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1.  CONCLUSIONS

i) Single~bunch modes are harmless.

ii) Coupled-bunch modes are serious, with growth times of the order
13 . .. . . ) .
of 1.6 ms for 10 particles at injection and increasing linear-

ly with Y to 32 ms at 200 GeV.

iii) Sextupoles or the natural machine chromaticity have little or

no effect on bunched beam instabilities.

iv) Octupole Qz—spreads of order of ¥ 5 x 10_3 across the beam are

sufficient to cure the instability.
2. REVIEW

The original calculations for bunched beam instabilities were made by
Courant and Sesslerl), who assumed that the bunch would move as a rigid unit.
This was extended by Lee, Mills and Mortonz) to include breathing motion and
higher "throbbing beam" modes. Both calculations neglect synchyotron motion
and require that the transverse motion be the same all along the bunch length.

3) 4)

Further progress was made by Fellegrini™ and Sands ~ who included synchro-

tron motion, the effect of machine chromaticity, and also the higher head-tail
modes in which different parts of the bunch oscillate with different phases.

Examples of these modes are the standing-wave patterns

X:o ] l:l

(rigid-dipole mode)

that show the variation of transverse dipole moment along the bunch. The
same is true for quadrupole and higher transverse multipole modes. If machine

chromaticity or sextupole terms are included, the patterns acquire an ad-



ditional traveling-wave component. As far as transverse oscillations are
concerned, these modes form a complete set, which may be driven unstable
by beam—equipment interactions such as resistive-wall, cavities, pick-up

electrodes, etc.

If many bunches are present, all with the same frequency, the bunch
phases will be locked together in patterns with an integral number of wave-—
lengths around the machine circumference. On the other hand, a sufficient
spread in bunch frequencies prevents this phase~lock, and single-bunch modes

result with a consequent reduction in growth rate.

3. FORMULA FOR SINGLE-BUNCH MODES

We consider only the dipole modes since they generally have the fastest
growth rates, The resistance in a smooth, round vacuum chamber causes a

growth rate

l-= - Im Aw
T
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where F ' and F_, are form factors that depend on the type of mode - shown

2 %
in Figs. 1, 2 and 3

G(27,Q) is the bunch function of Courant and Sessler
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particles/bunch

b
Nb %5 8c?d r = eZ/m c2 = 1,53 x 10 18 m
&%, = o o
" V2T Ty b? Q § = skin depth at rev. freq. ~ 2.4 mm
b = vacuum chamber half-height ~ 2,6 cm

If ¥ » 0, the lowest head-tall mode ({ = 0) approaches the rigid-bunch

mode of Courant and Sessler, and (1) becomes
T {G(en,Q) + (1,89 ~ 1 0.377%) -2—%@] (2)

This agrees with the C + S result except for

1) an error of v2m' in their eq. (4.4) that Mortons) has peinted

out previcusly

. . L
ii) they neglect synchrotron motien so that for them ¥ = Q ik

Equation (1) also includes the head-~tail results of Pellegrini and
Sands except that more realistic modes are used here that result in some=
what larger growth rates. A report covering the derivation of (1) should

‘be available soon.

4. FORMULA FOR COUPLED-BUNCH MODES

For M identical bunches Eq. (1) still applies if G(27,Q) is replaced by

\i e(em, 25 S

For large M (say M > 5), Hubner and Zotter

6)

show that this approaches

1+ i Sign (n = Q) M
\/2- n - q

where n is an integer, 1In the limit of large M, the near-field term in (1)

approaches zero because ¥ ~+ 0, and

L1 sign (n - Q) MAw (3)
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which is identical to the coasting-beam result of LNS/). These frequencies

are sketched in Fig. 4 for Q = 28 % .
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The frequency diagram for 4,600 bunches differs from Fig. 4 only near the

origin, and the differences are too small to be seen.

