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ABSTRACT 

The report investigates the stability of a bunched beam 
interacting with a matched transmission line. The functional depen­
dences of the decrements (increments) of betatron and synchro-betatron 
oscillations of arbitrary multipolarity on the typical 
parameters of the problem (length of the plate, length of the bunch, 
chromatism) are determined. 



An experimental investigation of coherent beam stability in 
storage rings has shown that there are coherent effects, whose decrements 
and increments do not depend on the selection of the operating point 
in terms of the particles' oscillation frequencies. The latter 
indicates that these effects are conditioned by the interaction of the 
beam with low-Q systems where fields excited by the beam damp out in a 
shorter time than the particle revolution period (i.e. "single-turn" 
effects). 

The first such effect discovered on the VEPP-2 device, was the 
so-called 'fast damping' of vertical beam oscillations/1/. It was 
characterized by the fact that oscillation decrements were determined 
by the total charge of the bunch (Ne) and did not depend on the bunch 
length ℓb 

(1.1) 

where Ε is the particle energy. This phenomenon was explained by the 
interaction of a coherently oscillating beam with the principal wave 
field (TEM) in matched transmission lines/2/. 

Slightly later, instabilities in transverse oscillations, 
which may also be related to the single-turn effects, were discovered 
on the ACO and ADONE devices. The increments of these instabilities 
are inversely proportional to the bunch length and depend on the 
machine's chromatism (dℓnν /dℓnR) and on the number of particles 
in a given bunch. The empirical dependence of the threshold current 
on these parameters has the form/3/ 

(a) 
where ν is the dimensionless betatron frequency, Δν the frequency 
spread and 2πR the perimeter of the orbit. 

An explanation of the instability mechanism related to the 
dependence ν(R) was given by C. Pellegrini and H. Sands. It was called 
the head-tail 
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effect/4/; however, the oscillation decrements obtained by him in 
specific cases vanish as the bunch length or the machine's chromatism 

(1.2) 

approaches zero. In particular, in the case of matched lines, there is 
no term in the decrement that corresponds to "fast damping" (which does 
not vanish as ℓb → 0). This result is due to the fact that the inter­
action of the beam with a low-Q element was not taken fully into 
account. 

In earlier papers (/5/, /6/, /7/) a theoretical study was 
made of the interaction of the bunch with matched lines and a low-Q 
resonator. It was shown that, by introducing matched lines, it is 
possible to ensure the damping of the basic type (one-dimensional 
betatron or synchrotron) of coherent beam oscillations whilst the 
interaction with the low-Q resonator may lead to instability. 
Expressions for the decrements of betatron oscillations were obtained 
in the limit of a short bunch length and therefore did not contain 
terms of type (1.2). 

This report studies the stability of a bunch of arbitrary 
length (but not shorter than the chamber's cross-section), interacting 
with a matched line. 

The first part gives a general integral equation defining the 
spectrum of normal collective beam excitations near a certain stationary 
state in the presence of an interaction with an exterior system. 
Using the kinetic equation in canonical variables (previously proposed 
in /5/), a wide range of problems relating to collective beam motion 
may be examined by one and the same method. This method is particularly 
efficient when the collective interaction affects only slightly the 
motion of the particles. The non-stationary part of the distribution 
of particles in phase space, describing the normal collective 
excitation, takes the form 
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(b) 
where I, Ψ are the action-phase variables of the stationary state 
(in which, by definition, the distribution is uniform over the phases); 
ωk are the partial frequencies of the unperturbed particle motion, 

and mk integers defining the excitation's multipolarity. In parti­
cular, the dipole excitation corresponds to the case. , 

In the second part we investigate the decrement expressions 
for the δ -type function distribution of 
synchrotron oscillation amplitudes in the stationary state. It is 
shown that the excitation decrement of arbitrary multipolarity may, 
generally speaking, be represented by the sum of two terms, one of 
which corresponds to fast damping /5/ and the other depends on the 
machine's chromatism (dℓnν / dℓnR). 

The first term is related to the excitation of the principal(TEM) 
wave by the transverse betatron motion and is therefore always 
positive. The second is linked to the excitation of the principal 
wave by the longitudinal motion at the ends of the plates. 

The betatron phase shift along the bunch, necessary for 
instability, is produced by the energy dependence of the betatron 
frequency. Depending on the ratio of the beam and plate length and 
also on the type of excitation, the decrement's value is determined 
either by the first or the second term. 

Thus, in the case of vertical betatron excitations 
(ω = ), the functional dependence of the decrement on 

the parameters of the machine and bunch has the form 

long plate, ultra-
relativistic case ( = E/m0c2, m0 is the particle's mass). 
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(1.3) 

where ℓ is the plate's length. 

It can be seen from (1.3) that as dω/dω0 
approaches zero, the decrement is determined by the first term. 
Instability may occur when the following inequality is fulfilled 

b) "short plate" 

(1.4) 

It is clear that in the presence of a non-vanishing chromatism, 
the decrement's sign may be determined by the second term. 

The paper also investigates two-dimensional synchro-betatron 
oscillations(ω = mkωk + mcωc + ∆ω; k = ,). This type of oscillation 
is characterized by the fact that the beam performs coherent 
oscillations both in the transverse and in the longitudinal directions 
with the multipolarities mk and mc respectively. In this case, 
if the betatron oscillations are monitored with a pick-up electrode 
of corresponding multipolarity, the frequency of the signal obtained 
will be modulated by the frequency mcωc. 
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If the plate is longer than the bunch (ℓb < ℓ(|mc| + 1 ) then 

the decrement of synchrobetatron excitation is proportional to the 
quantity 

(1.5) 

and the contribution of "fast damping" is negligible. 

