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Juan Garcia-Bellido
Theory Division, CERN, CH-1211 Geneva 23, Switzerland
(May 27, 1997)

We study the large scale power spectrum of gravitational wave perturbations of the microwave
background in the context of single-bubble open inflation models. We compute the ratio of tensor
to scalar contributions to the CMB anisotropies as a function of €, the spectral index ns and
the tunneling parameter 2rGS1/H. We find that gravitational wave anisotropies can be very large
at small values of this tunneling parameter. We also consider the contribution of supercurvature
and bubble wall modes and find constraints on the parameters of open inflation models from the
observed temperature anisotropies of the CMB. We show that the induced gravity and open hybrid
scenarios are compatible with present observations for a reasonable range of parameters.

PACS numbers: 98.80.Cq

I. INTRODUCTION

The inflationary paradigm not only gives an ex-
planation of the large scale homogeneity and isotropy
of our observable universe, but also predicts an almost
scale invariant spectrum of primordial metric perturba-
tions that could be responsible for the observed temper-
ature anisotropies of the cosmic microwave background
(CMB) as well as the origin of large scale structure [P].

Until recently, observations of the CMB temperature
anisotropies provided just a few constraints on the pa-
rameters of inflationary models, mainly from the ampli-
tude and the tilt of both scalar and tensor perturbations’
spectrum [ﬂ] Nowadays, with a dozen experiments look-
ing at different angular scales, we have much more infor-
mation about the primordial spectra as well as other cos-
mological parameters such as g, Hyp, 1B, etc, see e.g. [E]
In the near future, high resolution observations of the
microwave background anisotropies with the recently ap-
proved satellites, MAP @] and PLANCK [H], will deter-
mine the cosmological parameters and the main features
of the primordial spectra of density and gravitational
wave perturbations with better than 1% accuracy [ﬂ»ﬂ]
This means that cosmology is becoming a phenomenolog-
ical science, where observations/experiments determine
parameters and allow us to test alternative models of the
universe. A special effort is therefore needed from theo-
retical cosmologists in order to predict the essential fea-
tures as well as possible variations of the expected CMB
power spectrum of temperature anisotropies. There has
been a tremendous progress in this direction in the last
few years and will probably increase as we approach the
time in which the satellites will be launched.

Inflation has generically been associated with a flat
universe, due to its tendency to drive the spatial cur-
vature so effectively to zero. However, it is now un-
derstood that inflation comprises a wider class of mod-
els, some of which may give rise to an open universe at
present [LdfL3]. Such models generically contain a field
trapped in a false vacuum, which tunnels to its true vac-
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uum via the nucleation of a single bubble, inside which
a second period of inflation drives the universe to al-
most flatness. The original motivation of open inflation
as a model where one could reconcile a large value of
the Hubble constant [[14] with the large estimated age
of globular clusters [[L5] is no longer essential due to the
recent recalibration of distances by the Hipparcos satel-
lite [E], which has brought down both the rate of ex-
pansion, Hy = 60 £+ 10 km/s/Mpc, and the age of the
universe, tg = 12 + 2 Gyr, thus becoming compatible
with an Einstein-de Sitter model, see e.g. [L7]. Large
scale structure observations, however, seem to be in con-
flict with a flat universe and h > 0.5, since they favor
low Qoh, see e.g. [[I§]. Apart from still uncertain cosmo-
logical observations, open inflation models have several
interesting theoretical features that single them out from
other cosmological models, in particular the way they
solve the homogeneity problem independently from the
flatness problem [@] Furthermore, if future observations
determine Qg to be less than 1 with better than 1% ac-
curacy, we will have to invoque open inflation models to
explain the large scale homogeneity.

In open inflation models the origin of structure is still
related to amplified quantum fluctuations of the field
that drives inflation inside the bubble [IJfl]. A dis-
tinct feature of these models is that in the spectrum of
metric perturbations there appears a discrete supercur-
vature mode ,@], associated with the open de Sitter
vacuum [@, , as well as a mode associated with the
bubble wall fluctuations at tunneling ,@«@}, whose
contribution could be made small in some of the mod-
els [@,@] Furthermore, there is some evidence that
the observations made in a wide range of scales, from
horizon size to large clusters of galaxies, constrain open
inflation models (with small Qp ~ 0.3-0.4) to have a
‘tilted’ spectrum of density perturbations with spectral
index ng > 1 [@,@], and essentially no other contribu-
tion, either from gravitational waves or supercurvature
modes. In order to account for these observations, we
have recently proposed a tilted hybrid model of open in-
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flation [] and computed the scalar component of the
CMB power spectrum. For an alternative way of pro-
ducing a large tilt see Ref. [B1]).

Apart from scalar metric perturbations, open infla-
tion also produces a primordial spectrum of gravitational
waves, whose amplitude and scale dependence in single-
bubble open inflation models has only recently been
known [@] In order to compare with observations one
has to compute the corresponding angular power spec-
trum C; of CMB temperature fluctuations [BJ]. Since
the gravitational wave contribution to the power spec-
trum decays beyond [ ~ 30, it is enough to consider the
large scale (low multipole) tensor power spectrum, where
gravitational redshift is the dominant effect, without the
need of large computer codes to calculate the full power
spectrum. In this paper we will calculate the first ten
multipoles of the CMB power spectrum for both scalar
and tensor components in an open universe, and deter-
mine the ratio of tensor to scalar contributions as a func-
tion of 2y and other model parameters. We will then con-
strain general single-bubble open inflation models from
such a tensor component of the CMB anisotropies.

II. QUANTUM TUNNELING AND SLOW-ROLL
INFLATION

We will concentrate here in the single-bubble open in-
flation models with two fields, the tunneling field o and
the inflaton field ¢. The former determines the geometry
of the bubble and the latter produces the inhomogeneities
in the metric responsible for the observed temperature
anisotropies of the microwave background.

