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Abstract

In the standard model there are charges with abelian anomaly only (e.g.

right-handed electron number) which are effectively conserved in the early

universe until some time shortly before the electroweak scale. A state at

finite chemical potential of such a charge, possibly arising due to asymme-

tries produced at the GUT scale, is unstable to the generation of hypercharge

magnetic field. Quite large magnetic fields (∼ 1022 gauss at T ∼ 100 GeV

with typical inhomogeneity scale ∼ 106

T
) can be generated. These fields may

be of cosmological interest, potentially acting as seeds for amplification to

larger scale magnetic fields through non-linear mechanisms. Previously de-

rived bounds on exotic B − L violating operators may also be evaded.
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It is usually assumed that the early Universe at temperatures above the electroweak scale

and below, say, 1012 − 1016 GeV (depending on the model of inflation) consists of an (al-

most) equilibrium primordial plasma of elementary particles, in which any long-range fields

are absent. One exception is in the context of the problem of generating galactic magnetic

fields, which may require the presence of primordial seed magnetic fields which are subse-

quently amplified by a galactic dynamo mechanism (see, e.g., [1]). The creation of long

range magnetic fields requires that conformal invariance be broken in the coupling of the

electromagnetic field to gravity [2], and a number of mechanisms based on different ideas

about this breaking have been proposed to date [2,3]. In this letter we argue that there may

be a relation between the appearance of magnetic fields in the early Universe and two other,

apparently completely unrelated, phenomena : (i) The smallness of the electron Yukawa

coupling constant, and (ii) possible lepton asymmetry of the early Universe.

In short, the logic goes as follows. There are three exact conservation laws in the standard

electroweak theory. The associated conserved charges can be written as Ni = Li− 1
3
B, where

Li is the lepton number of ith generation and B is the baryon number. The fourth possible

combination, B +
∑

i Li is not conserved because of electroweak anomalous processes, which

are in thermal equilibrium in the range 100 GeV < T < 1012 GeV [4]. Now, if he = 0,

where he is the right electron Yukawa coupling constant, then the electroweak theory on

the classical level shows up a higher symmetry, associated with the chiral rotation of the

right electron field. For the small actual value of the Yukawa coupling (he = 2.94 × 10−6

in the MSM) this symmetry has an approximate character. At temperatures higher than

TR ≃ 80 TeV perturbative processes with right electron chirality flip are slower than the

expansion rate of the Universe [5], and therefore this symmetry may be considered as an

exact one on the classical level at T > TR [6]. (The importance of this symmetry for the

consideration of the wash-out of the GUT baryon asymmetry by anomalous electroweak B

and L non-conserving reactions was realized in refs. [7,5,8].) Suppose now that an excess

of right electrons over positrons was created by some means at T > TR ( e.g. by a GUT

mechanism for baryogenesis). Now the right electron number current jµ
R is violated in the
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minimal standard model (MSM) as described by the anomaly equation

∂µj
µ
R = −g′2y2

R

64π2
fµν f̃

µν , (1)

where f(f̃) are the UY (1) hypercharge field strengths (and their duals) respectively, g′ is

the associated gauge coupling and yR = −2 is the hypercharge of the right electron. The

number of the right electrons NR therefore changes with the Chern-Simons (CS) number of

the hypercharge field configuration as ∆NR = 1
2
y2

R∆Ncs with

Ncs = − g′2

32π2

∫

d3~xǫijkfijbk, (2)

where bk is the hypercharge field potential.

One can now see qualitatively that there is an instability in hot matter with an excess

of right electrons towards formation of hypercharge fields with CS number as follows. (The

line of reasoning presented here is similar to the consideration of cold fermionic matter with

anomalous charges in [9]). The energy density “sitting” in right electrons with a chemical

potential µR is of order µ2
RT 2, and their number density of order µRT 2. On the other

hand this fermionic number can be absorbed by a hypercharge field of order g′2kb2, with

energy of order k2b2, where k is the momentum of the classical hypercharge field and b is its

amplitude. Therefore, at b > T/g′2 and k ∼ µRT 2/(g′2b2) the gauge field configuration has

the same fermion number as the initial one, but smaller energy. An instability to generation

of hypercharge magnetic field, which tends to “eat up” real fermions, results. It is important

here that at temperatures T > TR the electroweak symmetry is “restored”, and that the U(1)

hypercharge magnetic field is massless at that time. (No term like m2
Y b2 is generated in any

order of perturbation theory in abelian gauge theory at high temperature [10]; the lattice

study in [11] confirmed this expectation for SU(2)×U(1) EW theory beyond perturbation

theory). If the hypercharge magnetic fields survive until the time of the EW phase transition

(T ∼ 100 GeV), they will give rise to ordinary magnetic fields because of electroweak mixing.