If the plate is short, then the expression for the decrement 
practically coincides with (1.4). 

For strong-focusing machines it may be interesting to study 
a case where the chromatism is large Under this 
condition the decrement is proportional with logarithmic accuracy 
to the quantity 

(1.6) 
and the contribution of "fast damping" may be ignored. 

When examining the radial and longitudinal excitations, it 
is essential to take into account the accelerator's inherent coupling 
of these degrees of freedom. Without allowing 
for this coupling the expressions for the decrements of radial 
betatron and synchrotron excitations are analogous to (1,3), (1.6), 
with a substitution of indexes → Z, provided the decrements of 
synchrotron excitations are small. 

The coupling of radial and longitudinal motions, due to the 
dependence of coherent energy losses on the radial position of 
particles when a line is excited (by the beam), leads to a redistri­
bution of the decrements, as a result of which, generally speaking, 
the radial betatron or synchrotron excitations may become unstable. 

This mechanism may be used to damp the beam's synchrotron 
oscillations. If the decrements are redistributed by means of 
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matched lines, then for all excitations with multipolarity 
|mc| < mmax. = ℓb/ℓ┴, where ℓ┴ is the chamber's cross-section, 
the damping decrements do not depend on m c . (In this case, the 
oscillations of the separate bunches are damped independently). 
The maximum value of a decrement is limited by the stability 
condition of the radial betatron and synchro-betatron oscillations. 

In the third and fourth parts of the paper, qualitative 
methods are used to investigate the stability of a beam having a 
smooth equilibrium distribution of synchrotron oscillation amplitudes. 

For limiting cases (short or long plate) the integral 
equation investigated is converted into an integral equation with 
a symmetrical positive kernel. This property enables the stability 
of coherent excitations to be examined in a general form of arbitrary 
smooth distributions of synchrotron amplitude oscillation in a 
stationary state. In the last part of the paper we investigate 
the solution of the dispersion equation taking into account the 
frequency spread of betatron oscillations. 

The results of this paper show that the use of matched 
plates may be particularly effective for damping the basic types of 
oscillations (single-dimensional betatron and synchrotron). 
Simultaneous stability of the radial and axial synchro-betatron 
oscillations is already guaranteed at low levels of machine 
chromatism. 

1. METHOD 

The state of a beam interacting with an external system may 
be described by the equations: 

(1) 

(2) 
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Here and φ are the vector and scalar potentials of the 

fields induced by the beam which satisfy the boundary conditions = 0, 
φ = 0 at the electrodes; {;} are the Poisson brackets: 

is the canonical, and 
is the kinetic momentum, Aφ is the potential of the focusing 
fields; is the Hamiltonian describing the motion of an 
individual particle in the focusing and beam-induced fields; 

(3) 

m0, e are the mass and charge of a particle, and c is the speed of 
light; F = (, , t) is the particle distribution function 
normalized to the total number of particles in the bunch N: 

In this paper we shall examine the stability of stationary 
beam states with respect to small coherent excitations. In the 
absence of coherent oscillations, the fields acting on the particle 
are periodically dependent on time (where the frequency equals the 
rotation frequency ωs). In this case the particles perform 
oscillations around a particular equilibrium trajectory. It is 
convenient to describe these oscillations in action-phase variables 
(Ι, Ψ), which are related to and by a canonical transformation. 
In the stationary state Ii and Ψi are integrals of 
motion, and the Hamiltonian in these variables depends only on 
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Therefore, the distribution function in the stationary state 
which satisfies the system of equations (1) and (2) will depend only 
on the I action variables. 

In the excited state 

and 

To investigate the stability of small oscillations the system 
of equations (1) and (2) may be linearized in terms of the 
deviations from the stationary state (, , ). In the linear 
approximation 

In the variables (I, Ψ) the linearized equation for takes 
the form: 

(4) 

and the potentials and satisfy the equations (2), where 
in the right hand part F is replaced by 

The normal solution of system (4), (2) has the form 

where 

(here symbol X denotes any of the quantities 

In the absence of interaction ( Ν → 0,the spectrum of 
nrmal beam oscillations 

m k are integers). 
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If the interaction of the beam with induced fields is weak, 

i.e. the particle motion is only slightly distorted during one oscillation 
period (~ 2π/ωk), then the spectrum and form of the excitations 
must be close to the unperturbed values. This means that the main 
contribution to the normal excitation Fω) close to mkωk(ω = mkωk + ∆ω: 
|∆ω| << min.{ωk} 
is given by the harmonic (5) 

and the effect of the others may be neglected. 

Thus, in order to determine the spectrum of excitations due 
to a first order interaction, the approximated equations may be used: 

(6) 

(7) 

where 

The relative error occuring in the determination of the 
shift Δω = ω - mkωk will be of the order |Δω|/|ℓωs + Pkωk|. 

We shall be interested in effects caused by low-frequency 
interactions of the beam excitations with the principal-wave field of 
an ideally matched double-connected* wave guide. The remaining part of 
the fields in the system where the beam is at rest, is of a quasi-static 
nature, and therefore will not be taken into account in what follows. 

*) i.e. the boundary of its transverse cross-section is a double-connected 
contour. 
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The potential of the "principal (TEM) wave" in an infinite 
doubly-connected wave guide has the form: 

(8) 

where () is proportional to the electric field set up by the 
potential difference U0 between the electrodes; 

is the wave impedance and c is the speed of light. 

