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After reviewing briefly the upper bounds on the mass of the lightest Higgs boson in
the most general unconstrained minimal supersymmetric extension of the Standard
Model, we discuss various arguments which reduce the parameter space of the
model and give stronger predictions for Mh0 . First, the constraints from the
presently available experimental data are summarized. Next, the role of of several
additional theoretical assumptions is studied, after extrapolating the model to high
energy scales. The most important ones are: perturbative validity up to the GUT
scale and the electroweak symmetry breaking. A Higgs boson with Mh0 <100
GeV is predicted in several scenarios. Its absence in that mass range will have
important implications for the parameter space of the model.

1 Introduction

Spontaneous breaking of the electroweak gauge symmetry SU(2) × U(1) is
now confirmed experimentally with one per mille accuracy (see the Chapter
by A. Blondel). However, the actual mechanism of this symmetry breaking still
remains unknown and waits for experimental discovery. This is, by far, the
most central question to particle physics and, in particular, to the experimental
programs at LEP 2 and the LHC. It is very likely that the understanding of
the mechanism of the electroweak symmetry breaking will not only provide us
with the missing link in the Standard Model but, also, will be an important
bridge to physics beyond it.

The minimal model for spontaneous electroweak gauge symmetry breaking
is the Higgs mechanism, whose minimal version (the minimal Standard Model)
requires one scalar SU(2) doublet (Higgs doublet). The scalar potential at

aTo appear in “Perspectives on Higgs Physics II” ed. G.L. Kane, World Scientific,
Singapore.

bOn leave of absence from the Institute of Theoretical Physics, Warsaw University, Hoża
69, 00-681 Warsaw, Poland.
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some scale Λ is:

V (Λ) = m2(Λ)|H(Λ)|2 +
1

2
λ(Λ)|H(Λ)|4 (1)

with the dependence on Λ controlled by the renormalization group evolution
(RGE). The mass of the physical scalar (Higgs boson) is M2

φ0 = λ(MZ)v2(MZ)

where v(MZ) =
√

4M2
W /g2

2(MZ) ≈ 246 GeV. There exist the well known
theoretical bounds on the Higgs boson mass (see 1 for an extensive discussion)
which follow from certain constraints on the behaviour of the self-coupling
λ(Λ). One can distinguish two types of bounds. The most general upper
bound on Mφ0 follows from the requirement that the Standard Model is a
unitary and weakly interacting theory at the energy scale O(MZ). We get
then Mφ0

<
∼ O(1 TeV). Stronger bounds are Λ-dependent and are known under

the names of the triviality (upper) bound and the vacuum stability (lower)
bound. They follow respectively from the requirements that the theory remains
perturbative (λ(Λ) < 16π2) and the vacuum remains stable (λ(Λ) > 0) up to
a certain scale Λ. Those bounds are particularly interesting in the presence
of the heavy top quark, mt = (175 ± 6) GeV. They are shown in Fig. 3 in
ref. 1 and lead to the striking conclusions: We see that the discovery of a
light Higgs boson (Mφ0

<
∼ 80 GeV) or a heavy one (Mφ0

>
∼ 500 GeV) would

be a direct information about the existence of new physics below the scale
Λ ∼ O(1 TeV) (or at least of a strongly interacting Higgs sector). On the
other hand, if the SM in its perturbative regime is to be valid up to very
large scales Λ, of the order of the GUT scale Λ ≈ 1016 GeV, one gets strong
bounds 140 GeV <

∼ Mφ0
<
∼ 180 GeV. In this case we face the well known

hierarchy problem in the SM: Mφ0 , v ≪ Λ and it is difficult to understand
how the scalar potential remains stable under radiative corrections of the full
theory. One way or another, the bounds on Mφ0 in the SM are strongly
suggestive that the mechanism of spontaneous electroweak gauge symmetry
breaking is directly related to the existence of a new scale (not much above the
electroweak scale) in fundamental interactions. The central question can then
be phrased as this: discover and investigate the next scale in fundamental
interactions. Is it the scale of new strong interactions (strongly interacting
Higgs sector or techicolour interactions or compositness scale) or the scale
of soft supersymmetry breaking? We would like to stress the basic difference
between these two lines of approach. In the first one, the new scale is also a cut-
off scale for the perturbative validity of the electroweak theory. Supersymmetry
offers a solution to the hierarchy problem while maintaining the perturbative
nature of the theory up to the GUT or even Planck scale. This is a welcome
feature if such facts as the gauge coupling unification are not to be considered
as purely accidental.
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Another difference is in the expectations for the Higgs boson mass: in the
strong interaction scenarios it is naturally heavy, with its mass close to the
new scale Λ. In supersymmetric extensions of the SM the lightest Higgs scalar
h0 generically remains light, Mh0 ∼ O(100 GeV) and only logarithmically
correlated with the scale of the soft supersymmetry breaking.

It is the purpose of this Chapter to summarize the predictions for the
Higgs sector in supersymmetric extensions of the SM. The Higgs sector in
the Minimal Supersymmetric Standard Model (MSSM), considered as a low
energy effective theory with all free parameters totally unconstrained has been
discused in detail in 2. For the sake of easy reference and to establish our
notation we summarize those results in Section 2. The main conclusion of that
Section is the specification of the set of parameters which determine the Higgs
boson masses and the existence of general upper bounds for the mass of the
lightest supersymmetric Higgs boson h0. Next, in the main part of this article,
we collect the available results and arguments which constrain the general
parameter space relevant for the Higgs mass in the MSSM and, therefore, give
more specific predictions for Mh0 . One should stress that our interest in the
MSSM is well motivated. It is structured in such a way that the success of the
SM in describing the precision electroweak data is maintained. Moreover, its
virtue is that it can be extrapolated up to the large energy scales (the scales
where the soft supersymmetry breaking terms are generated) in unambigous
and quantitative way. We shall mainly consider the supergravity scenario for
supersymmetry breaking in which the MSSM is extrapolated up to the GUT
scale. A brief discussion of the gauge mediated symmetry breaking models
3 is, however, also included. Broadly speaking, the weak scale - large scale
connection is the main source of constraints on the Higgs sector parameter
space which we are going to present. Finally, in Section 5, we discuss the
predictions for the Higgs sector in non-minimal versions of the supersymmetric
extensions of the Standard Model.