The o field is initially trapped in its false (F') vacuum
and then tunnels to the true (T") vacuum producing a sin-
gle bubble. The extremal instanton action corresponds
to the O(3,1) symmetric bubble [B4]

SB(R) = 27T2R351
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where we have taken into account the contributions from
the wall (first term) and the interior of the bubble (in
brackets). Here R is the radius of the bubble, x? =
87 /M3, H? = k*Ur/3, where Up is the energy den-
sity in the false vacuum (and similarly for Hy in the true
vacuum) and

S, = /UT do [2(U(c) — Up)]/2. (2)

F

For the thin wall approximation to be valid we require
that the width of the bubble wall, AR, be much smaller
than its radius of curvature, AR/R ~ Hy (Ac)/[2(Uy —
Ur)]'/? < 1, where Uy is the value of the potential at
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FIG. 1. The bounce action Sg as a function of b for a = 0
(continuous line) and as a function of a for b = 1 (dashed
line), in units of 3Mp,/16U7. It is clear that for a large range
of parameters, the bounce action easily satisfies Sp > 1.

the maximum. The only requirement is that the barrier
between o and op be sufficiently high, i.e. Uy > AU =
Urp — Ur.

The radius of curvature of the bubble wall is that for
which the bounce action ([[) is an extremum. An exact
solution [B4

| can be written in terms of dimensionless
parameters a and b,
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Since S1 ~ Up/M ~ M(Ac)? for a mass M in the
false vacuum, the parameter a ~ (AU/Uy) M /Hr, which
characterizes the degeneracy of the vacua, can be made
arbitrarily small by tuning Ur ~ Upr. On the other hand,
the parameter b ~ (Ao /Mp))>M/Hr, which character-
izes the width of the barrier, is not a tunable parameter
and could be very large or very small depending on the
model. It turns out that the amplitudes of the bubble
wall fluctuations and gravitational wave perturbations of
the CMB strongly depend on the value of this parameter,
as we will discuss in Section VI.

In order to prevent collisions with other nucleated bub-
bles (at least in our past light cone) it is necessary that
the probability of tunneling be sufficiently suppressed.
For an open universe of {2y > 0.2, this is satisfied as long
as the bounce action S > 6, see Ref. [@] This imposes
only a very mild constraint on the tunneling parameters
a and b, see Fig. , as long as the energy density in the
true vacuum satisfies Up < Mé,l.

Just after tunneling the field o is held in its true vac-
uum while the field ¢ is free to move down its potential,
driving a short period of inflation responsible for the ap-
proximate flatness of our present universe. The equations
of motion of the scalar field during inflation (where we
can soon neglect spatial curvature) are
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where € and ¢ are defined in terms of the fundamental
parameter H(¢),
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Note that for inflation to occur, we need ¢ < 1. The
number of e-folds of inflation can be computed as

B K2 Hd¢y [ wkdo
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In the slow-roll approximation, we have ¢ < 1 and
d~n—e< 1, where [P

(9)
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All quantities of interest can then be expressed in terms
of these slow-roll parameters. In particular, the ampli-
tude and tilt of the primordial spectrum of density and
gravitational wave perturbations. We will concentrate on
those observables in the following sections.

IITI. SCALAR AND TENSOR METRIC
PERTURBATIONS

We briefly review here the theory of gauge invariant
scalar and tensor metric perturbations. The most general
linearly perturbed metric can be written as [@]

ds® = a*(n)[— (1 + 2A)dn? + 2By, da’dn
+ {1+ 2R)yi; + 2Bjyj + 2hijYda'dz’],  (12)

where {7, j} label the 3-dimensional open space coordi-
nates with metric v;;. The gauge invariant tensor per-
turbation h;; corresponds to a transverse traceless grav-
itational wave, V'h;; = h," = 0. The four scalar per-
turbations are not gauge independent. Under a gauge
transformation 7 = n+£&0(n, a%), & = 2’ +~49¢;(n, %),
they transform as

A:A_é-O/_%/é-O’ 71:7?’_%/507 (13)
B=B+¢ —¢, E=E-¢, (14)

hij = hij, (15)

where a prime denotes derivative with respect to confor-
mal time 7. There are however only two gauge invariant
gravitational potentials,

@=A+%MB—EW, (16)

/
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which are related through the perturbed Einstein equa-
tions,

®+ W =0, (18)

2
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Here dp is the gauge invariant density perturbation [@]
In linear perturbation theory, the scalar metric per-
turbations can be separated into A(n, %) = A(n)Q(z*),[
where Q(z°) are the scalar harmonics, eigenfunctions of
the Laplacian

V2Q(T797¢) = _k2 Q(T797¢) : (20)
These solutions have the general form [Bd]
Qi (1,0, ¢) = i (r) Yi (60, 9) , (21)

where Y}, are the usual spherical harmonics.

Furthermore, the gravitational wave perturbations can
also be written as hi;j(n, 2%) = h(n) Qi;(z*), where Q;;
are the transverse traceless tensor harmonics, k'Q;; =
Q," = 0, satisfying the same equation (@) as the scalar
harmonics [@,] The radial part of the scalar and ten-
sor harmonics in an open universe can be found in Ap-
pendix A.

We are interested in the time evolution of these pertur-
bations during the matter era. The gauge invariant scalar
and tensor perturbations satisfy the following equations
during this era,

!/
" +329 —2K® =0, (22)
a
I
B+ 35h + (K2 +2K)h =0, (23)
a
where K = —1(0) for an open (flat) universe. Metric

perturbations remain constant outside the Hubble scale
during inflation and radiation era and start to evolve as
soon as they re-enter during the matter era, where they
create temperature anisotropies on large scales.

*From now on A, B, etc.
functions.

stand for the n-dependent



IV. TEMPERATURE ANISOTROPIES

Quantum fluctuations of the inflaton field ¢ during
inflation produce long-wavelength scalar curvature per-
turbations and tensor (gravitational wave) perturba-
tions, which leave their imprint in the CMB anisotropies.
Open inflation generates three different types of scalar
modes: those that cross outside during the second stage
of inflation and constitute a continuum of subcurvature
modes ,|1__]I]; a discrete supercurvature mode @], as-
sociated with the open de Sitter vacuum @], and a
mode associated with the bubble wall fluctuations at
tunneling [R4Pp3B7], all of which induce temperature
anisotropies in the microwave background. We have
already considered the supercurvature and bubble wall
mode in previous publications [@, We will concen-
trate here in the continuum of scalar and tensor subcur-
vature modes.