Under real conditions the beam interacts with a wave guide 
segment, the ends of which are terminated with the characteristic 
resistance (). For low frequency oscillations (ωℓ┴/c << 1) the 
wave guide's potential may be represented by expression (8) where 
() is the real electrostatic field exponentially 

decreasing on a length of the order of the transverse dimensions of the 
chamber ( ℓ ┴ ) , a s one moves along the wave-guide chamber, away from 
the terminating sections. It is significant that in the boundary domains 
the electric field of the"principal wave" has a longitudinal component; 
therefore it may be excited by the longitudinal motion of the particles. 

The value QK(t) from (8) satisfies the equation 

(9) 

the solution of which may be written in the form 

(10) 
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and 

(11) 

Substituting (10) into (8) we obtain from (6) the integral equation 
for Fω, m: 

(12) 

For further calculations we shall require formulae for 
the transition from the co-ordinates and momenta ( , ) of the 
particle to the action-phase variables ( I , Ψ). The effect of 
stationary induced fields on particle motion may be ignored when 
the operating point is far from the machine's resonances. Then the 
transition formulae have the usual form: 

(13) 

Here the subscript S denotes the values relating to the equilibrium 
particle; 2πR0 is the machine's perimeter; ω0(p)is the revolution 
frequency of the particles; µc = (dω0/dp)s-1 is the mass of synchro­
tron motion; f2, are the Floquet functions fulfilling the normalization 
conditions: 

is the number of betatron oscillations per turn; 
is the greatest value of the modulus of the Floquet 

function over one machine period; is the inhomogeneous 
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periodic solution of the equation: 

where n(θ) is the guide field index and R(θ) 
is the orbit's radius of curvature. 

The phase modulation of the transverse oscillation is related to the 
energy dependence of the frequencies ω and ωZ; 

The calculation of the harmonics entering (12) may be simplified 
by using the field potentiality (field derived from a potential) 

By definition of the Fourier harmonic, we have: 

(14) 

where the line denotes the time averaging along the particle 
trajectory. By performing the time integration by parts in (14), we can 
rewrite this expression in the form 

(15) 

(15a) 

For low-frequency field excitations (Kℓ┴ << 1) the 
azimuthal dependence U may be approximated by the expression 

(16) 

where ℓ is the plate length and it is assumed that θ is measured 
from the middle of the wave guide. 
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The harmonic Vkm,n(I) may then be calculated by means of 
a Taylor expansion of (15a) in terms of power of the amplitudes of 
the transverse oscillations ( I ┴ ) . The resulting expression is 
extremely cumbersome and therefore we shall give it only later for 
particular values of m, where necessary. 

In formula (15) the term proportional to (R0K - n), 
corresponds to the interaction of a beam with the edge fields 
and the term proportional to mkνk describes the interaction over 
the plate length. 

We note that when the beam interacts with a system "without 
a memory", the sum over n in (12) depends weakly on the 
accurate value of ω and therefore for a first order accuracy |∆ω|/ωi  
the frequency ω in the right hand part of (12) may be replaced by 
miωi. When calculating sums over n we shall use the summation 
formula 

(17) 

By directly substituting (17) into (12), it can be seen 
that all the terms of the sum with q ≠ 0 vanish i.e. the integrands in 
the integrals over n have no singularities in the plane of 
the complex variable n. In physical terms this corresponds to a 
total damping of the induced fields during the period corresponding 
to one revolution of the beam. 

Taking into account the above, we rewrite the integral 
equation for Fω,m in the form 

(18) 

where Δωm = ω - miωi; ε → +0 defines the integration contour. 
The function Vkm, n may be represented in the form 
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where 

depends only on the amplitude of the synchrotron oscillations φ; 
a┴ is the maximum beam transverse dimension. 

In this paper we shall examine only those cases where only 
the betatron oscillations are non-linear in the stationary state 
and the non-linearity of the synchrotron oscillations may be 
ignored. 

Then, by means of the substitution 

leaving only the lowest powers of the amplitude of transverse oscillations 
in (18), we obtain the equation for xm(φ); 

(18a) 

Here we introduced the following notation: 

(18b) 
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β = υ/c the brackets < > denote the mean of F0(I┴) (we 
assume here that Fst(I┴,I┴) can be factorized); 

With no frequency spread (the oscillations in the stationary 
state are linear) the spectrum of normal collective excitations 
coincides with the spectrum of eigenvalues of equation (18a): 

ω - mkωk = Ωm. 
If the oscillations in the stationary state are non-linear, the 
frequencies of normal oscillations ω may be found from the 
dispersion equation (18b), having found first the eigenvalues of 
equation (18a). 

Generally speaking, the solution of the integral equation (18a) 
with some smooth distributions (φ) requires the application of 
numerical methods. We shall investigate below a series of cases where 
the qualitative dependence of the spectrum of normal oscillations on 
the characteristic parameters of the problem (length of plate, 
length of bunch, dω┴/dωs etc.) can be obtained analytically. 

II. MODEL SOLUTIONS 

For simplicity's sake, we shall examine only those excitations 
for which the collective betatron oscillations in the beam are one-
dimensional, i.e. 

1. Axial and axial-longitudinal excitations 

First let m = 0 (axial-longitudinal excitations). The 
formula for ∆ω is easily obtained for a model distribution 

(19) 

where ∆ is linked with the beam's "length" 
In this case is equal to 

(20) 
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(20a) 

where the notation is introduced. 
By substituting (19) and (20) into (18a), in the ultrare-

lativistic case we obtain the 
decrements (δ = - Jmω) of the axial-longitudinal excitations; 

(21) 

Here Jm(x)is the Bessel function of order m; 

is the classical radius of a particle. 