2 Higgs sector in MSSM - a brief summary

In the Minimal Supersymmetric Standard Model the Higgs sector is particu-
larly simple and predictive. Supersymmetry and the minimal particle content
imply that it consists of two Higgs doublets, each coupled to only one type
(H1(H2) couples to the down (up)) of fermions. The scalar Higgs potential
reads:

V = m2
1H1H1 +m2

2H2H2 +m2
3

(

ǫabH
a
1H

b
2 + c.c

)

+
1

8
(g2

1 + g2
2)(H1H1 −H2H2)

2 +
1

2
g2
2 |H1H2|2 (2)
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where ǫ12 = −1 and m2
1, m

2
2 and m2

3 are the soft supersymmetry breaking
mass parameters. The crucial point about the potential (2) is that its quartic
couplings are the electroweak gauge couplings (i.e. there is no F -term contri-
bution to the scalar Higgs potential). The only free parameters are the three
mass parameters. The tree level mass eigenstates of the Higgs bosons are: two
CP -even (h0, H0), one CP -odd (A0) and 2 charged (H±) physical particles
and three Goldstone bosons “eaten up” by the gauge bosons. An important
parameter is tanβ ≡ v2/v1 where vi minimize the tree level potential (2) and
are given by v1 = v cosβ, v2 = v sinβ with

v2 =
8

g2
1 + g2

2

m2
1 −m2

2 tan2 β

tan2 β − 1
(3)

sin 2β =
2m2

3

m2
1 +m2

2

(4)

Since v is fixed by the Z0 mass, all physical Higgs boson masses are expressed
in terms of only two free parameters. They can be taken e.g. as tanβ and the
mass M2

A0 of the CP−odd Higgs scalar A0 given by M2
A0 = m2

1 + m2
2. The

CP−even Higgs boson masses then read:

M2
h0,H0 =

1

2

(

M2
A0 +M2

Z0 +

√

(

M2
A0 −M2

Z0

)2 − 4M2
A0M2

Z0 cos2 2β

)

(5)

leading to the bound Mh0 < MZ0 and to the “natural” (i.e. independent of
any other parameters) relation M2

h0 +M2
H0 = M2

A0 +M2
Z0 . The other relation

is M2
H± = M2

W± +M2
A0

4.
The origin and the magnitude of radiative corrections to the Higgs boson

masses can be easily understood. LetM be the scale of the soft supersymmetry
breaking sfermion masses. Neglecting terms suppressed by inverse powers of
M , the dominant one-loop corrections to the effective potential Veff , due to
the top and stop loops, can be absorbed into renormalization of the parameters
in the Higgs potential. One gets:

V = m̃2
1H1H1 + m̃2

2H2H2 + m̃2
3

(

ǫabH
a
1H

b
2 + c.c

)

+λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H1H2|2 (6)

The appearence of other couplings is protected by the symmetries of the model.
It is clear on the dimensional grounds that

δm2
i = m̃2

i −m2
i ∼ O(M2) (7)
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They are logarithmically divergent but can be absorbed into the free parame-
ters of the model. The corrections δλi defined by

δλ1 = λ1 −
1

8
(g2

1 + g2
2), δλ2 = λ2 −

1

8
(g2

1 + g2
2)

δλ3 = λ3 +
1

4
(g2

1 + g2
2), δλ4 = λ4 −

1

2
g2
2 (8)

are all O(logM). Moreover, from the non-renormalization theorem, the cor-
rections δλi are calculable (finite) in terms of the remaining parameters of the
model. From the top and stop loops with attached four Higgs boson legs one
gets

δλi ∼
12

16π2
h4

t log

(

M2
t̃

m2
t

)

(9)

where ht is the top quark Yukawa coupling (factor 12 comes from 4 top degrees
of freedom multipied by the color factor of 3) and Mt̃ denotes the scale of the
stop masses. Thus, the correction to the h0 mass is 5

δM2
h0 ∼ O

(

6g2
2

16π2

m4
t

M2
W

log

(

M2
t̃

m2
t

))

(10)

In general, taking into account the full structure of the stop mass matrix, the
lightest Higgs boson mass in the MSSM is parametrized by

Mh0 = Mh0

(

MA0 , tanβ,mt,Mt̃1 ,Mt̃2 , At, µ, ...
)

(11)

where Mt̃i
are the physical stop masses, At and µ determine their mixing angle

(as well as some of their trilinear couplings to the Higgs bosons) and ellipsis
stand for other parameters whose effects are not dominant (e.g. the sbottom
sector parameters).

In Fig. 1a we show Mh0 as a function of MA0 for two values of tanβ and
Mt̃1 = Mt̃2 = 1 TeV, µ = 0 and two values of the At parameter. We see
that maximal Mh0 is always obtained for MA0 ≫MZ0 (in practice, the bound
is saturated for MA0

>
∼ 250 GeV). In this limit one gets from the effective

potential approach (see ref. 2 for details) particularly simple result for the
one-loop corrected Mh0

6:

M2
h0 = M2

Z0 cos2 2β +
3α

4πs2W

m4
t

M2
W



log

(

M2
t̃1
M2

t̃2

m4
t

)

+

(

M2
t̃1
−M2

t̃2

2m2
t

sin2 2θt̃

)2
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Figure 1: Radiatively corrected Mh in the MSSM (1- and 2-loops). a) As a function of
the CP−odd Higgs mass for MSUSY = 1 TeV and for tan β = 1.5 (solid and dashed lines)
and tan β = 50 (dotted and dash-dotted lines). Lower (upper) lines correspond to At = 0
(2.5MSUSY ) b) As a function of tan β for mQ = mU = 1 TeV, At = 0 (2.5 TeV) solid
(dashed) line and for mQ = 500, mU = 100 GeV, At = 0 (1 TeV) dotted (dash-dotted) line.

× f(M2
t̃1
,M2

t̃2
) +

M2
t̃1
−M2

t̃2

2m2
t

sin2 2θt̃ log

(

M2
t̃1

M2
t̃2

)]

(12)

where f(x, y) = 2 − (x + y)/(x − y) log(x/y). For large MA0 the separate
dependence on the parameters At and µ has disappeared and is replaced by
the effective dependence on the left-right stop mixing angle θt̃. One should also
mention (see 2) that the two-loop corrections to Mh0 are typically O(20%) of
the one-loop corrections and are negative. In Figs. 1 and 2 they are taken into
account in the approach proposed in 7.The dependence on tanβ, illustrated in
Fig. 1b, is important for our further discussion.