Metric perturbations give rise to temperature fluctu-
ations when they re-enter the horizon, via gravitational
redshift. The dominant effect on large scales is known
as the Sachs-Wolfe effect [Bg). Due to this effect, scalar
metric perturbations on the surface of last scattering are
responsible for temperature fluctuations in the CMB with

amplitude given by B[]

oT

?(97 ¢) = % ©(0) Q(mo, 0, ¢)

+ 2/0"0 drd' () Qo — r.0,6),  (24)

where 79 is the present conformal time and 77,55 ~ 0 cor-
responds to the last scattering surface. Note that this ex-
pression is valid only for adiabatic fluctuations like those
produced by inflation, see Ref. [J]. The first and second
terms are called the ‘intrinsic’ and ‘integrated’ Sachs-
Wolfe effect respectively.

Tensor metric perturbations on the last scattering sur-

face also create temperature fluctuations with ampli-
tude

o[ P B Qe —1.0,0),  (25)

where @, is the rr-component of the tensor harmonic
along the line of sight.

Temperature anisotropies in the cosmic microwave
background are usually given in terms of the two-point
correlation function or power spectrum Cj, defined by an
expansion in multipole number [,

<5?T(ﬁ) ' 6%(&/)>ﬁﬁ '=cos 0 a Z w Ol B Coso)
(26)

We are mainly interested in the large scale (low multi-
pole number [) temperature anisotropies since it is there

where gravitational waves could become important. Af-
ter [ ~ 30, the tensor power spectrum drops down [@]
while the density perturbation spectrum increases to-
wards the first acoustic peak, see Ref. [i(]. On these
large scales the dominant effect is gravitational redshift
via the Sachs-Wolfe effect. Fortunately, this effect can be
easily computed without the need for a CMB code. I will
review how this is done in the case of both flat and open
universe power spectra, and find the relation between the
scalar and tensor component of the CMB anisotropies.

V. FLAT UNIVERSE POWER SPECTRA

In this section we will briefly review the computation
of the large angle (low multipole) scalar and tensor power
spectra in a flat universe. On those scales (I < 30), the
dominant contribution comes from the Sachs-Wolfe ef-
fect [Bg]. On smaller scales (I > 30), the scalar compo-
nent gets contributions not only from gravitational per-
turbations but also from density and velocity fluctua-
tions, which induce a peak in the spectrum on scales
associated with the causal size of the universe at last
scattering [@] On the other hand, the tensor compo-
nent is not coupled to these last sources of perturbations
and decays for large multipole numbers.

Scalar modes

In a flat universe during the matter era, a(n) o 72, the
growing mode solution of the scalar perturbation equa-
tion (PF) is ® = (3/5)R = constant, where R is the
primordial comoving curvature perturbation during in-
flation [@] Thus the induced temperature fluctuation
on large scales becomes

T 1

where Qiim = \/2/7 kji(kr) Yim (0, ¢) are the flat scalar
harmonics, with radial parts given by spherical Bessel

functions. The corresponding power spectrum (@) can
be written as

47 [ dk

CP = B3 —PR( ) 4 (kno) , (28)

where Pr (k) is the primordial spectrum of scalar pertur-
bations, defined by

2
T

(RrRys) = ?PR(I@) Sk —K). (29)

It is possible to compute the primordial scalar spectrum

during inflation [f,

Hr

wk):%(g) - (30)



in the slow-roll approximation. The corresponding tilt of
the scalar spectrum can be defined as

~ —6e + 21, (31)

again in the slow-roll approximation, see Eqs. ([L,[L1]).
For a scale-invariant spectrum, ng = 1, we can integrate

(BY) to give
2m

I(l4+1)Cf = > Pr = constant . (32)
As a consequence it is customary to plot the angular
power spectrum as [(I+1) C;. On the other hand, for n #

1, the scalar power spectrum is a complicated function
of multipole number I, see Ref. [13f]

_2n, TETEFTC+ )
cls—2—57>nr(22_ g)IQ‘(szz—%)' (33)

As mentioned above, the Sachs-Wolfe effect is the dom-
inant contribution only for [ < 30, and in fact this last
formula breaks down even at moderate [ ~ 20 due to the
rise to the first acoustic peak, see Ref. [[I4].

Tensor modes

In a flat universe, the growing mode of the tensor met-
ric perturbation equation (R3) during the matter era is
given by h(n) = h Gi(n), where h is the primordial grav-
itational wave perturbation during inflation, which re-
mains constant on large scales and thus can be related to
that at re-entry during the matter era, and

J1(kn)

Gr(n) =3 ko

(34)

is normalized so that G;(0) = 1 at the last scattering
surface. The induced temperature fluctuation amplitude
(3) is then

oT o
- = /0 drh Gy (no — 1) Qrr(r), (35)

where @, is the rr-component of the flat universe tensor
harmonic,

(36)
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Qi) = |

The corresponding tensor power spectrum can be written
as [13Bd]

cf:%(z_1)z(l+1)(l+2) /OOO%PQ(@I,@, (37)

where I is given by

Iy = /Io dx jQ(IO - I)]l(x) 7 (38)
0

with « = kn, and Py(k) is the primordial spectrum of
gravitational wave perturbations, defined by

27?2

(hihy) = ?’Pg(k) Sk — k). (39)
It is possible to compute the primordial tensor perturba-

tion spectrum during inflation, @,E}

Horn2
Pr(k) zan(J) . (40)
27
The corresponding tilt of the gravitational wave spec-
trum can be defined as
_dInPy(k) _

np =9\ 9

dlnk ’ (41)

in the slow-roll approximation ([L). For a scale-invariant
spectrum, ny = 0, we can integrate (B7) to give [BJ]

T 4872
W+ el = (14 5 ) Po A, (42)
where A; = (1.1184,0.8789, ...) for | = 2,3, ..., which ap-
proaches A; = 1 for large multipoles, | ~ 30, and thus
I(I + 1) CI' becomes constant in that limit. Beyond this
value of | the gravitational waves have redshifted away
before last scattering and beyond the limits of the Sachs-
Wolfe integral. Thus expression (i) is valid only for
1 < 30, see BY].