In the rest of this paper we present quantitative estimates of the (hypercharge) magnetic

fields which may be produced by this effect.
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Let us discuss first the possible origin and the magnitude of the the required right

electron number asymmetry δR = eR/s, where s = 2
45

π2T 3Neff is the entropy density with

Neff = Nb + 7
8
Nf = 106.75 the total effective number of degrees of freedom of the MSM.

In principle δR produced by out of equilibrium decay at the GUT scale can be as large as

∼ 10−2 − 10−4 (for a review see, e.g. [12]). This is quite consistent with the magnitude of

the final baryon asymmetry δB being that observed since there is no simple general relation

between the two numbers. In theories like those discussed in [5,8] with L violating processes

at intermediate scales one has δB ∼ δR, at least in the case that the L violating processes

go out of equilibrium before the eR violating ones come into equilibrium. In [8] the case is

considered where the L violation continues for just long enough to reduce the final δB to the

observed one from an initially larger value fixed by δR. And, in a simple GUT like SU(5) in

which the charges Ni = Li − 1
3
B are conserved, we can have δB = 0 at the electroweak scale

irrespective of the value of δR during the time it is effectively conserved. In the rest of this

letter we will simply assume the existence of a primordial density of eR, with its chemical

potential as a free input parameter, assumed only small enough to be treated perturbatively.

We also assume that no hypercharge magnetic fields existed before the right electron excess

is generated.

The effect of the anomaly on the gauge field dynamics is given through the term in the

effective Lagrangian

δL =
g′2

4π2
µRǫijkfijbk. (3)

which is obtained by integrating out the fermions at finite chemical potential [13]. It simply

describes how winding the gauge fields to give CS number changes the energy of the system

because it changes the number of fermions as described by the anomaly equation. Adding

this term to the ordinary Lagrangian for the gauge fields leads to the equations of motion

∂ ~H

∂t
+ ~∇× ~E = 0, (4)

~E =
1

σ
(~∇× ~H +

4α′

π
µR

~H). (5)
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where α′ = g′2/4π. These are simply Maxwell’s equations with the additional term due to

the anomaly (∝ µR
~H) and the assumption that the total (hypercharge) current is given by

~j = σ ~E, where σ is the conductivity of the plasma and ~E is the (hyper-)electric field. We

have also dropped the term ∂ ~E/∂t since (as we will see below) the fields always evolve on a

time-scale which is much longer than σ−1. In the expanding FRW Universe with scale factor

a the equations have exactly the same form in conformal time coordinates τ =
∫

a−1(t)dt,

but with the replacements µR → µRa and σ(∝ T ) → σa. The fields ~E and ~H are those given

by their standard definitions in the conformal frame which will be related to the physical

fields at the appropriate point below. We also have the following kinetic equation for µR :

1

a

∂(µRa)

∂τ
= −α′

π

783

88

1

a3T 2
~E · ~H − ΓR(µRa), (6)

in which the first term describes the change in the chemical potential due to the anomaly

(f f̃ ∝ ~E · ~H), and the second the change due to the perturbative processes which flip electron

chirality with the rate ΓR = TR

M0
T (M0 = Mpl/1.66

√

Neff ≃ 7.1× 1017 GeV). The numerical

coefficient 783
88

comes from the relationship between right electron chemical potential and

right electron number asymmetry (in terms of which the anomaly is expressed)

µR =
2

45
π2Neff [

783

88
δR − 201

88
δ1 +

15

22
(δ2 + δ3)]T,

which is obtained from a local thermal equilibrium calculation in the EW theory with three

fermionic generations and one scalar doublet, with the conserved charges assumed to be

Ni(= δis) and eR(= δRs).

With a Fourier mode decomposition ~H(~x) =
∫

d3~k ~H(~k)e−i~k.~x with ~H(~k) = hi~ei where

i = 1, 2, ~ei
2 = 1, ~ei · ~k = 0, ~e1 · ~e2 = 0, the linear equations (4) and (5) become

∂τh1 +
k2

σa
h1 −

4iµ|k|
σ

h2 = 0

∂τh2 +
k2

σa
h2 +

4iµ|k|
σ

h1 = 0 (7)

where µ ≡ g′2

4π2 µR. The mode

h2(τ, k) = −ih1(τ, k) = − i

2
(h1(0, k) + ih2(0, k))exp(λ+(τ)) (8)
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where

λ±(τ) = − k

σa
(kτ ∓ 4

∫ τ

0
dτ ′µa) (9)

is an unstable mode which is growing at conformal time τ if k < 4µ(τ)a(τ). It has the

property ~E(~k) = 1
σa

(−|k| + 4µa) ~H(~k). (The other orthogonal mode decays at any |k|.)