3 Experimental constraints on the parameters of the MSSM

Having recalled the general parameter set relevant for the Higgs sector in super-
symmetric models we proceed now to discuss constraints on those parameters
which follow from various additional considerations.
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Figure 2: a) Bounds on the CP -odd Higgs boson mass in the MSSM with very heavy
spectrum for α3 =0.115 and 0.121 (solid lines) and (for α3 =0.117) for the chargino and
stop masses 500 and 250 GeV - the dashed and dash-dotted lines respectively. The dotted
line shows the constraint from b → cτντ . Also shown are the constraints from Z0

→ bb in
the MSSM with heavy spectrum (solid line) and for the chargino and stop masses equal 250
GeV (dashed line). b) Contours of the constant Higgs boson mass Mh0 = 60, 65, 70, 75, 80
and 85 in the plane (Mt̃2

, θt̃) for MA0 = 1000 GeV, tan β = 1.6 and the lighter stop mass

equal 100 GeV. The region where ∆χ2 < 4 (see the text) is bounded by the solid lines.

The parameters of the MSSM which enter into the prediction for Mh0

are partially constrained by other experimental data. Although at present
relatively weak, those are interesting constraints which correlate in the frame-
work of the MSSM the Higgs boson mass(es) with other measurements without
any additional assumptions. There are also stronger constraints which follow
from embedding the MSSM into a SUSY GUT scenario, or more generally,
from extrapolating the MSSM up to the GUT scale, supplemented with sev-
eral plausible (simple) assumptions about physics at that scale. We begin our
discussion with the former.

A number of experimental data constrains the tree level parameters MA0

and tanβ. These are, first of all, BR(b → sγ) 8, Γ(Z0 → bb) 9 and (for large

tanβ) BR(b → cτντ ) 10. Other processes (e.g. B0-B
0

mixing) give weaker
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constraints. The first two processes are sensitive to the MH± and tanβ via
the charged Higgs boson - top quark loop contribution and the third one via
the tree level H± exchange. The btH− coupling is given by

LbtH± =
g2√
2MW

H+ψt (mt cotβPL +mb tanβPR)Vtbψb + h.c. (13)

where PL,R ≡ (1 ∓ γ5)/2 (the coupling bcH± is similar with ψt → ψc and
Vtb → Vcb) and the coupling τντH

± is given by:

Lτντ H± =
g2√
2

mτ

MW
tanβH+ψντ

PRψτ + h.c. (14)

We see that BR(b→ cτντ ) can be enhanced for large tanβ and light H± and
the measurement BR(b→ cτντ ) = 2.69 ± 0.44% gives the bound 10

tanβ <
∼ 0.52

MH±

1 GeV
(15)

which is essentially independent of the other parameters of the MSSM and is
shown in Fig. 2a by the dotted line.

The first two processes get contributions also from diagrams with super-
partners in the loop (the dominant one may come from the chargino-stop loop,
due to the large Yukawa coupling for the higgsino component with the right-
handed stop) and, in consequence, the exclusion regions in the (MA0 , tanβ)
plane depend on supersymmetric parameters. The strongest dependence is on
the mC± , Mt̃i

, θt. In the limit of very heavy superpartners (mC±

i
, Mt̃i

>
∼1

TeV) we get the exclusion limits shown in Fig. 2a by the solid curves. The
dependence of these limits on mC±

1

, Mt̃1 (with all other superpartners at 1

TeV) is illustrated by the dashed (dot-dashed) curve which is obtained for
mC±

1

= Mt̃1 =500 (250) GeV. In each case a scan over the chargino composi-

tion and the left-right mixing angle in the stop sector have been performed.
Negative contribution of a light charged Higgs boson - top quark loop to

Rb ≡ Γ(Z0 → bb)/Γ(Z0 → hadrons) becomes too large for small values of tanβ
(see eq. (13))9 excluding, in the MSSM with heavy spectrum, the region of the
(tanβ, MA0) plane to the left of the almost vertical solid line shown in Fig. 2a
(we require that Rb remains within 2σ of the presently measured value Rexp

b =
0.2179 ± 0.0012 11). Positive contribution of the chargino - stop loop weakens
significantly this bound (if both are light) as shown for mC±

1

= Mt̃1 =250

GeV by the almost vertical dot-dashed line. Similar effects are observed for
BR(b → sγ). In the limit of heavy superpartners one obtains strong bound c

cWe require the branching ratio computed in the NLO approximation to fall into the
interval 1 × 10−4 < BR(b → sγ) < 4 × 10−4. All uncertainties of the computation (for
detailed discussion of the uncertainties see ref. 12) are taken into account.
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on MA0 : the H± - top loop adds positively to the SM contribution which, by
itself, is in the upper edge of the experimentally allowed region. The bound is
weakened in the presence of a light chargino - stop loop (which can interfere
negatively with the H± -top loop) and even totally disappears for large values
of tanβ. One should note, however, that for tanβ ∼ mt/mb the interference
term is generically very large and consistency with the data requires a large
amount of fine-tuning in the (θt̃,Mt̃1) parameter space13d. Thus, one concludes
that the large tanβ scenario is unlikely to be consistent with a light CP -odd
Higgs boson. For Mh0 this implies the plateau region in Fig. 1a. (The present
experimental bound 14 is MA0

>
∼ 55 GeV for tanβ >

∼ 50.)

Radiative corrections to Mh0 are mainly dependent on the stop masses (for
large tanβ also on the sbottom mass) and on the parameters At and µ (in the
large MA0 limit they depend only on the combination At + µ cotβ which can
be traded for θt̃ as in eq. (12)) which are constrained by the precision data.
A light left-handed stop would introduce additional source of the custodial
SUV (2) breaking. Since the SM fit to the LEP precision data is very good
with the SUV (2) breaking given mainly by the t-b mass spliting, additional
sources of the custodial SUV (2) breaking would tend to destroy the quality
of the SM fit. In Fig. 2b we show by the solid lines the limits in the (Mt̃2 ,
θt̃) plane for Mt̃1 = 100 GeV obtained from the requirement that ∆χ2 < 4
compared with the minimum of a fit to the electroweak observables found for
heavy t̃2. Similar bounds exist for heavier t̃1. In Fig. 2b, those limits are
shown together with the contours of constant Mh0 .

In summary, the present experimental data do not significantly improve
the general upper bound on Mh0 . However they give constraints on SUSY
parameters and there are interesting correlations between parameter regions
allowed by other processes (e.g. a light CP -odd Higgs boson is consistent with
BR(b→ sγ) and Γ(Z0 → bb) only if chargino and stop are also light) and the
Higgs boson mass Mh0 .

