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In Ref. 1, Sundrum and Hsu estimated the value of the oblique correction parameter
S for walking technicolor theories using a technique called Analytic Continuation
by Duality (ACD). We apply the ACD technique to the perturbative vacuum polar-
ization function and find that it fails to reproduce the well known result S = 1/6π.
This brings into question the reliability of the ACD technique and the Sundrum
and Hsu estimate of S.

1 Introduction

The analytic continuation by duality (ACD) technique was proposed by Sun-
drum and Hsu in Ref. 1 as a reliable method to compute the oblique correction
parameter S for technicolor theories. The advertised advantage of the ACD
technique was that it could be applied to both QCD–like and walking techni-
color 2 theories whereas the dispersion relation technique used by Peskin and
one of us in Ref. 3 could only be applied to the former. Furthermore, the ACD
estimate of S for walking technicolor implied that walking dynamics could
render S negative, making it compatible with the current experimental limit.
4 This was in contrast to the result of Harada and Yoshida 5 who used the
Bethe–Salpeter equation approach to conclude that S was positive even for
walking theories.

In this talk, we investigate the reliability of the ACD technique to see
whether the Sundrum–Hsu estimate should be taken seriously or not. In sec-
tion 2, we review the definition of the S parameter and explain the ACD
technique. In section 3, we apply the ACD technique to the perturbative spec-
tral function to see if the famous result 1/6π could be reproduced. Discussions
and conclusions are stated in Section 4.

2 The ACD technique

The S parameter, as defined in Ref. 3, is equal to a certain linear combina-
tion of electroweak vacuum polarization functions evaluated at zero momentum

bPresenting author.
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Figure 1: The contour C which avoids the branch cut along the real s–axis.

transfer. We represent this schematically as

S = Π(0).

(The precise definition of Π(s) is irrelevant to our ensuing discussion.) The
vacuum polarization function Π(s) is analytic in the entire complex s plane
except for a branch cut along the positive real s axis starting from the lowest
particle threshold contributing to Π(s). Applying Cauchy’s theorem to the
contour C shown in Fig. 1, we find

S =
1

π

∫ R

s0

ds
ImΠ(s)

s
+

1

2πi

∮
|s|=R

ds
Π(s)

s
. (1)

If the radius of the contour R is taken to infinity, the integral around the circle
at |s| = R can be shown to vanish and we obtain the dispersion relation

S =
1

π

∫ R

s0

ds
ImΠ(s)

s
,

which was used in Ref. 3 to calculate S. However, the dispersion relation
approach requires the knowledge of ImΠ(s) along the real s axis which is only
available for QCD–like technicolor theories.

The basic idea of the ACD technique, on the other hand, is to approximate
the kernel 1/s by a polynomial

1

s
≈ pN (s) =

N∑
n=0

an(N)sn, s ∈ [s0, R]
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and use it to make the integral along the real s axis vanish instead. Applying
Cauchy’s theorem to the product pN (s)Π(s) over the same contour C yields

0 =
1

π

∫ R

s0

ds pN (s)ImΠ(s) +
1

2πi

∮
|s|=R

ds pN (s)Π(s). (2)

Subtracting Eq. (2) from Eq. (1), we obtain

S = SN + ∆fit,

where

SN ≡
1

2πi

∮
|s|=R

ds

[
1

s
− pN (s)

]
Π(s),

∆fit ≡
1

π

∫ R

s0

ds

[
1

s
− pN (s)

]
ImΠ(s).

For sufficiently large N , we can expect ∆fit to be negligibly small. In fact, it
converges to zero in the limit N → ∞ (though how quickly the convergence
occurs depends on the interval [s0, R]). We can therefore neglect it and ap-
proximate S with SN which is an integral around the circle |s| = R only. We
call ∆fit the fit error.

If the radius of the contour R is taken to be sufficiently large, the function
Π(s) can be approximated on |s| = R by a large momentum expansion:

Π(s) ≈
M∑
m=1

bm(s)

sm
. (3)

This expression is obtained by analytically continuing the operator product
expansion (OPE) of Π(s) from the deep Euclidean region where it can be
calculated for both QCD–like and walking technicolor theories. Therefore, we
can write

SN = SN,M + ∆tr,

where

SN,M ≡
1

2πi

∮
|s|=R

ds

[
1

s
− pN (s)

] M∑
m=1

bm(s)

sm
,

∆tr ≡
1

2πi

∮
|s|=R

ds

[
1

s
− pN (s)

] [
Π(s)−

M∑
m=1

bm(s)

sm

]
,
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and approximate SN with SN,M . The neglected term ∆tr is called the trunca-
tion error.

Sundrum and Hsu take their approximation one step further and neglect
the s–dependence of expansion coefficients in Eq. (3), i.e.

bm(s) ≈ bm(−R) ≡ b̂m.