Formula (21) simplifies in two limiting cases: 

a) short bunch. After integration over n, we 
obtain 

(22) 

The factors Φ1, Φ2 and Φ3 are equal to 
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where are the co-ordinates of the ends 
of the plate. 

Formula (22) differs from the corresponding formula from 
paper (4), in the terms proportional to Φ1 and Φ2. 

The first term in (22), proportional to the length of the 
plate, represents the damping decrement of the coherent 
motion of the beam due to the energy loss into the matched line due 
to the transverse motion of the bunch. We should point out that 
this decrement is always positive and corresponds to the "fast dam­
ping" previously obtained in (5). The second term, which does not 
depend on the length of the plate, corresponds to the so-called 
"head-tail" effect. This term's sign depends on the type of excita­
tion and the sign and value of dν/dℓnR0. Its occurrence is 
physically linked to the fact that at the edges of the plate, where 
the electric field of the "main wave" has a longitudinal component, 
a (ΤΕΜ) wave is excited by longitudinal motion. 

For mc ≠ 0 the factor Φ1 is proportional to the value 
and therefore the synchro-betatron excitations may be­

come unstable. However, excitations with mc =0 may always be made 
stable by selecting an adequate plate length. 

We should point out in particular that the value of the "boun­
dary" terms is proportional to the 2|m| -order of the Floquet 
function modulus at the edges of the line. This factor may be deci­
sive in the selection of the position of the plates in machines with 
large beats of the Floquet function (machines with low β - func­
tion values). 

In the azimuthally-symmetrical case, if the guide field is 
linear, then 

n is the guide field exponent. The stability condition has the 
form δ > 0 
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1) 

(23) 
2) 

that is, in this case, the axial-longitudinal excitations are sta­
ble. A more general stability condition (for arbitrary focusing) 
may be obtained directly from (22). 
We shall give also the formula for the decrement for the most impor­
tant type of oscillation when 

(24) 

If the machine's chromatism is large 

(as is the case in strong-focusing machines), then the decrement of 
a short bunch may be estimated with logarithmic accuracy by means 
of the formula 

(22a) 

In obtaining (22a), it was assumed that the guide field was 
azimuthal by uniform. 

We note that the decrement δ is inversely proportional 
to the length of the bunch ℓb and the quantity dω/dωs related 
to the machine's chromatism (the dependence of the numerator in (22a) 
on ℓb is weak, because it is logarithmic). 
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b) a long bunch. For simplicity's sake we shall 
assume that the guide field is a azimuthai-uniform. We then obtain 
from (21) 

(25) 

It is clear that instability may occur when the machine's 
chromatism is negative. We should draw attention 
to the fact that the decrement in (25) is inversely proportional to 
the bunch length ℓb. This is related to the fact that at 
ℓb >> ℓ(|mc| + 1), the main contribution to the integral (21) is made 
by the harmonic interval Δn ~ R 0/ℓ b; the contribution of each har­
monic in this interval is of the order of (ℓ/2R0)2), so that 

2. Radial-longitudinal excitations (m = 0) 

Collective excitations of this type may differ substantially 
from axial-longitudinal excitations due to the coupling of radial and 
longitudinal particle motion in the storage ring. Therefore, when 
calculating modulation of the azimuth by 
betatron motion needs to be taken into account. The function 
gm,nu(φ) is represented by the sum 

(26) 

where is obtained from (20) by substituting the index 
and which describes the effect of radial-longitudinal 

coupling, is given by 
for 

(27) 
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where 

After substituting (27) and (19) into (18a), we obtain the formula 
for the decrements 

in which δm(0) is obtained from (21) by substituting the index 
for n, equals 

(28) 

where 

The integral over n in formula (28) diverges logarithmically. Howe­
ver, in a real case, where the "length" of decrease of the edge 
field is finite, the integrand in (28) can be multiplied by a fac­
tor which cuts off the integral over n at a value of the order 
n0 ~ R 0 /ℓ┴. In order to estimate the decrement in terms of its 
order of magnitude, the specific form of this factor is not 
important. In particular, the infinite limits of integration in (28) 
may simply be replaced by finite limits with |nmax| = n0. 

We shall give the formulae of the decrements in two limiting 
cases: 

a) 

(29) 

where 
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We note that δm(1) does not depend on dω2/dωs and, at 

(30) 

it reduces the decrement of the radial oscillations. 

If δm(0) is positive, then, by comparing (29) and (22), we see 
that the radial oscillations (mc = 0) may become unstable when 

and the radial-phase oscillations when 

In this case, the increments of normal oscillations are 
inversely proportional to the length of the bunch ℓb. We shall 
give the decrement expression for the most important type of oscil­
lation 

(31) 

b) For an azimuthally-uniform machine 

has the form 

(32) 

It must be pointed out that the appearance of large 
logarithms in formulae (25), (29) and (32) is a specific peculiarity 
of distribution (19). This is so because the decrements in formulae 
(25), (29) and (32) for an arbitrary smooth distribution (φ), 
determine the sums of the decrements of normal beam excitations. 
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At large excitation(mode)numbers the separate decrements decrease 
slowly as the mode number k(δk ~ 1/k) increases, so 
that the sum turns out to be logarithmically large. 