4 The weak scale - large scale connection

The parameter space of the low energy MSSM can be further reduced by intro-
ducing additional theoretical ideas. The first one involves the extrapolation of

dThose results are obtained under the assumption that the chargino -stop - bottom cou-
pling is given by the Kobayashi-Maskawa angles. In principle, off-diagonal terms in the
right-handed stop mass matrix are possible which would change those couplings. Such (1,3)
and (2,3) terms are not constrained by any other data. However, other flavour off diagonal
terms are strongly constrained so the presence of large (1,3) and (2,3) terms for right-handed
squarks would mean strong flavour dependence in the squark mass matrices.
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the MSSM up to very high energy scales (the “desert” hypothesis) and the ob-
servation that to a very good approximation the SU(3)×SU(2)×U(1) gauge
couplings converge to a common value. With the supersymmetry breaking
scale of order 1 TeV or less the unification takes place at an energy scale of
order 1016 GeV and depends weakly on the details of the GUT-scale theory.
One can rephrase this result by saying that e.g. the Weinberg angle is correctly
predicted in terms of the measured values of α and α3 from the hypothesis of
the gauge coupling unification. This is one of the most compelling hints for
the low energy supersymmetry and, this should be strongly stressed, for the
fact that physics remains perturbative up to the GUT scale ∼ 1016 GeV. Once
assumed, the perturbative validity of the MSSM up to the scale ∼ 1016 GeV
has several interesting implications for the behaviour of the third generation
Yukawa couplings and for the “interesting” (i.e. most plausible?) values of
tanβ and, in consequence, also for Mh0 .

The first important notion is that of the quasi-infrared fixed point for the
top quark (or top and bottom quarks for large tanβ) Yukawa coupling. We
recall the fixed point structure of the top quark Yukawa coupling Yt (Yt ≡
h2

t/4π) in the MSSM. The renormalization group equations have the form:

dYt

dt
= Yt(a

u
i αi − ctYt)

dαi

dt
= −biα2

i (16)

where 2πt = log(MGUT /Q), au
i = (13/15, 3, 16/3), bi = (11, 1,−3), ct = 6

and αi = g2
i /4π. Ignoring the smaller electroweak couplings, Yt is related to

the QCD coupling α3: the fixed point solution for the ratio Yt/α3 reads 15:

Y F
t (t) =

au
3 + b3
ct

α3(t) (17)

One can also solve eqs. (16) explicitly 16:

Yt(t) =
4πYt(0)E(t)

4π + ctYt(0)F (t)
(18)

with

E(t) ≈
(

α3(0)

α3(t)

)

au
3

b3

, F (t) =

∫ t

0

E(t′)dt′ (19)

It may happen that Y F
t (t) is not reached because of too short a running but,

nevertheless, ctYt(0)F (t) ≫ 4π and

Yt(t) ≈ Y QF
t (t) =

4πE(t)

ctF (t)
(20)
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Figure 3: a) Top quark mass RG running for different boundary conditions at the scale
2×1016 GeV. b) Q-IR top quark mass prediction (solid line) and top quark masses necessary
to achieve bottom-tau Yukawa coupling unification for mb(pole) =4.7 (dashed line), 4.9
(dotted) and 5.2 (dot-dashed) GeV. Gauge coupling unification favours the region to the

right of the second dotted line.

i.e.the low energy value of Yt no longer depends on the initial value Yt(0). This
is called the quasi-infrared fixed point solution (Q-IR) 17 and we have:

Y QF
t (t) ≈ Y F

t (t)
1

1 −
(

α3(t)
α3(0)

)1+
au
3

b3

(21)

This situation indeed occurs in the MSSM (for b3, a
u
3 , ct of the MSSM) for

Yt(0) >
∼ O(0.1) (see Fig. 3a) i.e. for the initial values still in the perturbative

regime! Thus, not only Y QF
t (MZ) is the upper bound for Yt(MZ) but it can

be reached at the limit of perturbative physics 18. The Q-IR prediction for the
running top quark mass in the MS scheme, for α3(MZ)= 0.11-0.13 and small
and moderate values of tanβ is approximately given by 19:

mQF
t (mt) ≈ 196GeV [1 + 2(α3(MZ) − 0.12)] sinβ (22)

The physical top quark mass (pole mass) is obtained by including QCD cor-
rections which contribute O(10 GeV) to the final result. Eq. (22) combined
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with mt = (175± 6) GeV gives us a lower bound on tanβ: tanβ >
∼ 1.4 e Simi-

lar results are also found in the large tanβ region in which both the top and
bottom Yukawa couplins are largef . In the numerical calculation two-loop RG
equations are used.

It is clear from eq. (22) that the experimental value of mt ≈ 175 GeV is
very close to its perturbative upper bound in the MSSM. To know how close,
we need to know tanβ but one is tempted to speculate that mt ≈ mQF

t and
then tanβ must be either close to its lower bound or very large.

An interesting observation is that the GUT assumption about unification
of the bottom and tau Yukawa couplings gives independent support to the idea
that Yt(MZ) = Y QF

t (MZ)23,24. Quantitatively, this conclusion depends on the
values of α3(MZ) and mb(pole) and on the threshold corrections to the relation
Yb = Yτ . Generically, however, strong interaction renormalization effects for
Yb are too strong and large top quark Yukawa coupling contribution to the
running of Yb is needed to balance them (see Fig. 3b). For Yb = Yτ within

10%, α3(MZ) > 0.11 and mb(pole) <5.2 GeV one gets mt ≈ mQF
t within

10%g. Thus, the possibility of mt ≈ mQF
t is supported by several independent

arguments (also models for dynamical determination of Yt give values close to
the IR fixed point 25) and, together with the measured value of mt = 175 ± 6
GeV, it makes the region 1.5 <

∼ tanβ <
∼ 2 particularly interesting.

Another interesting region of tanβ is tanβ ≈ mt/mb. Large values of
tanβ have been discussed for some time as a solution to the mt/mb hierarchy
with full unification of the third generation Yukawa couplings Yt = Yb = Yτ
26,27. Such unification is predicted e.g. by simple versions of the SUSY SO(10)
GUT 26,28 and remains to be an interesting possibility.

