 (axial-longitudinal excitations). The

formula for A® is easily obtained for a model distribution
¢ (V,/, =.'2 2
AP (77 ar) (19)

where A is llnked with the beam's "length" ’eb 2R . A.
In this case ﬁm " (‘f) is equal to , o
o - (z
7 7 Tl r/év-,:/ (')_?/")_/E!!LLMU (20)
9}4 :z(%)-—- -—.‘}/Z ’”C(V Ny N -



2,
"’/(:-7'?9 5‘1 . < . }\/,-’
5 £ —‘/’MT} t(l‘. M N
p Sm’ﬁ r /s (JL ’ (20a)
D4 o b ',';1 { -
W;].‘ * 7.
vz
un £
R,

where the notation F (6/_(5(9)/1 Fgl max. 1s introduced.
By substltutlng (19) and (20) into (18a), in the ultrare~

2
lativistic case ('b' Eb » ? ) Y= E ]m o ), we obtain the
decrements (3- ..jmw) of the axial-longitudinal excitations;

£33

‘-'ll,“‘/ R {
| V,rgdﬂ (é/ﬁ+,>«,l.»;%..~*f)/,;?‘) - f/,s vl ) (21)

(/;)1“/1 ' A /’LI

-—iid

Here Jm(X)is the Bessel function of order M ;

PN ;""’751 7 gﬂ"fl‘,‘,/U ]2
(4]

‘(h;r‘/‘/:. j N 1-—-w._. ST i

i;‘ . Zoc l{l‘}/‘ﬂ.\z
; /‘!f é,~/~/ 532,,/1’?:;_,/ L.

(«0 ~ P M .':J/'
PN 4
£ 7

No= € __ is the classical radius of a particle.
Formula (21) simplifies in two limiting cases:

a) ,f;_.,« (|mc| +'1)2 short bunch. After integration over M, we

obtain

"/ (] "JM} -
= NS my "[”’: G 22 [?f,)"",'“ X1 'l”)
123 o iR > 43 f-'f: d,ﬂ@ 3 ‘4//,;.‘,‘.__1 , (22)

f %

The factors CP1 s CP‘Z and CPS are equal to

G _olinl-2
“ s - /?]}ﬁﬂg, ('/VA . i 2 .
i 03050 o
Lo
Jitte) ~ F
.,/,77[ 4 ,!}’ne[ -2 ,""7’71_1--'2 - 2 i3 "
el T BRS E C N L

2
l‘(’E{f{. CE:

2 ‘_‘ /‘. ([[f//) ) Pivy fex 4 }
{z ((
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where 62 = P/QRO) 64 =-€/2R° are the co-ordinates of the ends

of the plate.

Formuls (22) differs from the corresponding formula from

paper (4), in the terms proportional to qh1 and sz .

The first term in (22), proporkional to the length of the
plate, represents the damping decrement of the coherent
motion of the beam due to the energy loss into the matched line due
t0 the transverse motion of the bunche. We should point out that
this decrement is always positive and corresponds %o the “fast dam-
ping" previously obtained in (5). The second term, which does not
depend on the length of the plate, corresponds to the so-called
"head-tail” effect. This term's sign depends on the type of excita-
tion and the sign and value of d‘)i‘ lden Ro « Its occurrence is
physically linked to the fact that at the edges of the plate, where
the eletric field of the "main wave" has a longitudinal component,

a (TEM) wave is excited by longitudinal motion.

For mc iUthe factor ¢4 is proportional to the value
(%{o%;ﬂlﬂ’c/ and therefore the synchrobetatron excitations may be-
4
come unstable., However, excitations with M, =0 may always be made

stable by selecting an adguate plate length.

We should point out in particular that the value of the '"boun-
dary" terms is proportional to the Q]mz' ~order of the Floquet
function modulus at the edges of ithe line, This factor may be deci-
sive in the s lection of the position of the plates in machines with
large beats of the Floquet function (machines with low J% - func-
tion values).

In the azimuthally-symmetrical case, if the guide field is
linear, then

ch—lg_ - /2(’/1“{2) r . . o <;’Z</f

J@R 2y
n is the guide field exponent. The stability condition has the
form 6 >0
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1) Me=0  pz, 4 dws 42 1, 1)< 7
/;d;'; . 3'33 a.,!'i'f')s T v/
(23)
2) Mg 4 O L EEe Az 0,
Yo ofes, bot

that is, in this case, the axial-longitudinal excitations are sta-
ble. A more general stability condition (for arbitrary focusing)

may be obtained directly from (22).
We shall give also the formula for the decrement for the most impor-

se

tant type of oscillation when lnnél

Y’ 2
ae e 201 Fge sy, 4 p 086,
O™ = T S G é,!i~;f?“"‘:a, 2+ b
z.‘}h :'-\/l)g) {0 ’-"0,' ;‘_V”‘C\ s N_‘//.)/ Iz (’ ‘]‘g /(,4// (24)
2 2, 4
- .‘L”’_ /,',’ o T 00 }] KA
/ o/ Fraus 58 B A
(o L= I "‘C“

If the machine's chromatism is large
/7 H dw} A4

‘ii.. .'I’H i>‘,> '
£ da.‘ {

‘\
(as is the case in strong-focusing machlnes), then the decrement of

a short bunch may be estimated with logarithmic accuracy by means

of the formula

7 l:" Fal K4 -
RORE - AT '“"’Q"jfln/ ;i C = ,::'/i;n 7 j (228.)
e, s Ry
("J AN

In obtaining (22a), it was assumed that the guide field was

azimuthal by uniform.