We can compute the ratio of tensor to scalar contri-
butions to the CMB angular power spectrum in a flat
universe, using Eqs. (f2) and (@) at large [, [}

rR=9 -2
s Ut

cr 25( 487r2) P

9 ~12.4e~62 43
) P 124 620nl, (43)

in the slow-roll approximation. This is the well known
relation between the ratio R and the tilt of the gravita-
tional wave spectrum. In most inflationary models the
slow-roll parameter € is so small that there is essentially
no gravitational wave contribution to the power spectrum
and it becomes extremely difficult to measure this rela-
tion, see Ref. [ﬂ], unless polarization effects are taken into
account [[t§]. Therefore, it is worth considering whether
this relation holds in an open universe and how does it
characterize different inflationary models.

VI. OPEN UNIVERSE POWER SPECTRA

In an open universe, 2 < 1, there is a character-
istic scale associated with spatial curvature, 1/a?> =
H?(1-Q). As a consequence the Hubble scale approaches
the curvature scale from below as time progresses, and
exceeds it only if there were a non-vanishing cosmological



constant. Furthermore, conformal time n = [dt/a can
be interpreted as the coordinate distance to the particle
horizon. Its present value, 79, is to very good approxi-
mation the distance to the last scattering surface in units
of the curvature scale and, assuming that the universe is
matter dominated since, it is given by

Ny = cosh™? (Qio - 1) . (44)

For Q¢ < 2/(1 4 cosh1) ~ 0.786, the last scattering sur-
face is located beyond the curvature scale.

As discussed in the previous section, since the gravita-
tional wave contribution to the power spectrum decays
beyond [ ~ 30, see Ref. [@], it is enough to consider the
large scale (low multipole) tensor power spectrum, where
gravitational redshift is the dominant effect. In this sec-
tion we will calculate the first ten multipoles of the CMB
power spectrum for both scalar and tensor components
in an open universe, and determine the ratio of tensor to
scalar contributions as a function of Qg and other model
parameters.

Scalar modes

The growing mode solution to the scalar perturbation
equation (@) in an open universe during the matter era,
with a(n) = ag (coshn—1),is ®(n) = (3/5)R F(n), where
R is the primordial scalar perturbation after Hubble-
scale crossing during inflation and

sinh? ) — 3nsinhn 4 4(coshn — 1)
F(n)=5
() (coshn —1)3

(45)

is normalized so that F'(0) = 1 at last scattering. Due
to the Sachs-Wolfe effect, the induced temperature fluc-
tuations take the expression (@)7 where 7 is given by
Eq. @) The corresponding power spectrum (@) can be
written as

o0

qdq
1+ ¢?

272
Cf="—
DT

Pr(q) I3, (46)

q

where ¢* = k% — 1, and I is given by

70
qly =Tgu(no) + 6/ dry(r) F'(no —r). (47)
0
Here Pr(q) is the primordial spectrum of scalar metric

perturbations,

~ 27?Pr(q)
(RaRy) = q(1+¢?)

In the case of single-bubble open inflation models it can
be written as @]

og—q). (48)

Pr(q) = A% f(q), (49)
K2 2
A= () (50)
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FIG. 2. The first 10 multipoles of the angular power spec-
trum associated with the scale invariant density perturba-
tions, By, for Qo = 0.3,0.4,0.5,0.6,0.8, from top to bot-
tom. The straight line at B = 1 gives the normalization,
for Qo = 1, see Eq. (@)

The function f(gq) depends on features of the single-
bubble open inflation model, [@]

22 cos§ + 2qzsin g

f(q) = cothmq — (4g% + 22) sinh g ’ (51)
where ¢ = ¢In((1 4+ z)/(1 — z)) and
= (1—-R2H2)Y2 = A(1+ A%)~1/2, (52)
z=(1-R*H2)Y? — (1 - R*H%)'/?
=2b(1+ A%~ (53)

see Eq. (f). The function f(q) is linear at small ¢, and
approaches a constant value f(q) = 1 at ¢ > 2. We will
study its dependence on the parameters ¢ and b in Ap-
pendix B. For scalar perturbations, the effect of f(gq) in
the power spectrum ClS is not very important. There-
fore, the tilt of the scalar perturbation spectrum is very
approximately given by Eq. (@) However, for a scale in-
variant spectrum, ng = 1, in an open universe, [({+1) C{
is no longer constant,

2
I+ 1) CF = 22 A% BY (), (54)

where B} is a function of g, which approaches a con-
stant value at [ ~ 20, where the calculation breaks down
as the power spectrum rises to the first acoustic peak.
We have plotted this function in Fig. E, for a scale invari-
ant spectrum and for various values of €)y. For a tilted
n = 1.15 scalar spectrum see Ref. [B{].

From the four year COBE maps [ﬂ], the overall am-
plitude and tilt of the CMB power spectrum has been
determined with some accuracy [@,@],



(1 +1)cs7'?
{%} = (1.03+0.07) x 1072, (55)
™
ns =1.02+£0.24, (56)

assuming that the observed temperature anisotropy on
large scales is solely determined by the scalar contribu-
tion (Q) This determines the scalar amplitude to be

1 Hy .
=— L ~5%10 57
=g =00 (57)

from which we extract a useful relation

Ag

HT ~ \/E 1074 Mp] . (58)

Note that a tensor contribution R to the total CMB
power spectrum would reduce the amplitude Ag by a
factor (14 R)~/2. We will assume as in Refs. [[3[] that
R <« 1. As we will see, in open hybrid models this may
not be a good approximation and we will have to take it
into account.

Tensor modes

Let us now study the gravitational wave power spec-
trum in an open universe. For perturbations that re-
enter during the matter era, the growing mode solution
of Eq. (B3) is h(n) = hGy(n), where h is the ampli-
tude of the primordial gravitational wave perturbation,
at Hubble-scale crossing during inflation and later on at
re-entry during the matter era, and

sinh 7 sin gn — 2q cos qn(coshn — 1
Gq(n) =3 5 ( 5 )
q(1+ 4¢?) (coshn — 1)

(59)

is normalized so that G4(0) = 1 at the last scattering
surface. Here ¢?> = k? — 3 for the tensor mode. The
induced temperature fluctuation amplitude is then given
by Eq. (@), where @, is the rr-component of the open
universe tensor harmonic,

(z-1)z(z+1)(z+2)}”2 I, (r) (60)

2¢*(1+¢?)