In conclusion, although one cannot rule out intermediate values of tanβ,
the arguments given above are compelling enough to consider the low and
large tanβ regions as “interesting” ones. In those regions the Higgs boson
masses are bounded more strongly than in the general MSSM. For mt = 175
GeV, from Fig. 1b we see that if Yt is <

∼ 10% away from its IR value (which
corresponds to tanβ <

∼ 1.85) we have Mh0
<
∼ 100 GeV. For large tanβ we have

Mh0 ≈MA0 up to ∼ 120 GeV and for heavier MA0 (for arguments in favour of
such MA0 , see the previous Section) the Mh0 remains constant (independent
of MA0) with the value fixed by radiative corrections.

eThis bound can be slightly lowered to tan β >
∼ 1.1, in gauge mediated SUSY breaking

models, due to the presence of additional coloured matter fields at the intermediate scale
M ∼ 105

− 107 GeV.
f In this case the bottom pole mass may be significantly different from the running mass

due to the supersymmetric loop corrections20,21. Similar corrections may be even important
for the Kobayashi-Maskawa mixing angles 22

gFor large tan β this conclusion may be less strong.
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Finally, we are going to discuss several constraints on the range of the
soft supersymmetry breaking masses m2

1, m
2
2, m

2
3, the top squark masses and

the mixing parameters At, µ (i.e. the remaining parameters relevant for Mh)
which follow from the extrapolation of the MSSM to high energies. They
are particularly interesting and easy to discuss under the assumption that the
ht is not too far from its quasi-infrared fixed point limit. For the sake of
definitness we shall mainly focus on the low and intermediate tanβ region and
present analytic results in the 1-loop approximation24,29. More complete 2-loop
numerical calculations 24,19 confirm very well these analytic considerations.

In the 1-loop approximation and expanding in y(t) ≡ Yt(t)/Y
QF
t (t) the

RG equations for the dimensionful parameters can be solved analytically 24,29.
Denoting by m2(t) ≡ m2

Q(t) +m2
U (t) +m2

H2
(t), 2πt ≡ log M

Q with M = MGUT

or any intermediate scale, and with m2
K , K = Hi, Q, U,D,L,E, standing for

the soft supersymmetry breaking mass parameters of the Higgs, left-handed
squark, right-handed up-type squark, right-handed down-type squark, left-
handed slepton and right-handed slepton, respectively we get the the following
results:

m2(t) = (1 − y)m2(0) − y(1 − y)At(0)
(

At(0) − 2ξ̂M1/2

)

+ (η − yη̂ + y2ξ̂2)M2
1/2, (23)

m2
K(t) = m2

K(0) − cK
ct
ym2(0) − cK

ct
y(1 − y)At(0)

(

At(0) − 2ξ̂M1/2

)

+

[

ηK − cK
ct

(

yη̂ + y2ξ̂2
)

]

M2
1/2 +DK , (24)

DK = −κKm
2
Y (0)

[

1 −
(

α1(0)

α1(t)

)−13/33
]

, (25)

m2
Y (t) ≡ −m2

H1
(t) +m2

H2
(t)

+
∑

gen

[

m2
E(t) −m2

L(t) +m2
Q(t) +m2

D(t) − 2m2
U (t)

]

. (26)

Functions ηK(t), ξ̂(t), η̂(t) (η ≡ ηQ + ηU + ηH2
) are given in closed forms in

terms of integrals over the gauge couplings and are defined in the Appendix
of ref. 29. For M = 2 × 1016 GeV and α3(MZ) = 0.12 they take values:

ξ̂ = 2.23, η̂ = 12.8, ηQ = 7.04, ηU = 6.62, ηH1
= ηH2

= 0.513 The coefficients

13



cK and κK read: cQ = 1, cU = 2, cH2
= 3, cL = cE = cD = cH1

= 0;
κH1

= −κH2
= κL = −3/26, κE = 3/13, κQ = 1/26, κU = −2/13, κD = 1/13.

The evolution of the trilinear couplings Ak are given by:

Ai(t) = Ai(0) − Ci

ct
yAt(0) +

(

Ci

ct
yξ̂ − ξi

)

M1/2, (27)

Here Ct = ct = 6, Cb = 1 and Cτ = 0. Factors ξi(t) are defined in the
Appendix of ref. 29 and for M = 2 × 1016 GeV and α3(MZ) = 0.12 ξt = 3.97.
Quantities at t = 0 are the initial values of the parameters at the scale M ,
M1/2 ≡M3(0) is the initial gaugino (gluino) mass (computing numerical values

of ξ̂, η̂... we have assumed that M1/α1(0) = M2/α2(0) = M3/α3(0)).
There are several interesting observations about solutions (23-27). Firstly,

to a very good approximation squark mass parameters of the first two genera-
tions decouple from the running of the masses m2

H1
and m2

H2
(they enter only

through small hypecharge D-term (25)). As stressed in refs. 30,29, this is very
important for the “naturalness” problem. Moreover, we observe interesting
“fixed point” behaviour for the parameter At which, in the limit y → 1, be-
comes independent of its initial values and fixed in terms of the gaugino mass
M1/2

24 (unless At(0) ≫M1/2 but large values of At(0) are constrained by the
requirement of the absence of the colour breaking minima).

Having relations (23-27) we can discuss the impact of the requirement
of the proper electroweak symmetry breaking on the low energy parameter
space, under various assumptions about the pattern of the soft supersymmetry
breaking parameters at large scale. This requirement correlates the low energy
soft supersymmetry breaking masses in the Higgs potential with the values of
MZ0 and tanβ, as given in eqs. (3,4) and, in turn, with other parameters which
enter into their RGE. Actually, under each specific assumption about the scale
of supersymmetry breaking and the pattern of the soft terms, one can perform
a global analysis which includes the electroweak breaking and the existing
experimental constraints, and obtain the predictions for the Higgs sector. We
present here the results of such an analysis for the following three scenarios: two
supergravity scenarios with the GUT relation for the gaugino masses M1 =
M2 = M3 ≡ M1/2: one with universal soft scalar masses (and universal A-
terms) and one with universal scalar masses in SO(10) multiplets i.e. with
universal sfermion masses (and universal A-terms) and two soft Higgs boson
masses as independent parameters, and the gauge mediated supersymmetry
breaking scenario. Part of the most important experimental constraints has
already be discussed in Section 3. In the global analysis discussed now, we
also include the following bounds: mC± > 85 GeV, Γ(Z0 → N0

1N
0
1 ) < 4 MeV,

BR(Z0 → N0
1N

0
2 ) < 10−4.
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There has been often addressed the question of fine-tuning (large cancella-
tions) in the Higgs potential in models with the soft terms generated at large
scales 31,30,32. Indeed, if supersymmetry is to be the solution to the hierarchy
problem in the SM, it should not introduce another fine-tuning in the Higgs
potential. The origin of the problem is easy to see. Combining (3) and (23-27)
we can express MZ0 for a given tanβ in terms of the initial values m2