3 Synchrotron excitations 

For excitations with ω mcωc, mz = m = 0 with an accuracy 
up to the order ( a ┴ / ℓ ┴ ) ( a ┴ is the tranverse beam's width), 
equation (18a) may be written in the form 

(33) 

where 

in this case, we shall use the assumptions that the guide field 
is azimuthal by uniform and that the bunch moves parallel to the axis 
of the wave guide. In view of the low value of the synchro­
tron frequency (ωc << ωs), the function may be represented 
as: 

In this section, we obtain a solution for (33) for a case where 
q (y) is a "step", 

(34) 

From (33), we immediately obtain the dispersion equation 

(35) 
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As Jm (X) is an odd function of X, the first term in (35), 
which is directly due to the total energy losses, contributes only 
to the real part of the frequency shift. The second term , which is 
proportional to the loss gradient, determines the excitation decre­
ments, equalling: 

(36) 

The above expression simplifies substantially in two limiting 
cases: 
a) ℓb << |mc|ℓ "long" plate. When this condition is fulfilled, the 
square of the sine in (36) oscillates rapidly and it my be replaced 
by the mean value: 

(37) 

The condition for the damping of coherent synchrotron oscillations 
is 

(38) 

This signifies that, for > 0, the plates must be situated on the 
outside of the equilibrium orbit. The physical reasons for this 
are obvious the modulation of the coherent (energy) losses must 
be such that when the energy increases these losses increase. We wish 
to draw particular attention to the outstanding characteristic of 
this method of damping: for all excitations c|mc|<ℓb|ℓ┴ the decre­
ment's value does not depend ont the multipolarity number (the cons­
traint on mc is related to the fact that at |mc|>ℓb|ℓ┴ 
the excitation of other types of wave has to be taken into acoount). 
This is because the radiation formation length equals the "length" 
of the edge. 

that is, separate "bunches" radiate independently (6). 
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b) short plate. In this case, the main contribution to 
the integral in (3d) is made by the region 
We then obtain with logarithmic accuracy: 

(39) 

The condition for the stability of excitations, as in the 
case of a short bunch, is also given by inequality (38). 

III. QUALITATIVE PICTURE OF THE EXCITATION SPECTRUM FOR 
SMOOTH (φ) 

In this section, we shall examine a serie of limiting cases 
where equation (18a) may be converted into an equation with a real 
symmetrical kernel. The spectra of the eigenvalues of such 
equations have been well-studied (viz. for example (8)), so that 
it is possible to study the stability of excitations for a compara­
tively wide range of smooth (φ). For simplicity's sake we 
consider an azimuthally-symmetrical guide field and 
assume that (φ) depends on one parameter: the "width" ∆. 
That is, 

(40) 

For the time being we shall assume that = 0, and then 
equation (18a) may be written in the form 

(41) 
where 
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The function equals: 

(42) 

The kernel i.: clearly symmetrical: 

1. Betatron excitations (mc = 0) 

Let us first examine one-dimensional, say axial excitations of 
a short bunch ℓb < ℓ. Ignoring quantities of the order 

we rewrite in the form 

(41) is transformed into the equation 

in which the function q(y) is positive by definition. It is shown 
in the annex that all the characteristic roots of such an equation 
are positive numbers. 

Therefore, in the given approximation, the decrements of 
one-dimensional excitations are positive and equal to 
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As the eigenvalues satisfy the inequality π/2 (viz. (A.6)), the decrements fulfil δk δ0 where δ0 
is the decrement of one-dimensional betatron excitations 
obtained in (5). 

When is of the order of unity, the numerical 
solution (41) is required in order to investigate the stability 
of the excitations. 

In the case of two-dimensional betatron excitations 
the coherent oscillations may become uns­

table. The excitation decrements equal: 

Hence we immediately obtain the oscillations stability condition 

coinciding with that obtained in/5/. 

2. Axial-longitudinal excitations (mc = 0) 

a) Short bunch In this case, with accuracy up to the 
order of the kernel equals: 
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Therefore, the excitation decrements may be written in the form 

(43) 

where λk are the characteristic roots of the equation 

(44) 

which are clearly real positive numbers (viz. annex). Consequently, 
the condition for the stability of excitations takes the form: 

(45) 

as for a δ -type distribution. 

If the excitation is unstable (dω/dωs < 0), then it is 
interesting to know the region containing the numerical value of 
the maximum increment. According to the formula (43) δmax. is 
determined by the maximum eigenvalue of equation (44) λmax  

for which the inequalities (A.6) of the annex are correct. 

This estimate depends both on the type of distribution and 
also on the type of "test" function (y) (viz. (A.5)). For exam­
ple, for the distribution q = 2exp and the test function (-y2) 

we obtain inequalities for λmax 

b) Lastly, we shall examine the axial-longitudinal excitation of a 
long bunch ℓb >> ℓ(|mc| + 1). In this case the main contribution 
to the interaction of the bunch with the line is made by the region 
of the harmonics of the revolution frequency 

(46) 
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In this case the kernel may be written in the form 
(47) 

where 

Using the standard method (viz. above), equation (47) leads to 
an equation with a positive symmetrical kernel. Therefore, the sta­
bility of the excitations is determined only by the sign of the 
chromatism 

The excitation decrements, equal to 

(48) 

are expressed by means of the eigenvalues of the equation 

which is easily obtained from (41), taking into account (47). 
The corresponding estimate for the maximum increment will be given 
below (viz. point 4). 

3. Radial-longitudinal excitations (m = 0) 

As mentionned above, this type of excitation differs from 
axial-longitudinal excitations in storage rings by the presence of 
coupling between radial and longitudinal collective bunch motion. 