Qi) = |

sinh? r
The corresponding tensor power spectrum can be written

as @]

CT = (1= DI+ 1)1 +2) Am%m’ (61)

where ¢? = k% — 3 and Wy, is given by

Hgi (r)

sinh? r

o
Wy = / dr Gy (no — ) (62)
0

Here P,4(g) is the primordial spectrum of open universe
gravitational wave perturbations, defined by
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FIG. 3. The first 10 multipoles of the angular power spec-
trum associated with the scale invariant gravitational wave
perturbations, Bf, for Qo = 0.4,0.6, 0.8, 1.0, from top to bot-
tom.

B 22 Pq(q)

(hghg) = PRE) 6(q—q). (63)

In the case of single-bubble open inflation models it can
be written as [B2]

Py(a) = A7 f(a), (64)
Az = 8&2(%)2 ; (65)

Here f(g) is the same function (F1), which is linear at
small ¢ and thus avoids the infrared divergence at ¢ = 0
found in Ref. @], but quickly approaches f(q) = 1 for
g > 2. The effect of f(g) on the tensor power spec-
trum could become important only for the first few mul-
tipoles. The best situation occurs in the limit o < 1
and b ~ 1, see Eq. @, in which this function becomes
f(q) ~ tanh(mwq/2). However, much larger contributions
are possible for smaller values of b, see the Appendix B.

The corresponding tilt of the gravitational wave spec-
trum can again be defined, at large ¢, as in Eq. () For
a scale-invariant spectrum, np = 0, we can numerically

integrate (B1]) to give

2
i+ of = 2 A8

2 T

where BlT is a function of g, which approaches a con-
stant value for large multipoles, [ ~ 30, beyond which
the calculation breaks down and the tensor contribution
decays very rapidly [BJ]. We have plotted this function
in Fig. , for a scale invariant spectrum and for various
values of Q.

It is now interesting to compute the ratio of tensor to
scalar components of the open universe power spectrum,
as a function of €. In the limit [ > 1, the ratio R; =
CF'/C approaches the flat space limit ([iJ). However,
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FIG. 4. The ratio of tensor to scalar components of

the angular power spectrum for the quadrupole (continu-
ous lines), Ry = CT/C5, and the tenth multipole (dashed
lines), Rio = Cly/Ciy, as a function of €, for a = 0 and
b=10"3,10"2,10""1,1, from top to bottom. The ratio R
increases very quickly for very small values of the parameter
b in the range Qo ~ 0.3 — 0.8, while Ri9 only grows at small
Q0 < 0.5.

for small multipoles, the difference with respect to the
Qo = 1 value could be large, as we can see from Fig. E,
where the corresponding ratio for the quadrupole and
the tenth multipole is shown.ﬂ We have also shown the
dependence of the ratio Ry, with the tunneling parameter
b. Tt is clear from Fig. [| that values of b < 1072 are
not allowed, unless A% /A% = 16e is very small indeed.
However, the ratio Rip does not grow as quickly as Ra
and for most values of €2y is below one.

The ratio Ro/(A%/A%) = BT (Q0)/B5 () depends
very strongly on b. For b = 1 we can approximate it by
1+£0.5 in the range of interest, see Fig. . The condition
Ry < 1 then imposes the constraint

1

€< 1 (67)
However, for smaller values of b, the constraint is much
stronger and also depends on the particular value of Q.
For example, for b = 1072 and Qg ~ 0.3 — 0.7, the condi-
tion is ten times stronger, € < 1/160, while for b = 1073
in the same range, the condition is a hundred times
stronger, e < 1/1600. This means that the flat space
relation (1) between the ratio of tensor to scalar contri-
butions and the tensor spectral index is no longer valid.
In open inflation models the relation is now a function of
cosmological and model parameters,

tThe peak in the ratio Rz is due to an accidental cancella-
tion in the scalar power spectrum between the intrinsic and
integrated Sachs-Wolfe effect, see Eq. (@), which occurs at
Qo ~ 0.786, where the distance to the last scattering surface
coincides with the curvature scale, i.e. 1o ~ 1.

T

Rl = % >~ fl(QO; a, b) 8|nT| [1 - 13(715 - 1)] . (68)
l

In the ideal case in which the gravitational wave pertur-
bation can be disentangled from the scalar component in
future precise observations of the CMB power spectrum,
one might be able to test this relation for a given value of
Q. This would then constitute a check on the tunneling
parameter b. Such prospects are however very bleak from
measurements of the temperature power spectrum alone,
with the next generation of satellites, see e.g. [FO[H]. At
most one can expect to impose constraints on the param-
eters of the model from the absence of a significant grav-
itational wave contribution to the CMB. However, tak-
ing into account also the polarization power spectrum,
together with the temperature data, one expects to do
much better, see Refs. [@,E] for the case of flat models.
Hopefully similar conclusions can be reached in the con-
text of open models, and CMB observations may be able
to check the generalized consistency relation @) with
some accuracy [51]).

Supercurvature mode

Apart from the continuum of subcurvature modes, in
open inflation we also have a contribution to the mi-
crowave background anisotropies coming from a discrete
supercurvature mode, k2> = 0, which appears in the
spectrum of the inflaton field in open de Sitter when
m2 < 2HZ in the false vacuum [R3). The metric per-

turbation for this supercurvature mode is |4,

K2 (H%)Ql A%H_l%
€ H%

AL = (=L
SCT 9 \or

(69)
where A% is given by Eq. (().

In Refs. [@,, we computed the corresponding power
spectrum as a function of multipole number [. We are
only interested here in the overall contribution of the su-
percurvature mode to the total power spectrum, relative
to that of the scalar modes.