Consider now the approximation in which the chemical potential µ is a constant. The

growing instability starts to develop at T ∼ Tg where we define Tg to be

8(
µ

T
)2 1

σ/T

Mo

Tg

= 1. (10)

(when the maximally growing mode with k = 2µa has begun growing significantly). A nec-

essary requirement for the instability to develop is that Tg > TR, since if this is not satisfied

the second term in (6) will rapidly reduce µ towards zero. Translated into a minimum value

for δ ≡ µ
T

this requires δ > δcrit = 10−6 (using σ ≈ 68T [14]). For δ < δcrit no non-trivial

dynamics result from the presence of such a chemical potential since the unstable modes are

frozen on the relevant time-scale. If δ > δcrit the evolution of the instability for T < Tg will

be given by the simple growth factor above, until the time at which the growth becomes

significant enough that the first term in (6) is important. To estimate when this is and what

the amplitude of the field is at that time it is sufficient to calculate the CS number as a

function of time. It is given (per co-moving volume) by

ncs(τ) = − g′2

32π2
< ǫijkfjk(τ)bi(τ) >

≈ − g′2

64π4

∫ 4µa

0
dke2

k(4µa−k)τ
σa k2f(k), (11)

neglecting all but the growing mode. We have also taken < bi(~k, τ)b∗j (
~l, τ) > |τ=0 =

δ3(~k − ~l)δij < b2(k) >0, assuming translational and rotational invariance of the initial per-

turbations, and assumed that the perturbations are thermal in origin, with the appropriate

normalizations, < b2(k) >0=
1

2k(2π)3
f(k) where f(k) = (e

k
T0 −1)−1 is the bosonic distribution

function and T0 the temperature at which we define a0 = 1. Defining ǫ by 1
2
y2

Rncs ≡ ǫ∆eRa3,

where ∆eR = 88
783

µR

T
T 3 i.e. the difference between the right electron density in the initial
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state and the µR = 0 state, the linear approximation breaks down when ǫ ∼ 1. Evaluating

the integral in (11) we find ǫ ≈ 2 × 10−6δ 1√
α
eα where α = Tg/T with Tg as in (10). Thus

for a few expansion times after the mode starts growing at temperature Tg we have ǫ < 1

and the linear approximation is valid. The corresponding physical magnetic field Hphy can

be estimated by putting |ncs| ≈ g′2

16π2 kb2 = 1
2
ǫ∆eRa3 and using kb = a2Hphy, where k ∼ 2µa

(i.e. assuming the maximal growing mode to dominate). Putting in the numbers this gives

a physical magnetic field of strength Hphy ≈ 2 × 102
√

ǫδ
kphy

T
T 2 at a physical length scale

k−1
phy ≡ (k

a
)−1 ∼ 1

2δT
. For δ ∼ 5 × 10−6 we are in the linear regime until TR ∼ 80 TeV and

at that point therefore have a magnetic field of strength Hphy ∼ 6 × 1026 gauss (1 GeV2

= 1.95×1020 gauss) at a length scale of ∼ 105/T (compared to a horizon scale of ∼ 1013/T ).

How do the fields evolve for T < TR? In the case that the linear ( i.e. constant chemical

potential) approximation is good, one expects that the growth will rapidly turn into decay

as µ is damped. Within a few expansion times the growth will be undone as the maximally

growing mode k ∼ 2µa now decays with exponent −(k2/σ)aτ . What about the case when

this linear approximation breaks down? To treat this case we must analyse the full non-linear

set of equations (4)-(6). We have done this numerically with the simplifying assumption

that the distribution of right electron number is homogeneous in space. Then the two linear

equations (4) and (5) can be solved exactly for any time dependent µ, the solution inserted

in (6), and the averaging over thermal initial conditions performed. The resulting equation

is

∂µa

∂τ
= (

α′

π
)2783

88

1

32π2σa2T

∫ ∞

0
dkk2[(k − 4µa)exp(2λ+(τ)) − (k + 4µa)exp(2λ−(τ))], (12)

a length scale of 105/Ta length scale of 105/Twith λ±(τ) given by (9). Our results show

that the chemical potential, typical physical momentum of the magnetic field configuration

and the magnetic field energy scale as

µR

T
∝ kphy

T
∝ H2

phy

T 4
∝
(

T

Tg

)
1
2

. (13)

in the range Tg > T > TR. This behaviour can be easily understood qualitatively as follows.