Taking into account the modulation of the azimuth θ by 
the radial oscillations, we rewrite (18a) in the form 

(49) 
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where λm and K┴(y, ) are obtained from the corresponding 
values in (33) by replacing the index by , and equals 

(50) 

The equality (50) is obtained by ta ing into account the fact that K(y/y') 
describes the interaction of the bunch with the boundary fields, when 
harmonics of the revolution frequency with n > R0/min. {ℓb,ℓ} are 
significant. The nature of the excitation spectrum is determined by 
the value 

where 

If the value ξm is low (|ξm|<< 1), then it is clear 
that the influence of K on the solution of (49) is weak and it can 
be taken into account in terms of perturbation theory. In this case 
the stability of excitations is determined by the proper­
ties of the kernel K┴ (y/y') so that the stability 
conditions have the same form as in the above section. 

We shall calculate the distortion of the spectrum K┴ due 
to K. For simplicity's sake, we shall assume that the eigen­
values of K┴(y/y') are non-degenerate. We then have in the first 
order of the perturbation theory 

(51) 
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where λkm,0 and are determined from (49) at K(y/y') = 0, 
and x(k)m,0 satisfy the normalization conditions 

By comparing (51) with (42), (43) or (48) we find that the ratio 
|λkm - λkm,0|/λkm,0 equals |ξm| in the order of magnitude. 

In the inverse limiting case (|ξm| >> 1) solutions of 
(49) are mainly determined by K(y/y'), a and K┴ may be consi­
dered as a small perturbation. 

Without perturbation (K┴ = 0) the excitation spectrum is 
determined by the equation 

(52) 

where λ = λm/. By means of the substitution 

the above equation is transformed into an equation with a positive 
symmetrical kernel. Therefore, all the eigenvalues of (52) are 
positive. The excitation decrements equal: 

(53) 

where λk is the eigenvalue of (47) with the number k. 

The stability condition (δk > 0 ) has the form 

(54) 
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Generally speaking, eigenvalues of equation (52) depend 
on the parameter ℓb/ℓ. However, it is clear from (52) that this 
dependence is extremely and in the limit ℓb/ℓ→0 drops out 
completely. 

4. Synchrotron excitations 

In this case the equation has the form (33). We  
should point out that if (φ) depends only on one parameter, then, 
for a convergence of the normalized integral for q, the following 
is generally required 

For such q(y) distribution, in the case of extremely short 
(ℓb << |mc|ℓ) or extremely long (ℓb >> |mc|) bunches, the stability 
condition of the synchrotron excitations coincides with (38) and 
does not depend on the form of the distribution in terms of the 
amplitudes of the synchrotron oscillations. 

First let ℓb << |mc|ℓ. Then equation may be rewritten 
in the form: 

(55) 

where 

(56) 

Equation (55) leads easily* to the integral equation with a 
symmetrical positive kernel. Therefore all its characteristic roots 
are positive numbers. 

* viz. Annex 
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The excitation decrements are expressed by of the eigen­
values of equation (55) according to the formula 

(57) 

K is the solution number (53). Hence it is clear that δk 
will be positive if (38) is fulfilled. 

The numbers λ counded from above by the value 
(viz.(A.6)) 

(58) 

and the integral in the numerator of (58) appends fairly weakly on 
the specific form of the function q(y). Therefor, the decrement δ  
given by (37) may be considered to be the upper limit for (55). If the 
bunch is longer than the plate ℓb >> ℓ|mc|, then equation (33) may 
also be transformed (with accuracy up to terms of the order |mc|ℓ/ℓb) 
to an equation with a real positive kernel. Therefore, the stability 
condition in this case also has the form (38). 

IV. SPECTRUM OF -WAVE OSCILLATIONS 

In this section we obtain the spectrum of excitations caused 
by the interaction of a bunch with the high-frequency part of the 
induced fields (n >> (|mc|+1)/∆). 

Let us first examine the axial-longitudinal excitations. 
By introducing the new unknown function 

we rewrite equation (41) in the form: 

(41a) 



- 33 -

where 

(59) 

and L┴(x) is determined by formula (42). 

In the high-frequency region (x >> |mc| 1), the function 
g(x/x') has a sharp maximum (with a width of the order of one unit) 
at X' X, and g(X/X') decreases quickly as X moves away from X *. 

It is possible to obtain the short-wavelength part of the 
spectrum in two limiting cases: 

a)ℓb << ℓ Fast oscillations of Φ(X) may be ignored in the range 
Δ Χ ~ 1 which corresponds to the substitution 

b) In the opposite limiting case (ℓb >> ℓ), as can be seen from 
(42), the variation of Φ(X) may be ignored in the range ∆x' ~ 1: 

Therefore, in the case under investigation, we nay write 
approximately 

(60) 

*For example for 

for 
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By substituting (60) into (41a) we octain the spectrum of 
excitations in the short-wave resion 

(61) 

The decrease of the correlation of the revolution frequency 
harmonics Cm(X) when X >>|mc|+ 1 means in physical terms that 
the normal excitations due to the interaction of the bunch with the 
high-frequency part of the incused fields are close to "plane waves": 

In this case the "distance" between the separate modes is 
of the order of the width wnich corresponds 
to 

The calculation of the decrements is simplified in two 
limiting cases: 

a) ℓb << ℓ. The function may writte the form 

By substituting into (61), we obtain the expressions 
for the decrements (δ = Jmω) 

(62) 
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By integrating the decremente (62) over X it is 
easy to obtain the corresponding sums of the decrements (|mc| ≠ 0): 

The above formulae coincide well (at m c ≠ 0) with (22) and (22a) 
respectively. This coincidence is conditioned by the fact that 
the main contribution to the synchrobetatron excitation of a short 
bunch is made by the interaction with boundary fields which are 
substantially non-uniform in θ . Therefore, the spectrum of the 
high-frequency excitations is expected to join directly 
the spectrum of the low-frequency excitations. 