We note that the decrement é\ is inversely proportional
t0 the length of the bunch fph and the quantity dwg /dms related
to the machine's chromatism (the dependence of the numerator in (£2a)

is weak, because it is logarithmic).

on ‘fb
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) g[,)) 2(|mcl+4)- a long bunch. For simplicity's sake we shall

assume that the guide field is a azimuthal-uniform. We then obtain

from (21)
({,- . }‘/‘:. } « o :‘7:?"‘1, (,f i ,-" ¢ ,ffr}jf @, ,0 B ’) (25)
AT O i N SR, L (," s ')

It is clear that instability may occur when the machine's
chromatism (d Qn\);_; !dﬁn Qg ) is negative. We should draw attention
t0 the fact that the decrement in (25) is inversely proportional to
the bunch length l}, . This is related to the fact that at
Pb»eam,_|+'1) ‘bh%ﬂaln contribution %o the integral (21) is made
by the harmonic interval An ’VR /fb ; the contrloutlon of each har-

monic in this interval is of the order of ((F ’290 ), so that
. lf?._. =
‘Q\? o]

2. Radial-longitudinal excitations (Ma = 0)

Collective excitations of this type may differ substantially
from axial-longitudinagl excitations due to the coupling of radisl and
longitudinal particle motion in the storage ring. Therefore, when

w
calculating gm',,(‘-P)(m=;m7,mc,0} modulation of the azimuth by

betatron motion needs to be taken into account. The function

91,:"1 (CP) is represented by the sum
e (i, s (2)
L?:i,,i \;) + jf“ ("fo) (26)
u<4) ] i N . -
where 9m ((P) is o’& glned from (20) by substituting the index

X for R and g’".’? (LP), which describes the effect of radial-

longitudinal coupling, is given by

0({)
1//) I' ;‘v' % J'\« , ’N;/l
g {"):- AL f, ks IRy e
‘ju( v ) -,1,\\)/\/1‘?2(\ . i 4/ (,/,
Ro (272 (27)
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Z o
A . - )
where ‘?(-'-) - (“ 9 ‘,f‘] 8(:; {x[,r Lz:‘)/ AL / ,// ;» (’J) <..) , ?
@(,{)/(” ') \/Z ( ‘-I( J( J
4,

After substituting (27) and (19) into (18a), we obtain the formula
for the decrements
A f\ (O) é\ )
On =
. . 3 (© . ) o . .
in which m  is obtained from (21) by substituting the index

2 for R , d"n(f') equals

(28)

:2 .
5 »-/ Ie dn PrGE i1, J! How 17,
m Y H S ) L :

g
2’«")“ n *”/a, i frg -

where i Y
215ty0-2 . I VS PR
fr‘ IR ...__.f.‘_,/.f_{ _J””Y/ a ) M..H.“?IM,_ '9 I/ o [,)
Vi H;;Z/;;/\" 2 / (/,‘(‘“/‘;;}.[2 g/& ‘wl’"?l ~{ oo

The integral over N in formula (28) diverges logarithmically. Howe-
ver, in a real case, where the "length" of decrease of the edge
field is finite, the integrand in (2£) can be multiplied by a fac-
tor which cuts off the integral over M at a value of the order

o
order of magnitude, the specific form of this factor is not

n_~ Ro/l_t.' In order to estimate the decrement in terms of its

important. In particular, the infinite limits of integration in (28)

may simply be replaced by finite limits with \Yl md,," = Ny o

We shall give the formulae of the decrements in two limiting

cases?
o3 . 5, “ /
2) &, <<+ )¢ , ;
(1 AN s =
f}‘\' . - f q,’_ ; ! ,,)-/.__.... I,.q;'\
Onz = o o AL {2 )
7 & ’ (29)
where ,
9 a2 215,12
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4)
We note thm t é\,.g does not depend on dw-zi’dws and, at

) o1
. J z',:mm,__wﬂ/ S 0 (30)
p.s

g \Ge i1 =0

it reduces the decrement of the radiazal oscillations.

S s .
If O,, is positive, then, by compring (29) and (22), we see
that the radial oscillations (M, = ¢ ) may become unstable when

o [}L ’?°
Yoo e

,) r"(J ;
(.;7': "",c/ V‘/('*’S

and the radial-phase oscillations when

.
b 5 ﬂ% ~ 4

5": . ”, bl I {}“)2 ~
L5 I g en l

In this case, the increments of normal oscillations are
inversely proportiional to the length of the bunch ,h, o ¥We shall
give the decremen* expression for the most important type of oscil-
lation lm,.‘[

B _‘2
RGO R 7} £ / ?.’7/'
5“)' A c..aE ,.f'.’__j/ Gif s 8
m 4'777 £ (’(/"” /*f ""? i=p (31)
b) aﬂ&, » Gmc |+ 1) @ + Ffor an azimuthally-uniform machine
,,,,,, . 4 s ‘7"7
(e Pt st c o frE iy, ) 6 "C:) has the form
$o N 1) P 2) <( 2, " 2f -3
#n ..»._..} . ;JJ \(}, 2, )
{ e /”/ 7 )/
(//'\’/,l - !,}’2 jt’ 'x(. i ~‘"‘/ -7

It must be pointed out that the appearance of large
logarithms in formulae (25), (29) and (32) is a specific peculiarity
of distribution (19) This is so because the decrements in formulse
(25), (29) and (32) for an arbitrary smooth distribution /O("P) ,
determine the sums of the decrements of normal beam excitations.
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At large excitation(mode)numbers the separate decrements decrease
N /

slowly as the mode number K (OK “-41'K) increases, so

that the sum turns out to be logarithmically large.

3 Synchrotron excitations

For excitations with W~ m. ., , m, =M, =0 with an accuracy

up to the order (a, / ., )(0 . is the tranverse beam's width),

equation (18a) may be written in the form )
o2 e e o 207 ]
R ) T2 ! S f""'{’ X “,,( (’/ T \}, P {
Xm (Cl‘ 4= BQ'W s gl Ta=y Pt T e
PRy <23 o ( 3 3 )
oo ,
4 R " o ” v
. :] 1/:{“) {r;"ﬁ,-'{r’; ,‘:i;;’/"_ J . ’ S ,z,{:,, (3, ,
k. \ Y J ¢ /_/ % - /
O (L/
where
v
\ -S/J .‘f\;)!) ("/{ < ¢ ""’( 4 i ‘\
\omr e e ﬂb~ﬂ(ﬂn) X:Rna
14 - el M
,’,’:/@‘-{’Vc
et
L g/% ¥ {
Losy o 1. 0 (5‘ 4 N ey o oY o
ﬁ( 4 ) e -L}‘EZ‘ ;_,r //3 2 5} r'j‘ / ?;[;" "

in this case, we shall use the assumptions that the guide fiela
is azimuthal by uniform and that the bunch moves parallel to the axis
of the wave guide. In view of the low value of the synchro-
tron frequency ( @W¢ &K Wg ), the function & mav be represen ted
ass
G¢
)