5. CRITERION FOR COUPLED MOTION

The most serious mode, n = 29, is also the most resistant to perturbation,

while the modes with n much different from 29 are closely spaced and thus more

easily modified. A criterion for the strength of perturbation required to

destroy a given mode can be derived from perturbation theory. It is convenient

to derive this criterion in the continuum limit M - ®©, but the result is also

valid for the discrete case, In the continuum limit, the bunch-coupling matrrix



Eq. (3.20) of Courant and Sessler becomes

27
aw(e) = [ x(e' - o) v(er) aet, 4)
o

where ¢(8) is the amplitude of oscillation of the bunch at 8, and 8 is
measured from a reference bunch, The eigenfunctions and elgenvalues of

{4) are

R 2T .
8 v ing
v () = ™, = [ k(o) ae
n 1 4 (5)

U + iV evaluated at (n - Q)wo.
For the resistive-wall interaction, An = Amn of Eq. (3).

We now perturb Eq. (4) by allowing the bunches to oscillate with different

frequencies,

21
aw(e) = w(e)y(e) + [ x(e' - 6) v(o") as', (6)

0
where w(0) is the frequency of the bunch at §, but measured with respect to

the average frequency so that

21
Jw(e) as =0 . N
0

The new eigenvalues are found from perturbation theorys). Define the matrix

elements
21

_oaEmo u 1 i{n - m)e
ek R AORORRORIES - [e w(o) 46, (g

where bhecause of (7) wmm = (0 for all m. Then to first order, there is no

change in A ,
n



To second order,

e 8

% is much less than the spacing

This is wvalid provided the shift An - kn
between level n and the rest. TFor the resistive-wall imteraction, mode
n = 29 (assuming Q ™~ 28 %) has the largest spacing and is therefore the

most. difficult to destroy. The condition that this mode remain intact is

w._ W
Lo _mmn € | hog = sg | with n = 29 , (10)
m oo .0 29 30
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and because w = W , condition (10) becomes
mn nm

b ]wnm|2 <€ j?‘zg - ;\30 with n = 29 , (1)

From (8) we see that Z|mnm|2 1s the sum of Fourier components of w(8).

That is, if \
@ i 217
. ike . 1 ' "
w(e) ; z e 3 with ak = j w(e) o lkede ,
= a0 0

then

Thus (10) becomes

w? << AXZ



or

w < [AX] for coupled motion, (13)
rms

where wrms is the rms spread of bunch frequencies and AX is the spacing
between the mode in guestion and the next nearest mode. This criterion

is completely general and applies to longitudinal as well as transverse
motion, to coupling caused by cavities, pick-up electrodes, as well as
resistive~wall interactions, It is analogous to the rule-of-thumb cri-
terion for Landau damping in coasting beams, namely the spread in particle
frequencies should exceed the frequency shift caused by the coherent mo-

tion.

The frequency spread may result from rf gquadrupoles, or naturally
from population differences between bunches via the coherent Laslett (-shift

ch. In the latter case (13) becomes

AN for coupled motion. (14)
(IN)rmsawc < &k

As pointed out by D. MGhlg)

. ch should not include the usual DC magnetic
field terms since these shift the frequency of each bunch the same amount,

. . . . 1
independent of population differences. In this case

N = total number of particles
5y NroBe B = bunching factor <1
Mg ==+ o3 (15)
QBE v b = vacuum chamber half-height
£, = image coefficient o~ I

16

For large v, other population dependent frequency shifts become important,
including the resistive-wall term (1), the effect of cavities, dielectric
or oxide coatings on the vacuum chamber, plus neutralizing electrons and

ions.



6. NUMBERS FOR THE SPS

6.1 Normal acceleration in 4620 buckets

Unless stated otherwise we take

1013 particles

N o=

vy = 10

b= 2.6 cm

L = 15 ¢cm

B =20.1 (:
Q = 28.75 '
YT = 28

£ =-1.,33

W, = 2.74 x 10° rad/s.

Then Aww = 0.096

and the betatron phase shift ¥ is sketched in Fig. 5.
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If we ignore the non-adiabatic region near transition, then ¥ € 2 rad and

tha £ = 0 mode dominates,

bo = =~ dw [G +215 P ()] ,

where the maximum value of Im FO(X) is

0.1 before transition (Y positive)

0.6 after transition (Y negative).

If the bunches were decoupled, G = G(28.75) &~ - 1 + i, so near—fields

dominate and

= 0.096(1 + 215 x 0.6) = 12.5 ,

i
[

8C ms.

~
H

with

This is the maximum possible growth rate and occurs just after transition.