Hence it follows that formulae (62), extrapolated into the 
low-frequency region X |mc| > 0 , should give (in order of 
magnitude) the maximum decrement (increment) of the axial-longitudinal 
excitations of snort buncn:* 

b) ℓb >> ℓ. In this case, the most interesting region from the point of 
view of the estimate of the oscillation's maximum increment, is 

Using (59), we may write Φ(x) in this 

* For excitations with mc = 0 this extrapolation is not valid as 
the determining contribution to the decrements of long-wave 
excitations is made by the harmonics 
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region in the form: 

In this case, the maximum increment may be estimated by 
formula: 

For radial-longitudinal excitations the function Φ(X) in  
equation (41a) is replaced by 

In this case the decrements of high-frequency excitations may be 
written in the form: 

where δ┴(X) is obtained from the decrement of axial-longitudinal 
excitations by substituting the index for π, δ(X) 
describes the effect of radial-longitudinal coupling. 

For a short bunch (ℓb << ℓ) the quantity δ(X) may be 
calculated using the formula 

(63) 

where 

The maximum decrement in order of magnitude equals 



- 37 -

If the bunch is longer that the plate then 

(63a) 

In this case the maximum decrement in order of magnitude equals: 

V. ON THE EFFECT OF FREQUENCY SPREAD 

In this paper We shall investigate only those cases where 
the oscillation's frequency spread in the stationary state is 
determined only by the non-linearity of transverse motion, and the 
non-linearity of longitudinal motion may be ignored. For an 
excitation of arbitrary multipolarity, the dispersion equation 
(viz. (18b)) has the form 

(64) 

where Am is the normalizing constant equal to 

Ωk is the eigenvalue of equation (18a) with the number K (which 
is the solution of equation (64) without spread). 

Despite its apparent complexity, equation (64) may be easily 
reduced to a standard form. To do so let us introduce a new 
variable into (64) 

(65) 

where the variable X0(IZ,I) may be chosen such that the Jacobian of 
the transformation (65) is unity: 
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Equation (64) then changes to 

(36) 

where ω0 = mω(0,0) + mω(0,0) and the quantity g(ε) corresponding 
to the "effective" frequency distribution density, is determined by 
the equalit 

(67) 

The function g(ε), by definition, is normalized to unity: 

Equation (66) may be investigated by standard methods. sing 
Nyquist's criterion, it is easy to establish that, in order that 
all the roots of (66) lie on the lower half-plane, ( ω ) , it is 
sufficient to fulfil the inequality 

(68) 

where εi are real numbers determined from the equation 

Here f signifies that the integral must be calculated as a principal 
value. 

In particular, the inequality (68) 

(68a) 
holds certainly, 
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where gmax. is the largest value of g over the entire range 
of variation of ε. Therefore, if the inequality(68a) is fulfilled, 
the coherent oscillations are damped. 

This means that the stability of coherent notion may be 
guaranteed by selecting parameters of the external system so that 
the complex coherent frequency shift Ωk falls within the circle: 

We should point out that conditions (68) and (68a), generally 
speaking, are not necessary. Therefore, if they are violated, it 
does not follow that the oscillations will be unstable. 

Conditions for the stability of coherent oscillations when 
there is a spread, may also be obtained by investigating equation 
(68) close to the instability threshold (ω-ω0 → ω + iδ,δ→0) (5). 
Equation (66) then breaks up into two equations: 

(69) 

For a given distribution function g(ε), the system of 
equation (69) defines in a parametric form the boundary of the 
stability region in the plane of the complex variable δk. The 
position of the stability region in relation to the boundary curve 
is determined by the relationship/5/ 

(70) 

In the above relationship Ω' is a point in the plane of the 
complex variable Ωk situated near the boundary of the stability 
region and ω corresponds to a point or the boundary curve. 

For given parameters of the external systems, equations (69) 
may be used to calculate the threshold current and coherent frequency 
shift at the instability threshold. For this purpose it is more 
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convenient to rewrite (69) in the form: 

(69a) 

where the following notation is introduced Ωk = NΩk 

For further analysis it is essential to specify type of 
density g(ε). Let us examine, For example, two-dimensional 
synchrobetatron excitations (ω = mω + mcωc + ∆ω) assume, 
moreover, that the non-linearity of motion in the stationary state 
is determined by the cubic non-linearity of the guide field. Then 

(71) 

The form of the distribution function Or g(ε) depends substantially 
on the beam dimension determining the frequency spread (vertical or 
radial). 