K(0),
M1/2 and the µ parameter:

M2
Z0 = −2µ2(t) + aH1

m2
H1

(0) + aH2
m2

H2
(0) + aQU

(

m2
Q(0) +m2

U (0)
)

+ aAAA
2
t (0) + aAMAt(0)M1/2 + aMM2

1/2 (28)

For mt = 175 GeV the generic values of the coefficients in eq. (28) in the su-
pergravity scenario e.g. for tanβ ≈ 1.65(2.2) corresponding to y ≈ 0.95(0.85)
are aH1

≈ 1.2(0.5), aH2
≈ 1.7(1.5), aQU ≈ 1.5(1.1), aAA ≈ 0.1(0.2), aAM ≈

−0.3(−0.7), aM ≈ 15.0(10.8). Eq. (28) shows that for values of µ, M1/2 and/or
m2

K(0) much larger than MZ0 one needs large cancellations. Asymptotically,
we are back to the hierarchy problem in the SM. Although the idea of “nat-
uralness” is only qualitative, one can at least correlate the magnitude of the
necessary cancellations with the values of the parameters µ, m2

K(0) and M1/2

and, in consequence, with the low energy mass parameters. One notes, in par-
ticular, that the smalness of aQU (compared to aM ) puts weaker constraints on
the “natural” values of m2

K(0) than large aM does on M1/2. However, in the
physical spectrum this effect is partially counterbalanced by the fact that the
stop soft masses tend to be suppressed compared to mQ,U (0) by the running
with large top quark Yukawa coupling. This effect is stronger for the right
handed stop than for the left handed one and gives the hierarchy Mt̃R

< Mt̃L
.

Important source of fine-tuning can also be the relation (4) which correlates
the values of tanβ and the B0 parameter.

“Naturalness” of a given parameter set can be quantified e.g. by calculat-
ing the derivatives of M2

Z0 with respect to the soft mass parameters 31,30:

∆i ≡| ai

M2
Z

∂M2
Z

∂ai
| (29)

(other criteria have also been proposed 32 but will not be discussed here since,
at any rate, the concept of naturalness is only qualitative.)

In the global analysis, which combines the electroweak breaking with ex-
perimental constraints, it is interesting to check the “naturalness” of different
parameter regions i.e. to check the values (∆i) for each parameter set. Be-
fore presenting the results for the three scenarios considered, it is worthwile to
remember several general remarks. First, as already said, the “naturalness”
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criterion is only a qualitative one and it is unclear how big cancellations are
“acceptable” ones. The hierarchy problem in the SM means fine-tuning of
many orders of magnitude and from that perspective cancellations of one, two
or even three orders of magnitude are still very small. Secondly, we do not
know the theory in which soft supersymmetry breaking terms originate and it
may well be that such a theory will give them correlated to each other, thus
“explaining” the cancellations between them. Finally one can see from eqs.
(3,4) and (28) that the necessary cancellations tend to increase in the small
and large tanβ regions advocated as the most interesting ones on the basis of
earlier arguments. Indeed, the coefficients ai in eq. (28) have 1/(tan2 β − 1)
singularity. Moreover, both for small and very large tanβ eq. (4) gives very
strong dependence on B0 (i.e. large derivative with respect to B0 in eq. (29)).

With those comments in mind we now present the results of our global
analysis, for the three scenarios considered and for several values of tanβ. In
each case the lightest Higgs boson mass is shown as a function of the heavier
stop and the maximal and minimal values of (∆i)

max for the points on each
plot are also noted.

Widely discussed has been the so-called minimal supergravity model (An-

satz) with universal scalar and gaugino masses and universal trilinear soft
terms. In this model all superpartner masses are given in terms of five pa-
rameters: m2

0, M1/2, µ, A0 and B0. Two of them can be traded for MZ0 and
tanβ. Thus, we get strongly correlated superpartner spectrum and correlated
with the Higgs boson masses. It is now particularly simple to follow our global
analysis and to determine the allowed range of the lightest Higgs boson mass
as a function of the heavier stop mass. In Fig. 4 we show the results for
tanβ = 1.65 and 2.5 (corresponding to y ≈ 0.95(0.80)). The parameter space
has been scanned up to Mt̃2 = 1 TeV with µ0 and B0 fixed by MZ0 and tanβ.
We see that, in this model, requiring the proper breaking of the electroweak
symmetry and with the imposed experimental constraints the lightest Higgs
boson mass is bounded from below: Mh0

>
∼ 75(85) GeV for tanβ = 1.65(2.5)

(for tanβ = 10 the lower bound is around 105 GeV).

The model also gives lower bound on MA0 of about 500 GeV at tanβ =
1.65 and decreasing to 300 GeV at tanβ = 10. The heavier stop is bounded
from below at ∼ 450 GeV. Of course, the crucial role in obtaining those bounds
is played by the universality Ansatz combined with the existing experimental
constraints. We note also an interesting dependence on the sign of the µ
parameter (two clear branches in Fig. 4a) which is a reflection of the acceptable
region in the (θt̃,Mt̃2) plane shown in Fig. 2b. The mass Mh0 is bounded from
above at 95, 105 and 120 GeV for tanβ = 1.65, 2.5 and 10, respectively. Thus
the general bounds shown in Fig 1b can be reached even in this constrained
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Figure 4: Mh0 versus the mass of the heavier stop (Mt̃2
) obtained from universal boundary

conditions at the scale 2 × 1016 GeV a) close to the Q-IR fix point of the top quark mass
(y ≈ 0.95) b) for tan β = 2.5 (y ≈ 0.8). In both cases no fine-tunig criterion is imposed.

model.