Pl . ~
(67, - A, 506 £,
() s A L Ty 5

£ 4 ";j)‘l) = 2 /'(‘?:! 24
41 - o££
r\ -

In this section, we obtain a solution for (33) for a case where

Q/(y) is a "step“,

i

A
*

2, D <y
4 (54)
!
A

e of

2

o0 P oA o772 g
. 5 T e i o A W
A o L el ”r?\ o Gy i/ Jf"‘”"s: {1/ (35)
o 15 oL Aot = ! !’)Z e
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As :]m Qfoais an odd function of X , the first term in (35),
which is directly due to the total energy losses, contributes only
to the real part of the frequency shift. The second term , which is
proportional to the loss gradient, determines the excitation decre-

ments, egqualling:

AR
T e el 3D D ‘3
3 r‘«./“," 4] Y s I“")U. o N g FoEa L B T 2
. - & 1. a7y :
’{Iu.y7 Cs S 2 {‘,:: o = Py

The above expression simplifies substantially in two limiting
cases:
a)fb((frnclg "long'" plate. When this condition is fulfilled, the
square of the sine in (36) oscillates rapidly and it my be replaced

by the mesn vd ue:

P > ?
. e T (3U /
i } i -t ""“‘-::'-1 o vy | o o
] 7;:‘,[‘ el f:Jb d?’; s o (37)

The condition for the damping of coherent synchrotron oscillations
is
. -2
“:“; /! 5-)/)/ ) > 0

26 W (36)

This signifies that, for Q)>‘ 0, the pletes musti be situated on the
outside of the equilibrium orvit. The physical reasons for this

are obvious¢ the modulation of the coherent (energy) losses must

be such that when the energy increaces these loses increase., We wish
to draw particular attention to the outstanding characteristic of
this method of damping: for all excitations chnc}<9L [?L the decre-
ment's value does not depend ont the multipolérity number (the cons—
traint on = M, is related to the fact that at lmCl>gblPl
the excitation of other types of wave has to be taken into acoount).
This is because the radiation formztiorn length equals the "length"

of the edge.

that is, separate "bunches" radiate independently (6).
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b) Qb »‘gmcH)» short plate. In this case, the main contribution to
the integral in (36) is made by the region ih".¢!<i X< b ../ Q
We then obtain with logarithmic accuracy:

"2 “1,

” / ‘/(xCJ ¢ i : ’ "((‘ "ﬂ.' i ‘l { "‘ i ’ \
S~ LB S e s Q/ “ f”'c// (39)
ol ol -

‘(J

The conditiorn for the stability of excitaiions, as in the

case of a short bunch, is also given by inequality {38).

3PECTRUM FOR

(.4

III. QUALITATIVE PICTUGRE OF Thi ZXCITATICH

SMOOTH P (‘P}_

In this section, we snall examine =z serie of limiting cases
where equation (18a) may be converted into snequation with a real
symmetrical kernel « The spectra of the eigenvalues of such
equations have deen well-studied (viz. for example (8)), so that
it is possible to study the stability of excitations for a compara-
tively wide range of smooth F,’_"‘{’ ) . For simplicity's sake we

consider an azimuthally-symmetrical guide field and

ISTon
assume that f(\krd.;depends on one parameter: the"width" A .

That is,

'/Q
. A 2 . / /
v,"U (."O) = j) (}/;’Z\ , 'Bﬂé/ui {.’ ") 7 (40)
Por the time being we shall assume that '¥ = O, and then

equation (18a) may be written in the form

faotier
’.:’ /.”""' r ,- Py o - L
/{&;”. /...’,.'-2‘!11;/ - u} ‘/"r/ 5[' :Jul’L/I ! (j;"f, ’3' /L/'(",/’; (41)
o - ¢
where
q"i Fp L3 o .;..é» \/K.\J- };7 ’:4.»’:‘.', ,
/J'tl d'?
2 Sl ..
e wme  Asiatmysa N sign(Ma)s o B e 2
Oy = e L / e Vo 3 AR /. 23
4 25 / . ;/ \ /n‘z/ Y | --'"-z/j {2,
' -2

TR L ds
(% 2,_,,?,#[ gy /
-
¢ =0,

-
e (il 231 g a3 b G 7%l G il

4 7 - (‘ s __  ede :\/ oy " ’:_’ 2
7\1((;//"7‘/) .)C/yr A d P "“J / . /’) Vie, UG ) ) K= 50

[ate]



The furction v\f_;_ (X) ejuals:

| €
2 ‘( SR g (D5 i /)

&, ()= —~ _.f._;,_:: o2 M (42)

d/(’o 2% NI TD, »/. (2,. S P ,-<) ;
2
L 2 2}’ g
Y < A fy Sl ,"i:
WHECEL DD 2'“_(._@ ... f,.-_-.) ok, ®

The kernel 3{L<y /ﬂ,> i clearly cyvmmetrical:
/ :
() = Kly )

1. Betatron excitations (M¢ = O)

Let us first examine one-dimensionzl, say axial excitations of

a short bunch fb £ g « Ignoring quantities ol the order

Ep Vi

o s goq o 2y

& SR A
we rewrite J(_L (L{j/{é') in the form

AR YL B
:}ﬁ‘/?’/‘/ = ’%{%"—Z_Vé“ iy (// /{) 5

2

A}

P “’" 2 Z 4)
¢ SR Wy XyE Y o0 L XY'E
!::J. /u‘//) s ‘ _______';::-. ‘/:( LS4 :! ) 240
u ,.’(‘
(7]
(41) is transformed into the equation

(’0 R /{ /{‘!o

/l,-.z/(uz(/)'“ ) /'/'*' 5/7(/} /LL[ ’y) ml/‘f) A - ﬁ”’g-)éé’

in which the function qy(ta) is positive by definition. It is shown
in the annex that all the characteristic roots of such an equation

are positive numbers,

Therefore, in the given approximation, the decrements of

one-dimensional excitations are positive and equal to
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\.. /).) {.2

v NNwe Elml S ))

i

jy s T e
S /lf 21/ No \\ - /
(7] 2
i g ; K= B S
((/f‘f"’,:z/ )] G2l
T
As the eigenvalues J\K satisfy the inequality

)‘K‘S ] /2 (viz. (A.6)), the decrements fulfil oK S dh where Jo

is the decrement of one-dimensional betatron excitations

obtained in (5).

-%? j:: is of the order of unity, the numerical
s

solution (41) is required in order to investigate the stability

When

of the excitations.

