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Substantial progress in plasma based methods of acceleration opens new option for op-

timization of the design of future colliders. In this paper, we discuss two possible uses of

plasma in the Next Linear Collider (NLC). First, we discuss the use of a short wavelength

plasma accelerator to reduce the correlated energy spread along the bunch at the end of

the NLC linac. Second, we consider plasma generated by the bunch in a gas chamber by

tunneling ionization as the mean to simplify the beam collimation.

The optimal BNS energy spread �E=E of a bunch is of the order of 1% rms in the NLC [1]

and is induced by the longitudinal wake�elds. A substantial component of this correlated

energy variation is linear along the bunch, see Fig. 1. Presently, it is removed by shifting

the rf phase to 30� o� crest along the last quarter of the linac. This both reduces the

e�ectiveness of the BNS damping and decreases the net acceleration. Instead, this energy

spread could be compensated if the bunch with the total length lB = 4�l, where typical rms

length � ' 100� 150�, passing through a section with preliminary ionized plasma with the

density of the order of ng = 1015 cm�3 excites plasma wave with the wave length of the order

of 2lB. The amplitude of the accelerating �eld in such a wave would increase from the head

of the bunch to the tail producing desirable energy compensation. Another section, with

higher plasma density and shorter plasma wave length, may be used to compensate remaining

nonlinear variation of the energy spread. With a gradient of 1GeV=m, a plasma length lg
of �ve meters is needed to achieve the energy compensation. This length is restricted by

the Coulomb scattering. NLC collimation is designed with the restriction �N < 104 on the

fraction of the electrons �N scattered to the angle � > k�0, k = 35 for the vertical plane.

This sets the limit

lg < 10�6k2

2�2

?

2�r2engZ
2�2

?

: (1)

Taking the NLC parameters: �y = 1�, beta function �y = 35 m, and 
 = 1:0� 106, and the

density ng = 1015 cm�3 we get lg < 1:6(k2=Z2) cm. Therefore, the light gases (Z ' 1) are

preferable. In this case, for the design value of k = 35, the length lg would be limited to

lg < 20:3 m which should not present a problem.

Experiments with the goal to demonstrate accelerating gradients of the order of 1GeV=m

in a meter long channel of preliminary ionized plasma, are proposed or in progress today [2]

and, if succeed, would make such scheme feasible.

Another problem which may have a solution based on progress achieved in our under-

standing of beam-plasma interaction is the beam collimation. In the present design, a

substantial part of the total length of the machine is dedicated to collimation of the halo

particles, which is necessary to reduce the background in the detector. In this paper, we

study collimation based on strongly nonlinear focusing produced by plasma generated in

neutral gas by the beam itself. Collimation based on nonlinear optics was studied before [3].

There are two primary limitations with this approach: �rst, it requires very strong nonlin-

ear magnets and, second, the alignment tolerances on the magnets is severe (fractions of a

micron). A plasma generated by tunneling ionization has the advantage that it can produce

a strong nonlinear �eld which is self-aligning; the �eld is centered at the beam location.

As it is shown in the following, the tunneling ionization produces focusing on the beam

which is almost linear for the core particles and is strongly nonlinear for the halo parti-
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cles. We want to utilize the nonlinearity of the kick to induce a beta-mismatch, that is

periodic modulation of amplitudes of betatron oscillations downstream in the optical line.

A collimator can be placed at the location where the displacement of the halo particles is

maximum while the core particles remain almost unperturbed. There are several possibil-

ities to maximize displacement of the halo particles while minimizing, at the same time,

perturbation of the core particles using properly designed optical lines. We can consider, for

example, two gas chambers or a gas chamber and a regular focusing quad with equal linear

focusing strengths separated by an optical line with betatron phase advance 90o. As it is

well known, the two kicks in the linear approximation in this case compensate each other

retaining the ellipse in the phase plane intact. This approximation is good for most of the

particles within a core of a bunch. There is some nonlinearity of the focusing for particles at

very small amplitudes r << �r which may produce the beta-mismatch downstream in the

optical line. However, the amplitude modulation due to the mismatch is proportional to the

initial amplitude and, therefore, is small for such particles.