Let us say that the spread is "intrinsic" if 

In this case the dispersion equation may be written in the 
form 

(66a) 

where 

In this case, g(ε) equals: 

(72) 

where 
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In the inverse limiting case: 

we shall call the spread extrinsic. In this case the function g(ε) is: 

(73) 

From (72) it is clear that the form of the frequency 
distribution is determined not only by the particle distribution in 
terms of the oscillation amplitudes but also, generally speaking, 
by the multipolarity number m(mZ in the case of radial-longitudinal 
excitations). We should point out in particular that 
the"effective" distribution width g(ε) increases approximately 
like (|m|½). Moreover, g(ε) has at least one maximum which, 
for monotonie F0(I) occurs approximately at ε |m|<I> 

An important factor is the fact that g(ε) is generally 
not symmetrical to its maximum. Therefore, the boundary of the 
stability region is given by 

(74) 

It is not symmetrical to the axis JmΩk(viz. Fig. 2, 3)· 
In particular, it coincides with the axis ReΩk for 

(75) 
Consequently, if the value of the coherent frequency shift 

introduced by the system is such that inequality (75) is fulfilled, 
it is impossible to stabilize coherent oscillations by means of a 
spread. 
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From the equations (74) it is clear that when the sign of 
α is reversed, the stability region is reflected around 

the axis JmΩk. Due to the asymmetry with respect to the 
JmΩk axis, the stability region does not transform into itself. 
This means that for external systems (in the case of "intrinsic" 
spread) with 

the coherent oscillations may become unstable after changing the 
sign of α. 

In the case of extrinsic spread, the integral P(ε) diverges 
logarithmically when ε → 0 . However, this only affects the value 
of the coherent frequency shift limit Re Ωk lim., which must not 
now be calculated by means of (75). ualitatively, the results 
remain as before. 

The value of the thr instability current may be easily 
calculated for monotonie F0(I) in the case where Here, 

which means that the roots of the first equation (69a) 
must be close to ωm (corresponding to the maximum of g(ω)), 
that is The value of the threshold current may 
consequently be estimated by means of formula: 

(76) 

where the quantity 

determines the frequency spread of betatron oscillations. 
By substituting in formula (76) the excitation increments 

obtained in the previous sections, it is possible to obtain formulae 
for the Threshold current of a beam interacting with matched plates. 
Clearly, the expression for the maximum increment, which may be 
estimated for an arbitrary smooth distribution (viz. section III) 
must be inserted into (76). 
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For example, if the machine's chromatism is not too great: 

then, for axial longitudinal excitations (m ≠ 0) N may be 
written in the form 

a) 

(77) 

where the quantity Lm(s) depends on the distribution 
(for a δ -type distribution Lm(s) = 4mc2 - 1 . 

b) 

(78) 

For δ -type distribution the factor Lm(ℓ) equals ℓn(ℓb/ℓ(|mc|+1)); 
for a smooth distribution it is of the order 1/(|mc|+1). e should 
point out that the above formula is in good qualitative agreement 
with the experimenta results obtain /3/, /9/ and 
CEA/10/. 

If the machine's chromatism in 

then, in order to estimate the Threshold current, it is necessary use formula (22a). In this case Nth has the form: 

(79) 

where the factor Lm(3) depends on the shape the function of the synchrotron oscillation amplitudes in the 
stationary state. 
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From formulae (77) - (79) it is clear that, depending on the 
relationship of the characteristic parameters of the problem, the 
functional dependences of the threshold current (in particular on 
beam length and on the machine's chromatism) may vary considerably. 

If the value of the coherent frequency shift is great: 
, which is possible 

only for 
then 

In this case P(ωth) 1/ωth and, according to (69), 
ωth Re Ωk.In order to determine Nth, we therefore 
have the transcendental equation 

(80) 

Annex: 

Here we shall show that all the eigenvalues of the integral 
equation 

( ) 

have the same sign, where q(X) does not change sign in 0 ≤ X < ∞, and 
the kernel takes the form 

(A.2) 

where c(t) and b(X) are real function. 

To be specific, let us assume that 
After multiplying the righ and  
we obtain an equation for 

(A.3) 
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The spectrum for this clearly coincides with the spectrum of (A.1) 
and the kernel K1(X/X'), linked with K(X/X')by the relationship 

is real and symmetrical. 

Formally (viz. for example (, the square of K1 is integrable. 
This means that the integral 

has an upper limit. This requirement is certainly 
fulfilled if the sum of the characteristic roots of (A. is finite. 
In fact, taking into account (A.2) and the unjakowski/schwarz 
inequality, we obtain 

the last quantity in (.4] exactly equals the square of the sum of 
the eigenvalues in (A.1). Hence 

The characteristic numbers equation (A.3) are real and positive. 
That is due to the fact that (viz. ()); K1(X/X') a positive 
kernel, that is, there exists an integral 

where (X) of such a type that it can be expanded in terms of the 
eigenfunctions of the integral equation (A.3). 

In fact: 
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In order to estimate the increment of the oscillations, the 
following formula may prove useful 

(A.5) 

when 

Since all λ are positive, then clearly λmax is within the limits 

(A.6) 

The second inequality in (A.6) may, on the other hand, be obtained 
by the direct application of the inequality to 
the right-hand part of (A.5). 

If q(X)<0 then by substituting λ for - λ and q(X) 
for |q(X)|, it is easy to reduce the equation to the form of 
(A.3), the spectrum of which is positive. Therefore, for q(X)<0, 
0 ≤ X < ∞, all the eigenvalues of (A.1) are negative. 
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Fig.1 Effective frequency distributions Tor a beam with an 
exponential distribution in terms of tne squares of betatro 
oscillations amplitudes in the stationary state (via.(72)(73)). 
Curve 1 corresponds to the "extrinsic"spread. Curves (2), (3), 
(4), (5) and (6) correspond to the intrinsic spread and the 
multipolarities m = 1, 2, 3, 4, 5 respectively. 

Fig.2 Boundary of the stability region for distribution (1) (Fig.1. 
The solid curve corresponds to > , the hatched curve 
to α < 0. 



Fig.3 Boundary of the stability region for effective distributions 
(2), (3), (4), (5) and (6), (fig.1) α > 0. 

Fig.4 The s a m e f o r α  