In the case of two-dimensional betatron excitations
(Inmz.fng‘ >0), the conerent oscillations may become uns-

table. The excitation decrements equal:

; -

Y. ’Q/é\'. Ry 4 N o D .
v 1L N w0, K= 125

St 21 A TS
© R,

w

Hence we 1mmed1ately obtaln the 030111atlog$ stabpility condition
Sigrim /ds ) Bhpe(im) /e, )

N > -} )
\}u /::' rli f,}i_ [4

m./‘;:'{rl*z
-) > (#1712 ) S0
/'

2. Axial-longitudinal excitations ( My = 0)

a) Short bunch gb«(lmcl-d)f. In this case, with accuracy up to the
order of(@b.dﬁzldﬁof/li«'i)the k ernel :K_L(tj/\a') equals:

]25 (ﬁ& _.ZA)+ ¢
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Therefore, the excitation decrements may be written in the form
2

S Izl
£ ) ) /, f¢C// ()’:;": //(’\ }’E/"\_/.w:;- /-ﬂu--»-{.u..._., ?‘” // (43)
€ /;./';-.:’ 7 - ('/c,:,“, & / /- \(/ b i ) g2 '//2:._0
§dy [,
where )\K are the characteristic roots of the equation
<3 / , 73
A ' > I3 cst
A Anls) = S_ ﬁ(( (/) \\,/ w7 )j” /X/ Y (s7) (44)
<

which are clearly real positive numbers (vize annex). Consequently,

the condition for the stability of excitations takes the form:

s ” Y (45)
as for a 8 -type distribution.

If the excitation is unstable (dWg [dw £ ), then it is
interesting to know the region containing the numerical value of
the maximum increment. According to the formula (43);,"“,‘. is
determined by the maximum eigervalue of equation (44) )\man,

for which the inequalities (A.6) of the annex are correct.

This estimate depends both on the type of distribution and
also on the type of "test" funciion Pm ((d) {(viz.(4.5)). For exam-
ple, for the distribution 2 ,(g,xp sn 4 the test function (-,2)

4
:.’}7/: r..(lf *//‘. ,_) 'I/g /"77u"'"’{2 n-.‘;(?:,;
P (75 (lmcr) N
we ovtain inequalvit‘ies for )‘m&,

- 21"';‘:",

i '2 ' ( -] — j) i1 /\ 4
- - masy TN
.2 It - (20 ~1) N

V/aN
:\’

4"'7?c2"1

b) Lastly, we shall examine the axial-longitudinal excitation of =
long bunch 2b » 2(|mc I +'1> o« In this case, the main contribution
to the interaction of the bunch with the line is made by the region
of the harmonics of the revolution frequency ( n = X/ A )

}nl< R, '

(46)
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P\
In this case the kernel j{.L (‘d /‘1 ) may be written in the form

, L Y2V

H/k//}l‘ i‘/{ ) . ‘(‘f’ﬂ c,ﬁ:, {~ )wn ("") (47)
\QO 4 / \j <

SRR

<,;£
where X max. = -

Ly

Using the standard method (viz. above), equation (47) leads to
an equation with a positive symmetrical kernel, Therefore, the sta-

bility of the excltations is determined only by the sign of the

cdiromatism (Ol\)g /den Qo ).

The excitation decrements, equal to

- AN /”7""{7_9/3)’ (....w.)
DRy AR Werer. L

g 575l 2
(/%1 /1) )} dZ/'”‘:' / _0)

are expressed by means of the eigenvalues of the eguation

2/ - .2

(48)

'.{""'i}( Pt

? L. A oy a ’
Mefionly)= Sl Do 60 0517 9.0 Tl (50 0 )

) 0

which is easily obtainéd from (41), tasing into account (47).
The corresponding estimste for tne maximum increment will be given

below (viz. point 4).

3. Radial-longitudinal excitations ( Mg = 0)

As mentionned above, this type of excitation differs from
axiel-longitudinal excitationsin storage rings by the presence of

coupling between radial and longitudinal collective bunch moiion.

Taking into account the modulation of the azimuth S) by

the radisl oscillations,. we rewrite (18a) in the form

o/ fos? e o’ e ’ 49
renm (F)= ) r iy g (1 WA E L) (8 )) Zm (§) 49)



: ) ’ ¢ co . i - T
where _an anda J{L\ﬂ Y nre obizined from the corresponding
[

values in (33) by replacinge *ne index Z [Ohes 2. , and J{”
Yo
A . RYe *y
equals 5, g oo v,y < _2.(’.‘( v ) 1 //',’ L"’ " L/A \7 } ’
N A I SRR S A A e
oGl ST 1y J
0
ein ” s 'l‘:.‘:’ ".‘;.' :
:.-. ’ e 'r £ /‘1,2!«' ’/!. \} ,-'f.,{ ‘{.,‘ ’ irj \~ / (50)
oo d,l'[ L [ - /'/ PR U PR’ (
e e i i\ plict gt P ST - / l
U ) Lo £ g=v
yo A :

The equality (50) is obtained by ta ing into amccount the fact that 3{,,(«2’[5')
describes the interaction or the punch with tie voundary fields, when
harmonics of the revolutior rrequency witn rL;-Ecann_gfb,é}are
significant. The nature of trne excitnation spectruﬁ is détermined by

the wvalue

o~

where ‘ (2 7 ”ii) , Sl

If the value E!n is low kEEh1;<< 1 ;y Thern it is clear
that the infliuence ofsif“ on the solution of (49) is weak and it can
be taken into accéunt in terms of perturbation theory. In this case
the stability of excitationc is determinec by the proper-
ties of the kernel JKi (3/ g::' so thn2t the stability

conditions have the same form as in the above section.

We shall calculate the distortion of the spectrum ch due
to :K“ . For simplicity's sake, we shall assume that the eigen-
values of jfl(gly') are non-degenerate, Ve then have in the first

order of the perturbation theory

X
¢ eed

No Moo = &1 Bd Sin’ "(fj 00 () 7 ,G.)\;//)Q (51)

=}
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(k)

: 3 )
where -)\m,a and Xm ¢ are determined from (49) at J’(,,{(g/&é ):0,
and -x saticfy the normalization conditions

o ,

ey K

S‘/.Q'.ff 0] o Ao = D k!

9
By comparlng (51) with (42), (43) or (48) we find that the ratio
l/\m mol//\ JLquals ,Emj in the order of magnitude.

In the inverse limiting case (!EME» 1 ) solutions of
(49) are mainly determined by 5f“ (gj/?? , and 3{_1_ may be consi-

dered as a small perturbation.