As the instability develops, the linear approximation breaks down and µ starts significantly
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decreasing. This shifts the growth of modes to longer wavelengths. This procedure continues,

growth of any mode eventually turning itself off and increasing the growth coefficient of

modes at larger scales. The minimum value of µ which can be reached at any given time

τ (and, correspondingly, the maximum physical scale for the sourced fields) is simply that

given by (10), solved for µ with Tg replaced by the temperature T (τ) i.e it is just the minimal

chemical potential required to drive a growing mode at that time in the linear approximation.

The parametric dependence on the temperature observed follows from the fact that the

chemical potential (and maximally growing mode) trace these values. The dependence of

the magnetic field energy follows from the expression we derived in the previous paragraph

by setting the CS number of the configuration to cancel the total fermion number, but now

taking the appropriate scaling for kphy itself.

Evolving the system forward from TR to the electroweak scale Tew we see the damping

of the fields for δ in the linear regime anticipated above, as the perturbative processes erase

the chemical potential driving the growth. As δ increases, however, this damping becomes

less efficient, and for δ > 2 × 10−4 we find that the damping has not set in at all by the

electroweak scale. The reason for this behaviour is also simple. For a mode which evolves

in the linear regime, the growth and decay exponents are effectively the same for the modes

which grow significantly. Once we enter the non-linear regime this is no longer true, since

the maximally growing mode carries the integrated effect of growth until any given time i.e.

it has grown with exponent k
∫ µ(τ)

σ
dτ which is much greater than k2

σa
τ . Put another way,

the mode has been able to grow on a scale significantly larger than the diffusion length for

magnetic field at the relevant time, and it takes some time after the end of the growth for

the latter scale to catch up and undo the effect of the instability. For δ in this region we also

see that the typical scale of magnetic fields k and value of the chemical potential at Tew do

not depend on initial asymmetry,
2kphy

T
≃ 4µ

T
≃ 106

T
. The amplitude of magnetic field scales

as H ∝
√

δ and e.g. for δ = 10−2 we find H ≃ 4 × 1022 gauss. This is as we would expect

from the discussion of the scaling above.

What is the ultimate fate of these magnetic fields? Unless some other effect comes into
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play in the dynamics, the fields will decay. One such effect is turbulence. With the full

set of MHD equations (which include the velocity of the fluid which we have neglected)

there is a transition to a turbulent regime when the magnetic Reynold’s number R = σLv

is large [16]. The reason we have evolved the equations to the electroweak scale is that, if

the electroweak phase transition is of first order, it serves as a source of turbulence [15].

Since we have here σ ∼ 102T and magnetic fields which begin to grow on length scales L

up to ∼ 2 × 106/T we expect to enter the turbulent regime if there are bulk velocities of

greater than ∼ 5× 10−9, which are certainly larger that the expected velocity of the bubble

walls. A recent study of this phenomenon [16] suggests that the effect of this turbulence is

to transfer the magnetic energy to larger length scales, thus evading the Silk argument [17].

If true, the fields generated by the mechanism under discussion may play the role of the

seed galactic magnetic fields. Note that the seed fields we obtain at the electroweak scale

with the mechanism we have discussed (∼ 1022 gauss) are much larger than those generated

at bubbles walls (∼ 10−2 gauss) which were suggested as seeds for amplification through

turbulence in [15]. It is also worth mentioning the particular structure of the magnetic fields

appearing because of the abelian anomaly. The CS wave (8) has a non-zero value of ~H ·~∂× ~H

and thus breaks parity. Could it be that the rotation of galaxies are related to this? Study

of the entire set of MHD equations with the additional anomalous terms discussed in this

letter will be required to address this question.

Finally let us mention that the processes we have considered also affect the bounds on

the strength of exotic interactions with B − L violation derived from the requirement that

GUT baryon asymmetry is not erased by sphalerons [5,8] (which is important if no baryon

asymmetry is created at the electroweak scale). If the right electron asymmetry produced

at the GUT scale is small enough (δ < 10−6), then the bounds are obviously not affected

since abelian anomaly does not play any role. If, on the other hand, δ is large enough that

significant CS number survives remains in the condensate until the electroweak scale, any

bound on the strength of exotic interactions can be evaded. Irrespective of the effect of any

B−L violation until that point the remaining CS number will be converted into quarks and
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leptons carrying net baryon number at the electroweak phase transition. The final baryon

asymmetry will depend on the initial value of δ and the exact strength of the phase transition

(which will determine how the B violating processes turn off). Conversely, given detailed

knowledge of the phase transition, it will be possible to place an upper bound on the initial

value of δ in the very early universe, and on the strength of the magnetic fields resulting at

the electroweak phase transition.

We are grateful to K. Enkvist, M. Giovannini, A. Kusenko and L. McLerran for interesting

discussions.
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