The situation is di�erent for the halo particles where nonlinearity and the initial am-

plitudes are large. Numerical simulations are needed to choose the optimum optics and to

give the detail answer on the transformation of the phase plane both for the core and halo

particles. In particular, the kick is di�erent for the halo particles located very close to the

head of the bunch and all other halo particles. We should remember however, that most of

the halo particles are due to the wake �elds [1] and, hence, tend to be located at the tail of

the bunch.

The tunneling ionization is the same both for the electron and positron beams. However,

dynamics of the ionized electrons is quite di�erent and focusing due to average �eld of oscil-

lating electrons remains for the positron beam. We leave this case for computer simulations,

and restrict consideration here with an electron beam.

The 
at NLC bunch [1] with the transverse rms dimensions �x = 10�, �y = 1:0� in

the regular accelerating sections, bunch length �z = 150� and the bunch population NB =

1:1� 1010 particles per bunch has very high charge density. Assuming a Gaussian beam, the

density in the bunch center

nb = (2�)�3=2NB=(�x�y�z) (2)

is nb = 4:6 � 1017 cm�3. Such a bunch generates electric �eld Eb comparable with atomic

�eld, of the order of V=Ao, and produce almost instantaneous ionization of the residual gas.

The probability of the tunneling ionization [4] per unit time in the quasi-static limit is

W =
6�2

0c

�c
�e�� = 2:52 � 1017�e�� [s�1]; (3)

where

� =
4

3

�0

�c

U

eEb

= 0:255 � 109
U

eEb

cm�1: (4)

Here �c is the Compton wave length, �0 is the �ne structure constant, and U is ionization

potential. Eq. (4) is valid if ionization time is small compared to the time variation of the

�eld Eb, W�z=c >> 1. The probability is maximum at � = 1 and, in this case, ionization

length is li = c=W = 3:23 � 10�7 cm. Ionization potential for typical gases is of the order
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of 15 eV (U = 13:6 eV for H, U = 14:53 eV for N), however there are gases with much

lower U such as vapors of Cs2 with an ionization potential U = 3:6 eV. For a 
at beam

�y << �x, the �eld of a bunch increases from zero at the bunch center to the maximum

at y ' 2�y; x = 0, remains almost constant up to y ' �x, and then rolls o� inversely

proportional to the distance y. The maximum �eld is eE
y
b = (2�)3=2nbe

2�y. For a round

beam with the density

n(r) =
NB

2��2
r

e�r
2=2�2

r�(z); �(z) =
1q
2��2

z

e�z
2=2�2

z (5)

the �eld is

eEr
b (r; z) =

NBe
2

�r
f(r)�(z); f(r) =

2�r

r
[1� e�r

2=2�2
r ]: (6)

It is maximum at r=�r ' 1:58 where the factor f(r) ' 0:90. De�ning �r by the relation

�2
r = �x�y, we get for the ratio of the maximum �eld for a 
at and the round beam Ey=Er =

2:77
q
�y=�x. Hence, for the NLC parameters, the maximum �led of a round bunch is 10%

higher than the �eld of a 
at bunch. For this reason, we consider a locally round beam with

the rms �r =
p
�x�y = 3:16�. The maximum �eld Eq. (6) in this case is eEr = 0:12 � 109

eV/cm and, for Cs2 gas, the parameter � = 7:7. The ionization length is longer than at � = 1

only by two order of magnitude and is equal 0:34�. The function f(r) decreases e-times at

r=�r = 1:12 � 1:03. Ionization remains e�cient for all core particles except for very small

r=�r < 0:03, and completely suppressed for the halo particles, li > 106 cm at r=�r = 10 for

Cs2.

Coulomb scattering gives the upper limit on the density of the gas: lg = 0:3 cm of

gas with density ng = 1015 cm�3 produces the same scattering as 10 km of the accelerator

with pressure 10�8 Torr. Although low ionization potential of Cs2 makes Cs vapors very

attractive, the fraction of electrons Coulomb scattered in this gas to the angles � > k�0

�N

N
=

2�r2engZ
2

k2�N?

�?lg



(7)

being proportional to Z2 will limit the plasma length lg. Probability of collision ionisation

in a short section of plasma is negligible small.