Without perturbation ¢ S ) the excitation spectrum is

determined by the ecuation

02 .
{- . ? Rt ( u’ s ’ . . o /’- . -
/\/C; . (ﬂ ) J dx S ~-L;5 -z "‘/’:’IC ‘/(..IJ) VC‘//’ "ju};,(:/x :,f' ,.?:‘ ( ,{";_J’) /__?'.' . {/]y/j (5 2)

Konly) ) 7

the above eguation i1s transformed into an equatiorn with a positive

symmetrical kernel. Therefore, all the ei~envalues of (52) are

positive. The excitation decrements equal:

ral .
o ‘,..';,/ﬁf{ ‘
(-. AK /\/én C/!r / ’/{ .q) ‘t\', _/‘,_- ‘x.' o ;{
-"TJK = 7 ,;,; \ 2 / S Ceieugl
2/7. ‘;’M ! J;
Y ;
3 / (53)
PV R ,
G \‘5’.‘ £v. ) N

where A xk 1s the eigenvalue of (47) with the number k .

The stability condition (c5‘,< > 0 ) has the form

10 -4
o J V <0 (54)

T ge i
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Senerally speaking, -2z eigsnviiues o eauation (52) depend
I o ca . n c- .
on the parameter zb.‘,“ . Losaver, it is clear “rom (32) that this
. . \ g .
derendence is extremely #e-s and ir <he limit J’.“?-VO drops out
[ ]

completely,

4. Svncurotron exeitations

Ir this case the in-2ural eiuatiorn heg wne form (33), We
ST '
should point out that if/? '\{/ dWepands only or on= parameter, then,

for A convergence of the no-relized irtegrai “or 4 the followin
A .J b

is ge2aerally recuirad J
Jd9
c?"“" <0, O 44<°

For such 1(’) alssri‘nutior..;:, in the case ci extremely short
(4'.5 K lmc lﬂ) or extremely iong (&»gm‘!C ) burichzs, the »tability
condition of the synchrotron excitsti-ns coinc:ides with (38) and
does not depend on the form of the istrivution in termes of the

amplitudes cf the synchrotron osnillxtions.

i

t ¢ .
Pirst let &, «!mc lh « Then equaticr ‘% nsy be rewritten

in the form:

) &2 o
A X ()= (52 T (50 § a’y’,«'l;;f’:],z,‘ (xy) Zmly)  (55)

‘Nhere

~2 2 "j
A, = (w-ma) T Tl ZT-z—”-/ (56)
4' - ‘ ' 2 * 32, ?
//2'.6 7 =0
Equation (55) leads easily* <o the integral equation with a
symmetrical positive kernel. Therefore all its characteristic roots

are positive numbers,

* yiz. Annex



The excitation decrement: are ex:; ressed p;, ez . 0f the eigen-

accordling %o the I'ormulsa

/\14 /‘/?ai--/" :;:. U '/7 , AL '!, 2, 33) vy
J‘i ) /al / 696."',;:.’ (57)
2
k is the solution number (53). Hence it is clear that JL

\

will be positive if {*8) iz rul:iiiea.

The numbers )\IK cr- ¢oundet from above by the value
{(viz.(A.6))
e -
1 1, Lt (&I /-)
L e é t dafes LA
NG A ACORAS N U (s8)
o

and the integral in the numerator of (5&) aervends “niri; weakly on

the specific form of the function q (%) . Thereto—=, the decrement é
given by (27) may be considered to be the upper limit for (55). If the
bunch is longer than the plate fb:»tfgrncg , then e:uz*ion (33) may

also be transformed |with accursacy up to terms of the order)rn“ﬂ/zk)

to an equation with a real positive kernel. Therefare, the stability
condition in this case also has tqe form [ “&).
v, SPECTRUM OF 1 RT-WAVE o3CILLATI NO

In this section we obtair +the spect-um of ercitations caused
by the interaction of a bunch with the higrn-freguency part of the
induced fields ( rt»(lmC ‘...4)/43)

Let us first examine the axial-lon;:iudin=zl =xcitations.

By introducing the new unknown “unction

(",»”t‘ Vl-—* S‘c&'u" r"/)l{l‘y( / (;{,I/)
o
we rewrite equation (41) 4in the form:
o<
(“‘3':"1 k-u" ("\}:l' (ajav' ‘w‘t’t!(. vy \ (7 (f- / ;\'",) c/:'yp ("( "1)) (Ala)
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2
where oy A . (‘ " - Az , f&/_ /XI./
FIx]K) = 3”’«7 (['(f?,) e (Xy) i, )

/s (59)
[} A Sz
(“1:3’ \_- \? (‘Z{ .-__::_§I (2 //_ A in ...—....l)
)= Ky a e d, ) FaalTy # oo
andelpx (x)is determined by formula (42).
In the high-frequency region (X /nm «~ A7), the function

a(X’X )has a sharp maximum (with a w1dth of the order of one unit)
at X'= X, and 3 &Y }.)decreases quickly as X moves away from X ¥,

It is possible to obtain the short-wavelength part of the

spectrum in two limiting cases:

a) 95 &« f Past oscillations of q;" may be ignored in the range
Ax ~ 4 which corresponds to the substitution
(:7')( ) e er(x‘) = gq/xf cl“lf)(',’f{+AX')
ax'xo
b) In the opposite limiting case (i’b ;)4./ s 88 can be seen from

(42), the variation of q)/ may be ignored in the range Ax' ~ 4

.
/ la @

: o o
@ \X , B 4 _V . Fo ’}

Therefore, in the case under investigation, we nay write

approximately

g (xix) = _g-,é”(x ~x') 5 X Prienled (60)

*For example for
c}( -) -2 @xp(.-yi)\ s

g(x1x’) ~ '"""'-ex/’(“ (x-x )/‘/) X >>Imcl+1 ;
for i (/) — " g(K/X') ~ é’/\’o/ Ix -x’/) /X, X >0/ 44,
+7°



Ry substituting (60) ints ‘4la’l we astain "2 coecsrum of
¥ 2 , .

excitations in the short-wave re:ion

bix) & << (61)

v v >

b ¢

A, (x)=
i .‘(;:-?_{X) ; &)5 g

The decrease of the correlation of tre revciution Irauency
harmonics Cm X) when X»fm +1 mesns in nnysical terrts that

< R
the normal excitaticns due to the intersctinon of t-oe nunch with the
",

high-frequency part o the inou:2d Uields are ciose o "vlane waves

(R Gl 17%( 4
o (T, 1) ~ (€77 ) s (=)

In this case the "distance" betwsern the separate modes is
of the order of the width ?(X"X') {:u X'z 1) wnich corresponds
to An > 4/8 (X =nd).