The ratio C5¢/C5 is somewhat dependent on Qg, see
Fig. ﬂ, but we can approximate it very roughly by 102
in the range of interest. The condition C5¢ < C§ then
imposes a mild constraint on the rates of expansion in
the false and true vacuum,

H} < 10*°H3.. (70)

For a given value of €y this constraint can be determined
with greater precision, see Fig. E

Bubble wall mode

Apart from the continuum of subcurvature modes and
the discrete supercurvature mode, we expect also a con-
tribution from the bubble wall fluctuations [24,23,87.
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FIG. 5. The quadrupole and tenth multipole of the angu-
lar power spectrum, normalized to the corresponding metric
perturbation, for the scalar (continuous lines), tensor (dashed
lines), bubble wall (dotted lines) and supercurvature modes
(dotted-dashed lines), as a function of €g. While the contin-
uum of scalar and tensor modes do not change much as we
approach Q¢ = 1, the supercurvature and bubble wall modes
decrease exponentially.

These fluctuations contribute as a transverse traceless
curvature perturbation mode with k? = —3, which never-
theless behaves as a homogeneous random field, see
Refs. [R3FT]. In Ref. B is was argued that the bub-
ble wall mode is actually not a discrete mode, once we
include the gravitational backreaction. However, its ef-
fect on the CMB anisotropies can still be computed as if
it were a discrete mode with k2 = —3. The constraints
on open inflation models from the absence of this mode’s
contribution to the CMB do not change much under this
assumption.
The curvature perturbation amplitude for this bubble
wall mode can be computed from [R3,pJ
A2 _ K2 (H’%)Ql _ A2

SR L=l (1)

€

2 z z

where z is given in Eq. (§3) and A% is the scalar ampli-
tude of Eq. (50).

In Refs. [@,, we computed the corresponding power
spectrum as a function of multipole number [. We are
only interested here in the overall contribution of the
bubble wall mode to the total power spectrum, relative
to that of the scalar modes.

The ratio C3V/Cy is slightly dependent with g, see
Fig. ﬁ, but we can approximate it very roughly by 1 in the
range of interest. The condition C3” < C5 then imposes
the constraint

€< z. (72)

For a given value of €y this constraint can be determined
with greater precision, see Fig. E

VII. MODELS OF OPEN INFLATION

We have obtained generic constraints on open infla-
tion models from the individual components of the CMB
power spectra. It is now necessary to explore particular
models in order to test their viability. In this section we
will concentrate on two concrete open inflation models
which have definite predictions for the complete power
spectra of temperature anisotropies of the CMB: the in-
duced gravity open inflation model of Ref. and the
tilted open hybrid inflation model of Ref. [B(].

A. Induced gravity open inflation

In Ref. @] we computed only the scalar power spec-
trum of CMB anisotropies for the induced gravity open
model, without including the gravitational wave contri-
bution since its primordial spectrum was not yet known.
The tensor primordial spectrum has recently, and simul-
taneously, been obtained by several groups, see Refs. [@]
We will show that this model of open inflation is compat-
ible with CMB observations and contributes with negli-
gible gravitational wave perturbations.

In this model, the tunneling occurs due to the field o,
with potential

I
U(o) =Ur + %02(0—00)2 —pnUy(a/og),  (73)
where o9 = M'y/2/) corresponds to the true vacuum
and Up = M'*/16)\ is the value of the potential at its
maximum, with g <« 1 for the thin wall approximation
to be valid.

The inflaton field ¢ is non-minimally coupled to grav-
ity, with coupling &, and possesses a symmetry breaking
potential, V() = AM¢? — 1?)?/8, see Ref. [LJR7]. The
false vacuum energy density of the sigma field, Ur, deter-
mines a stable fixed point for ¢, in the false vacuum [27]

8Urp
2 _ 2 — 2
(pst_y(1+/\y4)_l/(1+oz). (74)



The corresponding false vacuum rate of expansion in the
Einstein frame is given by Hz = (\/?/24€) a/(1 + «).
After tunneling, the o field lies in its true vacuum at
U(oo) ~ Ur — pUy = 0. In this case, the field ¢ is no
longer trapped and starts to evolve down its potential,
driving inflation. Immediately after tunneling, the rate
of expansion in the true vacuum, inside the bubble, is
related to that in the false vacuum by [R7]

«

H? .
T 1+«

= Hj (75)
Therefore, for parameter o > 1, the rates of expansion
are very similar. This will suppress the contribution of
the supercurvature mode to the CMB power spectrum,
see Eq. ().

The amplitude and the tilt of the scalar perturba-
tion spectrum are determined by the slow-roll parameters
soon after tunneling,

8¢ 1

8 11—«
"=T16E o ()

The spectral tilt of scalar and tensor perturbations is
always negative, [27]

B 8 2124 a)
S EY A ™
8 2
TS L6 o (79)

Let us now study the contribution from fluctuations of
the bubble wall, Eq. (@) For that purpose we have to
compute the tunneling parameters a and b. From Egs. (E)
and (f3) we see that ab = 1/4a, while b is given by

)2
where S; = M’3/3) is the contribution to the bounce
action coming from the bubble wall, see Eq. (E), and
we have used the COBE normalization (5g). We will
consider here large values of M'/Hr and thus prevent a

supercurvature mode of the o field, see Ref. [[9]. In this
limit, a < 1 and

M/
Mpy

k251 2m M’(

= 1y 3N (80)

2b

fEmaeR (81)

Zz~

The condition (fJ) on the bubble wall contribution to the
CMB then determines

b>e/2, (82)

which is not very difficult to satisfy in the models of
Ref. [R7], where € is small.

Furthermore, in the limit a < 1, the smallest contribu-
tion of the tensor modes to the CMB anisotropies comes
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from the parameter b ~ 1, where f(q) ~ tanh(rq/2), see
Appendix B. Induced gravity models determine the pa-
rameter ab = 1/4«, and it is always possible to choose
a so that b ~ 1. In this case, the constraint on the ten-
sor amplitude comes from the quadrupole, which requires
R2(€) < 1, see Fig. |. For most Qp in the range of inter-
est, this constraint is satisfied provided e¢ < 1/16. Again,
this is not difficult to satisfy in the induced gravity open
inflation model [[[3,p7.