We conclude that single bunch modes are not serious.
The more likely case is coupled motion with

¢ =2tk 4820 . 9 4 ) 6500
VA

for the mode with 29 wavelengths around the machine circumference, Now

near—-fields are negligible and

Ao - 0.096(1 + 1)6500 = - 624(1 + i)

H

H

with T 1.6 ms.

The criterion for coupled motion is

2 < m

{Bug +"‘i(7?'rmu
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where we take

LA = |Aw] = 883

Aw = 475,
[ad

Thus to decouple the bunches requiresa relative population spread of

(%g) > 1,85
Tms

. . N
or a full spread at half-height exceeding 370%. One expects (éﬁ> to be
rms
at most 0.1, corresponding to a 207 spread at half-height. Therefore, even
large contributions to ch from electrons, ions, ete. are unlikely to de-

couple the bunches. This remains true at higher energies.

Sextupole terms or changes in the machine chromaticity change the beta-
tron phase shift X. As ¥ increases, the instability is shifted to the higher
head-tail modes which have slower growth rates. However, teo achieve a signifi-
cant reduction in growth rate would require an order of magnitude increase
in chromatieity. Because of the short bunch length, it is very difficult to
have a large betatron phase shift between head and tail. We conclude that

changes in chromaticity have a negligible effect.

Octupoles cure the instability if they produce encugh frequency spread
within a bunch to prevent its coherent motion, that is provided
Arot > total frequency shift due to coherent motion

= |u+ iv|/w .
Q

1)

This has been computed by D. Moh1'Y who finds

Arot > 0.0%

2
across the beam vertically. At N = 101“ we need 0.001.
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6.2 Injection and debunching of 20 PS bunches

. L .
Since there are no synchrotron forces,X = Q = . Equation (1)

\ 2MR
b = - 22,0 ¢, [6 75 (0 +\/~f— F* () |

For decoupled motion, G(28.75) ~ - 1 + i, and the frequency shifts AwSB

=

becomes

for single-bunch modes are given in Table I.

Table I - Single~bunch modes

' %
Condition LT (m)|yx (rad)|g C,@ JEWR ]i‘ﬂ (%) F () ~ b v (msec)
L 4
just injected 5 [0.0765 |0|1 | 48 | 1.0 |0.80 + 0.01%ii823 + 35.7i| 28

1/10 debunched 35 10.88 01 14 0,95 (0,85 + 0,113 (242 + 55.51 18

% debunched 173 (4.4 1|0.5i6.3 0.56 [0.90 + 0,161 |B1.7 + 22i 45

debunched 345 |8.8 410.214.5 Q.20 [0.55 + 0,171 |5.5 + 7.71 130

The mode number E is choosen for the fastest growing mode.

For coupled motion,

_ Ll +i 20 .
G = ———732._ 7? = 28.3 (1 + 1)’
4

and the frequency shifts AwCB for the fastest growing coupled=~bunch mode

are given in Table IT.
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Table II -~ Coupled-bunch modes

Condition =By 7 {msec)
Just injected 1470 + 67311 1.0
1/1.0 debunched 854 + 6251 1.6
% debunched 23] + 1844 5.
debunched 3L.4 + 23,94 42

The criterion for coupled motion is

{ch + b, + cor] (

AN

) < Tl
rms

and it appears from Table III that the motion is coupled.

Table III - Criterion for coupled motion

Condition B - Aw Aw  + o Awg L A ey | Ggs_ .
C ¢ 5B PR N frms
just injected 0,011 4750 5673 1600 0.28
1/10 debunched O.l 475 FEN 1060 1.48
% debunched 0.5 95 raT 294 2.0
debunched 1.0 | 47.5 53 39.4 0.5




_13_

The instability is cured by either sextupole or octupole terms. The

spread In frequency due to the natural machine chromaticity is

%‘3 = 1.33x 1.3 x 10 > = 1.7 x 1072
Qr
-3 5 4
A = 1.7 x 10 ®x 28 x 2.74 x 107 = 1.3 x 10 .

This spread is larger than the frequency shift lﬂmc + AwCBI due to the
coherent motion. We conclude that there should be no instability during
injection and debunching, unless the natural chromaticity is reduced.

The same conclusion is reached in Ref. 11 where a more conservative Landau

damping criterion is employed.
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