The 'calculation of the decrements is simpliied in two

limiting cases:

———— e

a) eb « Q + The function (X, asy 2 writte 1 tne form
a2 cr’a),.
( (;.fi .._f.':,?.'?. f/f_"i’ , XP> /'//72_/ 3 A /“’ /r_o l
R, 2 XZ d"‘.’s I, 5
3 —
=3 4¥> —% Q’Q)g
(.1 X <4 & jH1g 3
- . R
} 2 /775. gﬁ)f
& wy

By substituting d)(X) into (61}, we obtain the expressions
d
for the decrements(é\ = me)

A . ? o :?I ), ,“
~.E<".’;‘fﬁ’} d(:’_)j , X > [étie] > & [ty “/ i)_i /

2x3 c/ws s
S(x)= (e2)
- ___/}.{éi__.. ___!._ , A/ 2y -'-if-/y;;,\; 5 [MPMef +7
7 deo;s % A ax

* s



By integrating the decremente (62} ovar X it is
asy to obtain the corresyonding sums of the decrements lm }#0 )
da)
A4 )ﬁ..fL..aéae /”k/>‘ﬁl’"i él
Ao Tl d“’"—’s
4@ dew
oQ e
o (
5 f(x)x Y d o=
ya
X!
lonef Imf A (f/ 51z dew, S
o0 o (sl F o ¢
,"’./(Ja L7 - g ('*64?; ’»/”rzd tml).«/”’cl
?,{f) ,?7 .u t’l)e :
(L‘/(A.Js

The above formulae ccincide well (at m, F 0) with (22) and (22a)
respectively. This coincidernce igc conditioned by the fact that
the main contribution to *ne synchrohbetatron excitation of a short
bunch is made by the interaction with boundary fields which are
substantially non-uniform i 6 . Therefore, the spectrum of the
high-frequency excitations ig expected to join directly

the spectrum of the low-frequency excitations.

Hence it follows that formulae (62), extrapolated into the
low-frequency region X= "mc !) 0 , shourd give (in order of
magnitude) the maximum decrenent {i.m:rement) oI the axial-
longitudinal excitations ¢ = anori buncrn:

a)al
m,
/\/(5'0/?73 Ad“}f’- s 1%l > A/ Ed‘_‘,’

 amtaind

2}'7".:’4 dWs

gmu ) A/(go 4 Lllfe?t d"a"):? > l')n‘!
R @l
ry 8 9% ‘oie]

el

b),&, >>2.In this case, tne most interesting region from the point of

view of the estimate of the oscillation's maximum increment, is

25/2 » X » m,_] . Using (59), we may write Cil’);',)() in this

* For excitations with Mg = Lhis 2xtrapoisiion 1s not valid as
the determining contribution to ine decrements of long-wave

excitations is made by the harmonics n{ RO/E -54—1- .
Fa



region in the form:

C;b(/s) ~s 4(——-) : 77;7% ) o X =)

In this case, the maximum increment may be estimated by

formula:

& .' C’/f_}“ .._.i_...
/Vé' ,} %;éo @ l’?t.,"’?f\()/‘ﬁkl j

OMQX s e
For radial-longitudiral excitations the function CF)()<) in

equation (4la) is replaced by

2&.5./(.

O(x) ~ &, Sin Z

In this case the decrements of high-freguency excitations may be

written in the form:
Sm®) = 81¢) = &, (%)

where él_()() is obtaired from the decrement of axial-longitudinal
excitations by substituting the index & for 2 , é\” (X)
describes the effect of radial-longitudinal coupling.

0
For a short bunch (Qb<< Q ) the gquantity q‘(X) may be

calculated using the formula

(o) )
A‘" (x> ~ 6’!( &

) g

Zx 2 (63)

L"
Ay
A
X
Y
AY)
.
3
>~

where
-2 X p nli2 0= A2
8(9) N’Z},C’/Mz{<( az) \._“i a -_,.J... v
" d (/»’"J—’/)/ ge(griR =0

The maximum decrement in order of magnitude eausls

éiinax ~ T,
i)



) 1 '
If the bunch is longer thuw the plat: XL » P, l4, then

i, %
S(C) ;-é..t" , {,__,_._-.w \>'~,,‘ > /[?‘f/
, " I ’ -
g «) \63a)
[} é,(o) : & Ep
., == PP XS
2X £
In this case the meximum decrerent in order of magnitude eguals:

e e i - e - s P 0 S S

{
Vs - T g 3 PP fd
B I1AX ”23,,& Lot .1\1 3 { P&

- NE,Cle] ( Iz ?)?Im?/—? 0 Y a”""” v 7/
& /M

V., ON THE BFFECT G FREANCY SPREAD

In this paper we shall investigate only tnose cases where
the cscillation's frequenc, uspread ir *re atationary state is
determined only by the non-Linearity of transverse motion, and the
non-linearity of longitudinal motion may be i.nored. For an
excitation of arbitrary multigclarity, the divpersion equation

(viz. (18t)) has the form N
& r?/ﬁ)
e L3

-

l’ "'v‘ , i, '(, :.’—-—-
, (77"
r g

S
LA VI

u‘\
I‘\

. M______ C// o,
L 6
A S 6‘)--’!‘?4 t([« _‘_’!)"‘fldut)i lgll"\) ( 4)
where A m is the normalizing constant ejual %0
LA -4

jre -1
3 A

"Q'k is the eigenvalue of equation {lda) with the number K  (which

<(/‘7?a/l'73/ Ly + ”7‘:/’”?/-[2)

is the solution of equation (64} without spread).