This is obviously a dangerous approximation to make since the analytic struc-
ture of the integrand will be completely altered. Define

SN,M = SACD + ∆AC

where

SACD ≡
1

2πi

∮
|s|=R

ds

[
1

s
− pN(s)

] M∑
m=1

b̂m

sm
,

∆AC ≡
1

2πi

∮
|s|=R

ds

[
1

s
− pN(s)

] M∑
m=1

bm(s)− b̂m
sM

.

Sundrum and Hsu argue that ∆AC can be expected to be highly suppressed
and thus negligible since the difference 1/s − pN (s) is approximately zero in

the vicinity of the positive real s axis where the difference bm(s)− b̂m can be
expected to be most pronounced. Thus:

S ≈ SACD.

In this approximation, the integral for SACD will only pick up the residues of
the single poles inside the integration contour and we find,

SACD = −

min{N,M−1}∑
n=0

an(N)b̂n+1.

We will call ∆AC the analytical continuation error.

To summarize, the ACD technique uses the relation

S = SACD + ∆AC + ∆tr + ∆fit,

and assumes that all three types of error can be neglected and approximates
S with SACD.
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Table 1: SACD and the fit, truncation, and analytical continuation errors for the perturbative
vacuum polarization function. The cutoffs are [s0, R] = [4m2, 25m2], and the fit routine was
the least square fit. The exact value of S is 1/6π = 0.0531.

N M SACD SN,M = SACD + ∆AC ∆fit ∆tr

3 2 0.2930 0.0580 −0.0002 −0.0048
3 0.2883 0.0530 0.0002
4 0.2884 0.0532 −0.0000

4 2 0.4330 0.0632 −0.0001 −0.0101
3 0.4203 0.0521 −0.0010
4 0.4211 0.0532 −0.0000
5 0.4211 0.0531 0.0000

5 3 0.5731 0.0506 −0.0000 0.0025
4 0.5759 0.0533 −0.0002
5 0.5757 0.0531 0.0000
6 0.5757 0.0531 −0.0000

3 The Perturbative Spectral Function

To check validity of the approximation S ≈ SACD, we calculate SACD for
the one–loop contribution of a massive fermion doublet to S. The vacuum
polarization function Π(s) in this case is given by:

Πpert(s) = −
1

π

m2

s

∫ 1

0

dx log
[
1− x(1− x)

s

m2

]
. (4)

Evaluating this expression at s = 0, we find the well known result S = 1/6π.
The function Πpert(s) is analytic in the entire complex s plane except for a

branch cut along the positive real s axis starting from s = 4m2. The imaginary
part of this function along the cut is given by

ImΠpert(s) =
m2

s
βθ(s − 4m2), β =

√
1−

4m2

s
. (5)

The first few terms of the large s-expansion of Πpert(s) are given by

πΠpert(s)

= x

{
− ln

(
−

1

x

)
+ 2

}
+ x2

{
2 ln

(
−

1

x

)
+ 2

}
+ x3

{
2 ln

(
−

1

x

)
− 1

}
+ . . . ,

where x ≡ 4m2/s. Using these expressions, we calculated SACD, ∆AC, ∆tr,
and ∆fit. The results of our calculations for several values of N and M are
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shown in Table 3. The fit interval was [s0, R] = [4m2, 25m2], and the fit routine
was the least square fit.

As is evident from Table. 3, the fit and truncation errors are under excellent
control and SN,M reproduces the exact value of S accurately already at N =
M = 3. However, the analytic continuation error is not. For the N = 5 case,
for instance, SACD is larger than the exact value by more than an order of
magnitude. In fact, we find that SACD and ∆AC diverge as N →∞.

We conclude that neglecting the s–dependence of the bm(s)’s fails mis-
erably as an approximation. The reason for this can be traced to the fact
that even though the difference 1/s − pN (s) converges to zero within its ra-
dius of convergence, outside it diverges. Therefore, the handwaving argument
of Sundrum and Hsu was wrong: the error induced by the neglect of the s–
dependence of the bm(s)’s may be suppressed near the real s axis, but it is
actually enhanced away from it.

4 Discussion and Conclusions

The application of the ACD technique to the perturbative vacuum polarization
function has shown that the analytic continuation error ∆AC is not under
control and that the approximation S ≈ SACD cannot be trusted. This brings
into doubt the reliability of the ACD estimate of S obtained by Sundrum and
Hsu in Ref. 1.

A natural question to ask next is whether the ACD technique can be
improved by including the s–dependence of the large momentum expansion
coefficients bm(s) and using SN,M as the estimate of S instead of SACD. In
the perturbative case, we have seen that this is an excellent approximation.
However, whether SN,M will reproduce the correct value of S for all cases is
far from clear. If the large momentum expansion is an asymptotic series, the
truncation error ∆tr may not converge to zero in the limit M → ∞. Even if
it is a convergent series, the convergence may be too slow for the method to
be practical. These questions, and all related problems will be addressed in
subsequent papers. 6
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