For example, in the case £ < 1, we can have 8¢ =
1/200, « = 1, together with a = 1/4,b = 1,\ = 0.1
and M’ = 103 Hy = 7 x 1073 Mp). This gives e = 1/200,
HZ%/H2 = 2, and 2z ~ 1.25, which satisfies all constraints.

On the other hand, in the case & > 1, we have
a = 85, together with @ = 1/340,b6 = 1, = 0.1 and
M’ =3x103 Hy = 4x1073Mp,. This gives e = 2x 1074,
H%/HZ ~ 1, and z ~ 1.41, which again satisfies all con-
straints.

Induced gravity models are thus viable scenarios of
open inflation, with small and negative spectral tilt and
negligible contribution of gravitational waves to the CMB
power spectrum.

B. Open hybrid inflation

Open hybrid inflation ] was proposed recently in
an attempt to produce a significantly tilted scalar spec-
trum in the context of open models. It is based on
the hybrid inflation scenario [5J], which has recently re-
ceived some attention from the point of view of particle
physics [@,@], together with a tunneling field which sets
the initial conditions inside the bubble.

In this model there are three fields: the tunneling field
o, the inflaton field ¢ and the triggering field ¥. Quan-
tum tunneling occurs in the o field due to its coupling to
the ¢ field. When ¢ drops below a certain value, ¢,, the
true vacuum appears and there is an increasing proba-
bility that the ¢ field will tunnel to it, creating a single
bubble inside which the ¢ field will slow-roll down its
potential driving inflation and producing the observed
metric perturbations, until it drops below another scale,
¢¢, for which the triggering field i acquires a negative
mass and suffers a sudden phase transition which ends
inflation. This second period is known as hybrid infla-
tion, see Ref. [b.

The complete potential is the sum of the open model
plus the hybrid model, [Bd]

M2y Mt M drag?
Vie00) = ——5—+ =+ oy e (53-)
12 2 /
+ M e + A
2 4
¢° -
+ 5 (g +h%0%) + TV, (83)

where Vo ~ M’*/)X has been added to make the effec-
tive potential vanish in the global minimum, ¢ = 0,9 =



M/ 0 = (3++/5)M'/2¢/N. Quantum tunneling oc-
curs at ¢ = ¢, = M’/h and the phase transition that
triggers the end of inflation occurs at ¢ = ¢. = M/g.

This model is rather constrained by the potential of
the tunneling field, due to its coupling to the inflaton
field. In particular, the vacuum energy of the o field
cannot be much larger than that of the v field, and its
contribution to the effective mass of the ¢ field should
also be suppressed,

h2M"™ _ 2waM*
/ — 2 ) (84)
A 3AMZ,
M/4 M4
Y (85)

These constraints might prove to be too strong once we
include the gravitational wave CMB power spectrum.

The rate of expansion during inflation is dominated by
the false vacuum energy of the v field,

o M4
2
=——. 86
e (86)
The number of e-folds is
3 gM’
N=21 ( ) =55. 87
a " \hM (87)
The slow-roll parameters become
4ol ¢?
= (88)
9M3,
« Srtag?
3 (1 T3z, ) (89)

from which the tilt of the scalar and tensor spectra can
be computed as

2
ns—lzg—Qe, (90)
np = —2¢. (91)

On the other hand, the bubble parameter () is here
Sy = 2v/2 M"3/3), which substituted into Eq. () gives

A MI4

var) 62

H

b=2v2-— (
This parameter must always be approximately less than
one in our model, since M’ > H in order to prevent
Hawking-Moss tunneling [[12] and/or a large supercurva-
ture mode perturbation [[LY], and M"*/N < M*/) for
1p-vacuum domination during inflation. This means that
gravitational waves could give an important contribution
to the CMB anisotropies in these models.

Consider, for instance, the particular values «
0.25,g = 0.2,A = 0.1 and M = 1.5 x 1073 Mp, for the
tilted hybrid model, and A = 1073, ' = 0.01 and M’
M2 for the tunneling field. In that case, Egs. (P0)-(0d)
give

11

ng ~ 1.15,
b~0.03,

ny ~ —0.02,
e~ 0.01.

Note that the spectral tilts, ng and np, are significantly
different from their ‘canonical’ values ng = 1,np = 0.
This is a generic feature of these models. We also have a
large contribution to the power spectrum coming from
the bubble wall fluctuations, see Eq. (@), as well as
from tensor perturbations, Ry ~ 0.65 (for small g, see
Fig. H), which could be potentially dangerous. However,
the quadrupole is by far the largest multipole and could
be hidden in the cosmic variance uncertainty for small
multipoles [f]]

2 :|1/2

= {(21 1) fary (95)

s

where fqy is the fraction of the sky covered by the partic-
ular experiment. For the quadrupole [ = 2 and a typical
fraction fay = 1/3, we find that the estimated error oo
is of the same order as Cy and thus a tensor contribution
with Ry < 1 could be hidden in the CMB temperature
maps. On the other hand, by the time we reach the tenth
multipole, the ratio Rjg has decreased considerably, see
Fig. H, and therefore these parameters are still allowed
by observations.

Open hybrid models are thus viable models of inflation
with the special property of producing a positively tilted
spectrum of density perturbations, which might help the
agreement with observations of large scale structure [@]
and CMB anisotropies [R9].

VIII. CONCLUSIONS

In the near future, observations of the microwave back-
ground will determine with better than 1% accuracy
whether we live in an open universe or not. It is there-
fore crucial to know whether inflation can be made com-
patible with such a universe. Single-bubble open infla-
tion models provide a natural scenario for understand-
ing the large scale homogeneity and isotropy. Further-
more, inflationary models generically predict a nearly
scale invariant spectrum of density and gravitational
wave perturbations, which could be responsible for the
observed CMB temperature anisotropies. Future obser-
vations could then determine whether inflationary mod-
els are compatible with the observed features of the CMB
power spectrum. For that purpose it is necessary to know
the predicted power spectrum from inflation with great
accuracy. Open models have a more complicated pri-
mordial spectrum of perturbations, with extra discrete
modes and possibly large tensor anisotropies. In order
to constrain those models we have to compute the full
spectrum for a large range of parameters.