Despite its apparent compiexity, equation {b64) ma2y be easily
reduced to a standard form. To do s¢ let us irtroduce a new

variable into (64)

&=E&, ::}ﬂ m;[w;(lz,fﬁ)-wz(’:a)] , X=X (Iz,ji) f6e)

where the variable XO(L,_ '13) may be chosen such that the Jacobian of

the transformation (65) is unity:



I
ol
(&3]

t

(‘~l .'()
(7(17,-&2)

. 7/ AY .
Equation {54, then chanies to

&)

e dV—éi 56

j“a‘S W=wy—& (58)
-co

where W, = Kl @¢(0,0) + /7, ¢, (0,0) 2nd tre suentity 3(&) corresponding

to %l.e "effective" freguency distribuiion density, is determined by

the equalii-

d’i’(;‘)-—-_.f..)q’.[zd_[a T 8 (€~ (le, L)) - & (¢~ %o s, 1))

f »

20 (57)
- l.‘!i-.] Iﬂh,‘( o )
. - + M7y
Ly t a.r, © 1,
The function 3(?) sy by definition, is normalized to unity:

o=

Ce o) =7

e gter =1

Bquation (66) may be investigated by standzard methods.  sing
Hyquist's criterion, it is easy to establish tizt, in order that
all the roo%s of (66)-iie on the lower 2eli-pleone, [ 03 ), i* is

ufficient to fulfil the inequality

2
- [-r).m"
1~ 755 9@ >0 (s8)
ot L2 7
where EL are real numbers deitermined rro. Tie eguiiion
v_'.) .o
YO ( -
T2 § LS - TR D 980
£ & a
-l [4

Here ‘f signifies that the inte~ral nust we calenl ted 235 a principal

value.

In particular, the inequality (68)

Ql\ 4
f - /' !"-"* ""[ g/?mx >0 ,
ot e {68a)

holds certainly,



where gfhax. is the larzest vel e of g‘ over the entire range
of vuriation of & . "herefore, if the inequality(582) is fulfilled,

/

the coherent oscillations are damped.

“his means that the stabrility of coherent notion may be
guaranteed by selecting parameters of the externzal system so that

N

the complex coherent freguency shirt fzk Tells within the circle:

gl | < 5
{ AT e
Bt . N ) A
2'7‘ e x ot ‘.?max

Jle should point out that conditions (68) and (&8a), generally
speeking, are not necessury. .nerefore, i7 they are violited, it

does not follow that t..e oscill< ion® will he unstabvle,

Con@itions for he stability of coherent oscillations when
there is a spread, may also be cbtained by investigating eguation
(68) close to the instability threshold (=Wy->» Wy +i5:£a0) (5),
souation (66) then breaks up into tro eguations:

0 (o) = t Sxe
TJ )=

o9
B\ g dzg) _ Re L
? (w”')“_w ay, ~€ ‘-_Q-K,Z

For a given distribution function 3(;9 y the system of

(65)

equation (69) defines in a parametric form the bouridary of the
stability region 1n the plane oI *:ne complex variable.flk. The
position of the stability region i. relation to the bov . dary curve

is determined by the relationshi_ /3/

(Z- rgewr)- 5225 8

'
In the above relationship ) ig w point in the plane of tne
complex variableflk situated ne~r the boundary ol ithe stavility

rezion and Q)u‘ corresponds to =2 poirt on the bo...dary curve.

Por given parameters of the external systens, equations (69)
may be used to calculate the threshold current =2ni coherent Irequency

shift at the instability threshiold., Jor =iis nurvesze 1t is =aore



convenient tn rewrite 03} ia e Tor:
It :?(apﬁ) jZéii?k ,
gﬁ(fdé@) /@e.IZK
(592)
Ny = Lot 1
| 00 ig(os)
where the Zollowins notatio~ is introuaced flk = hhfik .
for Jurtirr snalysis 1Y is esser inl to grecify : tvpe of
deasity 9(5) us erarine, Jor 2xanple, tro—~dinessional
synechrobetatron eccitations (Cd m (ué. + M., +PDO oL o 288 e,
moreover, that the non-linearity o otion in the stutlonary state

is determined by the cublec non-linearity of t..e

o

9 g ]. ,‘}7 &l

w; (72, Zg)— “ag T 9fz L E (71)

The form of the distribution function %(a) depends sudbstantielly
on the beam dimension determinings the freouency spread .vertical or

radial).

Let us say that the spreai

<t (3] <] 821

In this case the dispersion

.
‘.J.
[

@
2

ation may be writiten in the

form

where Feos o
Cpg = mme , L= (w-w5)/Hys

In this case, a(i) equals:

[”1{/ al[v S
g =- £ EE) — (72

1 X >0

)

é)CK)::
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In the inverse limiting case:
doop . -‘?‘ff/
{57 << <1 57,

we shall call the spread extrinsic. In this case the function 3(€) is:

jé”): 1 9@')/’;'(5)

M y2 (73)

From (72) it is clear that the form of the freguency
distribution is determined not only by the particle distribution in
terms of the oscillation amplitudes but also, generally speaking,
by the multipolarity number mg (My in the case of radial-
longitudinal excitations). We should point out in particular that
the"effective" distribution width ?:5; increases approximately
like (]mz] Vz) . Moreover, g.’if.) has at least one maximum which,
for monotonic Fo (I) occurs approximately at &>~ lm3,<Iz> .

An important factor is the fact that 9(€) is generally
not symmetrical to its maximum. Therefore, the boundary of the
stability region is given by

rent
T Qe _ 8E) ¢ 3t
2= " T L 9e
/..le /ﬂ?g %zé//‘zﬂlg Je

/‘?d 2 CJ?D(’:) (74)
[P ey

It is not symmetrical to the axis I ok (viz. Pig. 2, 3).
In particular, it coincides with the axis Ke fLX for
/P@ -f?,/{ £ Re 2« gffu = _ffg_f‘_az
R(0) (75)
Consequently, if the value of the coherent frequency shift
introduced by the system is such that inequality (75) is fulfilled,
it is impossible to stabilize coherent oscillations by means of a

spread.
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Prom the equations (74) it is clear that when the sign of
°<!8 is reversed, the stability region is reflected around
the axis Umﬂg .' Jue to the asymnetry wit: respect to the
Im Nk axis, the st2bility rezion does not transform into itself,
This means thet for external systems (ir. the case of "intrinsic"

spread) with

]Reﬂkl > ]Reﬂg !\'m.!';

the coherent oscillations may become unstable after chenging the

sign of 0({3 .

In the case of extrinsic snread, the integral \?(E) diverges
logarithmically when € — 0 . _louvever, this only affects the value
iimit Ke S2g fim. , which must not

+
(72)e ‘ualitatively, the resulis

of the coherent frequency shif
now be calcul=~ted by means of

remain as beilore.