Turning now to the fine-tuning problem we observe first that the model
does not admit at all solutions with all ∆i < 10. This is mainly because of
the imposed experimental limit mC± > 85 GeV 30 which pushes M1/2 into the

region with ∆M1/2

>
∼ 10 for all tanβ values h. Moreover, close to the IR fixed

point (for tanβ ≈ 1.65), there do not even exist solutions with all ∆i < 100
24. Actually, defining two different ∆’s: ∆′

max ≡ max{∆M1/2
, ∆m0

, ∆µ0
}

and ∆max ≡ max{∆′
max, ∆B0

, ∆A0
}, the points in Fig. 4a(b) give 70(28) <

∼

∆′
max

<
∼ 970(560), 130(35) <

∼ ∆max
<
∼ 5400(750). As expected from the

general arguments, cancellations become weaker with increasing tanβ. In Fig.
5a (b) we show the results for tanβ = 2.5(10) with the cut ∆max < 100.
We note that in this case such a cut leaves a non-empty parameter region
but gives stronger upper bounds on the Higgs boson mass for the same values

hStrictly speaking, this conclusion is valid as long as we work with the tree level Higgs
potential renormalized at MZ0 . It is well known 33,34,32,30 that inclusion of the full 1-loop
corrections to the scalar potential diminishes somewhat the degree of fine-tuning and the
bound mC± > 85 GeV becomes marginally consistent with ∆i < 10, for intermediate values
of tan β. We neglect this effect here, as it does not change our qualitative conclusions.
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Figure 5: Mh0 versus the mass of the heavier stop (Mt̃2
) obtained from universal boundary

conditions at the scale 2 × 1016 GeV and requiring ∆i < 100 a) for tan β = 2.5 (y ≈ 0.80)
b) for tan β = 10 (y ≈ 0.71).

of Mt̃2 . They result mainly from the bound on A0 (i.e. on the left-right
mixing) obtained due to increasing ∆M1/2

with increasing A0. Moreover, the
cut ∆max < 100 gives also an upper bound on Mt̃2 . A weaker cut, ∆′

max <
100, does not change the results for tanβ = 10 (as expected) but allows for
broader range of Mt̃2 for tanβ = 2.5 (with the upper bound for Mh0 as for
∆max < 100). Finally we note one more interesting effect: a cut on ∆’s gives
almost flat (instead of logarithmic) dependence of Mh0 on Mt̃2 . An increase
in Mt̃2 is balanced by a decrease in A0 (i.e. in the left-right mixing) to keep
∆’s below the imposed bound.

In the next step one can study a less restrictive model, with the pattern of
the soft terms consistent with the SO(10) unification, i.e. with the universal
sfermion masses and the two Higgs boson masses taken as independent param-
eters. It turns out that the predictions the Mh0 , MA0 and Mt̃2 (as well as the
degree of fine-tuning) are very similar to those in the universal case and need
not be independently shown here. This similarity can be partly understood in
terms of the important role played by the limit mC± > 85 GeV and by the
constraints from b → sγ and from precision data, which are not sensitive to
the assumed non-universality in the Higgs boson mass parameters. Moreover,
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there is no real change in the values of ∆i’s since their expected decrease with
the increasing number of free parameters is now reduced by the dissapearance
of certain cancellations in ∆i’s which are present in the universal case. Finally,
the considered values of tanβ are enough above 1 to make the electroweak sym-
metry breaking easy even in the universal case and the considered breakdown
of full universality does not significantly enlarge the parameter space consis-
tent with the electroweak symmetry breaking. Thus, the results presented in
Figs. 4 and 5 are representative also for the considered partial breakdown of
universality.

The difference between universal and non-universal boundary conditions
becomes more visible in the large tanβ region 35,20. In the latter case the
parameters ∆ are typically ∼ tanβ whereas in the former - O(1000), i.e. fine-
tuning of order 10−3. From the point of view of the predictions for the MSSM
spectrum, the large tanβ region is characterized by the expectation of a rel-
atively light CP -odd Higgs boson, MA0

<
∼ O(200 GeV). For further details in

the large tanβ region, in particular for correlations with radiative corrections
to the b-quark mass and with b→ sγ decay, we refer the reader to 35,20,21.

Finally, it is interesting to compare the supergravity scenario with mod-
els in which supersymmetry breaking is transmitted to the observable sector
through ordinary SU(3) × SU(2) × U(1) gauge interactions of the so-called
messenger fields at scales M ≪ MGUT

3. In general, these gauge-mediated
models of SUSY breaking are characterized by two scales: the scale M , which
is of the order of the average messenger mass and the scale

√
F (

√
F < M) of

supersymmetry breaking. Messenger fields are assumed to form complete 5+5

(or 10+10) SU(5) representations. Their number n is restricted to nmax = 4
by the requirement of perturbativity of the gauge couplings up to the GUT
scale. In those models the LSP is a very light gravitino (mG̃ < 1 keV). For√
F < 106 GeV the decay length of the lightest neutralino into a photon

and gravitino is such that this decay occurs within a typical detector. Hence,
photons + missing energy become a signature of supersymmetry at LEP and
Tevatron colliders. The absence of such events in the existing data strongly
disfavours charginos and stops with masses below ∼ 125 GeV and ∼ 140 GeV
respectively 36.

In terms ofM and x ≡ F/M2 the soft supersymmetry breaking parameters
of the MSSM at the scale ∼M are given by:

Mi =
αi(M)

4π
M n x g(x) ≡ αi(M)

4π
M y (30)

m2
f̃

= 2M2 n x2 f(x)
∑

i

(

αi(M)

4π

)

Ci = 2M2 y2 z
∑

i

(

αi(M)

4π

)

Ci (31)
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where C3 = 4/3, C2 = 3/4, C1 = (3/5)Y 2 (Y being the hypercharge of the
scalar f̃), the functions g(x) and f(x) (g(0) = f(0) = 1, g(1) ≈ 1.4, f(1) ≈
0.70) can be found in ref. 37 and the factor z ≡ f(x)/ng2(x). Thus, for
fixed messenger sector (i.e. fixed n) and fixed scale M all soft supersymmetry
breaking masses are predicted in terms of y (0 < y < nmax g(1) ≈ 5.6) i.
In those models we also have A0 ≈ 0 as the A0 parameter can be generated
at two loop only 38. However, the values of the soft masses m2

H1,2
may differ

significantly from their values given by eq. (31) since they can be modified by
physics involved in generation of B0 and µ0 parameters 39. Therefore, in our
scans we take y, mH1

, mH2
, µ0 and B0 as free parameters (the last two are

fixed by M2
Z0 and tanβ). To be general, the factor z in eq. (31) is scanned

between zmin = f(1)/nmaxg
2(1) ≈ 0.15 and zmax = 1. For definitness we will

consider M = 105 GeV only.