In this paper we have computed the large scale angu-
lar power spectrum of temperature fluctuations in the
CMB induced by gravitational wave perturbations in the



context of the single-bubble open inflation models. We
have then studied the dependence of the ratio R of ten-
sor to scalar components with the value of {2y and the
tunneling parameter 27GS;/H. We have shown that R
increases very quickly for very small values of this pa-
rameter. The flat-space consistency relation between the
ratio R and the tensor spectral index np is now a more
complicated relation, which mainly depends on the tun-
neling parameter 2rGS1/H. In the ideal case in which
the gravitational wave perturbation can be disentangled
from the scalar component in future precise observations
of the CMB power spectrum, one might be able to test
this relation for a given value of 2. Such prospects are
however very bleak from measurements of the tempera-
ture power spectrum alone, with the recently approved
new generation of satellites, see e.g. [@,ﬂ] At most one
can expect to impose constraints on the parameters of
the model from the absence of a significant gravitational
wave contribution to the CMB. However, taking also into
account the CMB polarization power spectrum, together
with the temperature power spectrum, one expects to do
much better, see Refs. [@,H] for the case of flat models.
Hopefully similar conclusions can be reached in the con-
text of open models, and CMB observations may be able
to test the generalized consistency relation with some ac-
curacy [p1].

We have found a set of constraints from scalar, tensor,
supercurvature and bubble wall modes’ contribution to
the CMB anisotropies that the parameters of a general
open inflation model should satisfy in order to agree with
observations. We have applied such constraints to the
induced gravity and open hybrid inflation models and
found a range of parameters which make them compatible
with present observations. In the future we might be able
to determine these parameters with greater precision.

NOTE ADDED

While writing this paper, we noticed the work of Sasaki
et al. [@] in the astro-ph archive, where similar conclu-
sions were reached.
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APPENDIX A: OPEN UNIVERSE MODE
FUNCTIONS

The open universe scalar mode functions are discussed
in Refs. ,@] The correctly normalized subcurvature
scalar modes can be written as

12

Iy (r) = Ny y(r), (A1)
with
Ny = \E f[(rﬁ +¢)7 V2 Nyp= 3, (A2)
T ™

where the unnormalized modes TI,;(r) can be generated
from the first two

sin gr

Hoo(r) = =~ (A3)
~ __cothr singr — gcosqr
Ha(r) = sinh 7 ’ (Ad)
through the recurrence relation
ﬁql(’f’) =(20—-1) cothrl:IqJ_l(r)
—[(1=1)* + ¢ gu—2(r). (A5)

In the limit Qo — 1, the scale factor becomes a
sinh? n — n?; the eigenvalues of the Laplacian ¢> — k2,
and the scalar eigenfunctions become

qu(f‘) — \/gkjl(kr) .

On the other hand, the correctly normalized radial
component of the tensor modes can be written as [B6]

(A6)

1z Hgi (r)

. )
sinh? r

(A7)

Ounir) = [(z — I+ 1)(z+2)]

2¢*(1+¢%)

where II,/(r) is the scalar mode ([AT]). In the limit Qo —
1, this tensor mode becomes @, in Eq. ), as expected,
while Gy(r) — Gg(r).

APPENDIX B: DEPENDENCE OF THE
GRAVITATIONAL WAVE SPECTRUM ON THE
TUNNELING PARAMETERS

In this Appendix we will study the behavior of the
function f(q), Eq. (1), in the spectrum of gravita-
tional wave perturbations. This function behaves like
f(q) ~ tanh(mwg/2) in a certain well defined limit. How-
ever, for arbitrary values of the tunneling parameters (H),
it can take a very different shape. For certain parame-
ters, it increases very quickly at small ¢, thus giving a
large contribution to the gravitational wave power spec-
trum of CMB anisotropies. It is therefore important to
study its behaviour at small ¢, where f(q) is linear. The
slope at the origin is given by

7o) =3 x (B1)
1+ A% + 20 In(A +V1+ A2) — /1 + AZ)?

m2h2 ’

1+
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FIG. 6. The top panel shows the minimum slope of
f(q) and the corresponding value of b as a function of
the parameter a. They approach asymptotically the values
f/(0) = 1.2147/2 and b = 1.043, respectively. The lower
panel shows the sharp increase in the slope of f(q) at small
values of the parameter b, for @ = 0 (continuous line) and at
large values of a, for b = 1.043 (dashed line).

where A is defined in Eq. (). For b ~ 1 we recover
the limiting function, f(q) ~ tanh(wq/2). For all other
values, the slope (BI)) is larger and so is the contribution
of the tensor modes to the CMB anisotropies. The best
situation corresponds to those values of ¢ and b for which
(@) is as small as possible.

Let us now study the behaviour of the slope (B]) with
various tunneling parameters. In Fig. E we show the
minimum possible slope and the corresponding value of
b for a given value of a. One can see that the small-
est contribution to the CMB comes from a = 0, and
b = 1.043 ~ 1, for which the slope becomes 1.214 7/2.
This gives a slightly larger contribution than the mini-
mum function tanh(rq/2). On the other hand, for b < 1,
the minimum slope increases very quickly, as we can see
in Fig. fj.

We have shown various functions f(g) in Fig. [, for
a=0and b=0.1—1. The effect of a large f(g) at small
q is an increased tensor contribution to the CMB. This
effect is very important for small €y, as we can see in

FIG. 7. The spectral function f(q) for a = 0 and var-
ious values of b = 0.1,0.2,0.3,0.5,1.0, from top to bottom
(continuous lines). As we decrease b the function develops a
bump at small ¢ which becomes very pronounced for very
small values of b, increasing significantly the gravitational
wave contribution to the CMB power spectrum. The dashed
line corresponds to f(q) = tanhmg/2 and the dotted line to

f(q) = tanh mq.

Fig. E In Ref. [@] this large effect at small values of the
parameter b was not realized since they assumed that
the function f(g) was bounded between tanh(mq) and
tanh(mg/2), what they called mazimal and minimal ten-
sor anisotropies. As one can see from Fig. E, larger grav-
itational wave anisotropies are possible in certain classes
of models.
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