The value of the throshiold instability current may be easily
celculated Zor monotonic Fo (I) 2 the case w‘nerepmﬂgl»lﬁen,‘). Here,
g(wu,)».?(@u,), which meens that the roots of the first equation (692)
must be close to Ct)_r_r_r_(corresponding; to the maximuwn of %(w) ),
that islw&-(:)mI«(AO:,)'/z. “he value of the thresiold current may

consequently be estimated by mesns of e formulw:

~—\4
~ e -
" ym ‘ij'"ﬂl ym —ak
here the quantity o? 2
where e qu o e 2 -
A = M, Sd""(“".'““)f(“’)
-~ o0
determines the frequency spread of betatron oscillations.
By substituting in formula {70} %ne eveitation increments

tle te obiain formulae

’.J-
&)
[43]

obtained in the previous sections, it ic zoss

for the .hreshold current of a Tewn interzctiing widi: natched plates,
Clearly, the expression for the maximum increment, wnich nmay be
estimated for an arbitrary smoctnh distri» ion {viz., section III)

must be inserted into {76).
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“or exawjsle, if the mnehine's chiromatism iz not too zreat:

Es Ic.'w,z'<<1
Qm

then, for axial lonzitudin-l evcit=tions ‘M. £ I Ng, nay he

vwritien in the *orm

a) &<« [Pl €

{17)

s)

where the q:antity Lm de—ends ov‘ *the for 57 4 e distritution
(for a 8 ~tyne dirtric.ion Lm s ’-lmc -4

b) & >/l E
7 7’/?0& (A “’*‘”)I2
/\44\—' 8; "My 6) ("'2L(() c/@f.\'g _I)

m ofenke

(78)

4
Wor » é\ ~type distribution tne Z:ctor L() enuels Lb(eb/e(’m l+4))'
for & smooth distribution it iz of {.e order ']./(lm¢'+4) e shoul:
roint out that the above ‘ormula is irr good Jualitative sreement

with the experirmenta. results ottein:y > =~ &4 y - /9 ard
2wa /107
I: the maczine'!s c¢ronctio: fr .ireat
& } g I »>1
7l de

then, in order %o estimate "he t.res-oid curreni, it ic necessar, =~

use formula (222). In thiv cese Ny, Les the Zors:

A/ 7’” r’o’g !b Jwa) (A l/? “’ (79)
ﬁ l a’ws

o
where the factor Lh depencs on tne =REANE © THE U1K eeee ilia

function of the synchrotron oscillation amplitudes in the
stationary state.



“rom formulae (77) - {77
relationshin of the characteristic narameters of the
functional dependenceé oi tn
beam length a..¢ on the machine': charomatism) may vary considerably.

If the val.ac of the couerent ‘recuency shilt is ~reat:

]Re_ﬂ.gl > ljm ﬂk‘ , bren J)(wgh)» 3(‘1)5,} , Whic: is possibdle
only forl(oth ..L-Jm' »(4 w%)‘/z,

In this case y(wu‘) = i/wkh erd, accordir - to (57),
O‘lkh ~ Re_ﬂ_k . In order to determine Nth , ‘ve Therelore

have the transcendentzl equation

£~

/o :F{,z = i /1’/1'2«1 (4‘?&? ,ajk)zy(/\/é_{ - Re j?;) {8%)

annex:
dere we snall show that all the eizenvsalies of the integral
equation

: oD
M )= Caixe o (xix') 9034 () (1)
o

have t .e same sign, where c}/CX) does not chonge sign ic C{. X<e0 , =nd

the kernel tales The Torm 5
o .
F(x|x')= Y dbe¥) d(x2) Ex¢), (A.2)
o)

where C(t) and ‘G(X) are rezli Jonetions.,

b
//

To be specific, let us tosame Dhet (1,.‘/)(>>O{3d X g
0

Lfter multinlying the ricn omd 2ol el o0 oL L (fi//

/\ ex) = gv.’,:"is"ﬁ/f (/X/X’) ya('x’)
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The 5, cetrum Tor this cle=riy coinci: Wit The soectrum of (A.l)

%88
and tne kernel jf,(%/xt) , linked 7&%513{(X/{)b; tne relationshin
Ky (%15 )=y G tgir)” 5 (xIx),

is real and symmetric=al.

Llormally {viz. for ewvamnle _, the square of 3&15 integrable.

This means that the integral
17,11 w §d< A x1x)

has an upper limit. This requirement is certainly
fulfilled if the sum of the characteristic roots of [i.. is finite.

Iv Jaet, taking into acccunt (1.2} =il =1 o tle ‘unjakowski,schwars

inequality, we obptain
Il et @) ) 2 N
§ Sl (jo’x?(x) (x¢) B(xt )) <

C‘O

o0 2
<{ g dt e*(t) '(()/X '2’7\4*) &* ”) (fdxo(x)f((x/)()
°

svactly eauvals the square of the sum of

[

cae last quantity in ( 4

»
the eigenvalues in {4i.1). Hence

16 < %= ( Tokq e wexim)

'ne characteristic numbers o: eguation ( w3) ure resl and positive,
That is due to the fact thet (viz jﬂ ()(/X) . a positive

kernel, that is, there exists zn integral

giel = @x%' Ho) PO,

where P(X>1s of such a type that it can be expanded in terms of the
eigenfunctions of the integral equation (A.3).

In fact:



In order %o eztimate the inerement of

following formulas may prove useful

)\m.ax >/ .7,,/_-/0]’

when
o>
S:j:{ 2(,\’) =
P

=

early

Since all A are positive, then ct

af
J[P] & /\max
“he second inecualit: in (.7 o2y, on

e

by the direct application of

the right-nand part of (4i.5).

1.

~’/khﬁal.i

tne

o

otiner nand,

e b e . 5 v ey 3
nojakowski senverz in

the osecillations,

the

N

~ s

ve obtained

equclity to

It C}(X)(O then by substituting A ior —A and C’(X)

for lq(X)[ s 1t is easy to reduce the equation to the form of

(£e3), the spectrum of which it positive. Therelore, .cT 3@%)<() y

04% X<oo

. . o / N .
, all the eigenvalues of (...1) are negative.
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Wig,1 zffective Treauency distribuvions Lor & besm with an
exponential distributior iz fterms of tnrne scuares of betatru
oscillations amplitudes in the stationary state (vize(72)(73)).
Curve 1 corresponds to the " extrinsic'"spread. Jurves (24 (3
@} @)and O, correspond to the intrinsic sprezd and e
multipolarities my = 1, 2, 2, 4, 5 respectively.
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P
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tae hatched curve
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