Here we follow the same simple approach we used for the supergravity
models. On the parameter space consistent with the electroweak symmetry
breaking we impose the discussed earlier experimental constraints (now we
require mC± > 120 GeV, Mt̃1 > 140 GeV). Very important rôle is played by
b→ sγ. The requirement of good b→ sγ rate reduces otherwise rather widely
spread out h0 and A0 Higgs boson masses (for tanβ = 2.5: 20 < Mh0 < 100
GeV) to a narrow band (80 < Mh0 < 100 GeV, MA0 > 200 GeV). This
effect can be easily understood (see Fig. 2) because in the model considered
squarks and charginos are rather heavyj so a light A0 is not allowed by b→ sγ
and light h0 is always associated with light A0. Moreover, surviving small
values of Mh0 (∼ 80 GeV for tanβ = 2.5 are associated with lowest values
of Mt̃2 (<

∼ 500 GeV) which are eliminated by imposing the ∆χ2 < 4 cut.

Finally, if we also require “naturalness” e.g. by demanding k ∆max < 100
(∆max = max{∆x, ∆mH1

, ∆mH2
, ∆µ0

, ∆B0
}), we constrain the heavier stop

mass Mt̃2 and CP -odd higgs boson mass MA0 from above to <
∼ 700 GeV.

Final results are shown in Fig. 6 as a plot of Mh0 versus the mass of the
heavier stop Mt̃2 predicted in models of gauge mediated supersymmetry break-
ing with M = 105 GeV for tanβ = 2.5 and 10. As in the case of supergravity
models, the restriction of the chargino and stop masses eliminates solutions
with ∆max < 10. With all constraints imposed, Mh0 turns out to be surpris-

iNonzero lower bound on y is set by Tevatron limit on gluino mass, mg̃
>
∼ 150 GeV,

which is, however, subject to some restrictions
jIn addition, because µ values required by electroweak symmetry breaking are large,

the lighter chargino turns out to have only small higgsino component and hence its bt̃C−

coupling is weaker than that of the pure higgsino chargino which is responsible for the limit
shown in Fig. 2.

kNaturalness of the gauge mediated models has been analyzed by different methods in
refs. 40.
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Figure 6: Results for gauge mediated supersymmetry breaking models with M = 105 GeV
for tan β = 2.5: a) Mh0 versus the mass of the heavier stop (Mt̃2

) b) versus the mass of

the CP -odd Higgs boson (MA0). Condition ∆i < 100 is imposed.

ingly tightly constrained. For tanβ = 2.5(10) values of the lightest scalar Higgs
boson are bounded by 90(108) GeV <

∼ Mh0
<
∼ 97(115) GeV. Masses of the CP -

odd Higgs boson are bounded to 280(200) GeV <
∼ MA0

<
∼700(850) GeV. These

upper bounds should be compared to the ones obtained in 41 in the restricted
model of gauge mediated supersymmetry breaking (with x = 1, n = 1 and
with mH1,2 as given by eq. (31)) without imposing any additional constraints.
It is interesting that in the much more general scenario described above, after
imposing experimental and naturalness cuts, one gets upper bounds on Mh0

not higher than those obtained in 41.

5 Non-minimal SUSY models

Non-minimal supersymmetric extensions of the Standard Model can go beyond
the MSSM in several directions. Models with additional Higgs singlets 42,43,
doublets and/or triplets have been considered in the literature 44. The gauge
group of the MSSM can also be extended by e.g. additional U(1) factors.
Finally, models with R−parity spontaneously broken (Supersymmetric Singlet
Majoron Model) have been proposed 45. The important question is what can
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be said about the Higgs sector in such extensions.
In the most popular extension, the so called Next-to-Minimal Supersym-

metric Standard Model (NMSSM) 42,43, one introduces a gauge singlet super-
field N and replaces the term µH1H2 in the MSSM superpotential by

λH1H2N +
κ

3
N3 (32)

with the obvious motivation to avoid the µ problem 46. The model has been
analysed in several papers. At the tree level, the upper bound for the mass of
the lightest Higgs boson

M2
h0 ≤M2

Z

(

cos2 2β +
2λ2

g2
c2W sin2 2β

)

(33)

has been derived 43,44. It is important that this bound depends neither on
the sfermion masses (which can be much larger than MZ) nor on the vacuum
expectation value of the singlet field N (which is not constrained by MZ).
Therefore, the bound is controlled only by the dimensionless Yukawa coupling
λ which is constrained by the requirement of the perturbativity of the model,
λ <

∼ 4π.
This result, that the tree level bound does not depend on the parameters

which can be of order of the supersymmetry breaking scale (and, hence, is

always <
∼ O(G

−1/2
F )), has been extended to models containing arbitrary num-

bers of Higgs singlets, doublets and triplets 44,47. Finally it was also shown
to be valid in the Supersymmetric Single Majoron Model 48. Almost model-
independent proofs of this remarkable fact has been given in 49,48. Radiative
corrections to the tree level bound 50 are under control as in the MSSM and
has been shown to depend on soft SUSY breaking masses only logarithmically
51,52,48.

The tree level bounds can be further strenghtened by requiring that the
additional Yukawa couplings remain perturbative up to a scale Λ (GUT scale).
For the NMSSM this has been done in the papers 44,53,52. Analysing coupled
RGE for λ, Yt and αs the upper limit on λ has been found as a function of Yt

for Λ = 1016 GeV. For large values of mt, for which Yt is always close to its
perturbativity limit, the coupling λ is forced to be small and hence its effects
become less important. Including all relevant one-loop radiative corrections it
was found that, for mt in the present experimental range, the upper bound
for the lightest Higgs boson in the NMSSM is only 5 − 15 GeV larger than
the corresponding upper bound in the MSSM and, for Mt̃i

≤ 1 TeV it is
smaller than 150 GeV. Effects of the additional assumptions like gauge coupling
unification, universality of the soft SUSY breaking masses and requirement of
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the correct electroweak symmetry breaking have also been studied in this model
54.

6 Summary

In unconstrained minimal supersymmetric extension of the Standard Model
there exists the well known upper bound on the mass of the lightest supersym-
metric Higgs. The available parameter space of the model is now considerably
reduced by the existing experimental data and can be further reduced by ad-
ditional theoretical assumptions, mostly related to the extrapolation of the
model to very large energy scales. Especially fruitful is the assumption about
perturbative validity of the model up to the GUT scale and the requirement
of the proper electroweak breaking combined with a simple Ansatz (such as
universality or partial universality) for the pattern of the soft supersymmetry
breaking terms. Such a reduction in the parameter space results in more def-
inite expectations for Mh0 than the general bounds. Several arguments point
toward Mh0 <100 GeV. Both, the discovery or the absence of the Higgs bo-
son in this mass range will have strong implications for the supersymmetric
extension of the Standard Model.
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