Ionization itself does not produce electric �eld before the ionized electrons are repelled

from the bunch. For plasma with density np small compared to the bunch density, np << nb,

the �eld of the ions and ionized electrons is small compared to the �eld of the bunch (so-

called \blow-out regime"). Let us choose t = 0 at the moment when the bunch centroid

enters the section with gas located at s = 0. An electron may be freed at the location s > 0,

radius r(0), at the moment t0 by a slice of the bunch located at the distance z = s � ct0
from the bunch centroid with probability W (r; z), Eq. (3). The trajectory of the electron

R(t� t0; r
0) with the initial condition R(0; r0) = r0 is described by equation

d2

dt2
R

�r
= !2

b

2�r

R
(1 � e�R

2=2�2
r )e�(s�ct)2=2�2; (8)
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where !b is the bunch plasma frequency,

!2
b

c2
=

NBrep
2��2

r�z
; (9)

and re is the classical electron radius. For small R << �r,

R(t� t0; r
0; z) = r0 cosh

"
!b

c

Z c(t�t0)

0
dz0e�(z0�z)2=4�2

z

#
: (10)

R(t) grows exponentially fast, R = r0 cosh[!b(t � t0)], for 0 < c(t � t0) << �z with the

characteristic time c=!b. For the NLC parameters given above, this time is of the order of

ten microns, c=!b = 3:5 � �r. At larger R > �r electrons moves, basically, as free particle

with velocity dR=dt ' c. Determination of the charge density at large r requires numerical

analysis which may include e�ect of the magnetic �eld on the rapidly moving electrons. Here

we note only that, in the blow-out regime, plasma oscillations may have period 2�=!p, where

(!p=c)
2 = 4�ngre, and do not play essential role for a single bunch collimation provided that

!plB=c < �=2. For the length of a bunch lB = 4�z, this gives an upper limit on the gas

density ng < 2:0 � 1014 cm�3. As noted, Coulomb scattering may also require reduction of

pressure.

To consider all bunches in the bunch train independently, the plasma oscillations excited

by a bunch have to be damped out and possibly full recombination should take place. The

plasma oscillations are believed [2] to damp out in 10-20 plasma oscillations. For a train

of bunches with the NLC bunch spacing �B = 1:4 ns, we requiring 20 � (2�=!p) < �B ns,

which gives ng > 2:5� 1012 cm�3. Unfortunately, the recombination takes longer time, and

it is possible only due to the three-body recombination. It sets a limit on the acceptable gas

density of the order of ng > 2:0 � 1014cm�3. Therefore, with full recombination, there is a

narrow window for the gas density at the present bunch spacing.

Additional restriction may come from the motion of ions which get substantial kick from

the parent bunch. Hopefully, overfocusing of the ions by the electron beam disperses ions

during the time between bunches and makes the lower gas density possible. It is also not

clear if the requirement of the full recombination is needed, and computer simulations may

clarify the situation.

The expelled electrons generate charge density n(r; s; t) and (in this geometry, radial)

electric �eld Ep
r (r; s; t) given by equations

@n

@t
+
1

r

@

@r
rjr = 0;

1

r

@

@r
Ep

r = 4�ne: (11)

The radial current density j(r; s; t) is given by the trajectory R,

jr(r; s; t) =
e

2�r

@

@t

Z r

0
ng2�r

0dr0�[R(t� t0; r
0; z)� r]W (r0; z)dt0: (12)

where �(x) is a step function, �(x) = 1 for x > 0 and �(x) = 0 for x < 0, ng is the density

of the residual gas, and z = s� ct0.
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Eqs. (11-12) give

eEp
r (r; s; t) = �

4�e2ng

cr

Z r

0
r0dr0dz0W (r0; z0); (13)

where the integration is performed over the region r0 cosh[!b(t � t0)] > r, ct0 = s � z0.

Electric �eld Ep
r gives a radial focusing kick to a particle in the slice z of a bunch , �pr=p =R

eEp
r (r; s = ct+ z; t)dt, or

�pr(r; z)

p
= �4�nglgre


rc

Z r

0
r0dr0dz0W (r0; z0); (14)

with integration over the region r0 cosh[!b(z� z0)=c] > r. Here 
 is relativistic factor, and lg
is the length of the gas chamber.

For �z >> �r, the integral over dz0 gives, approximately, factor lB ' 4�z, except for

particles in the head of the bunch. In this approximation, the kick is given by the integral

�pr(r; z)

p
= ��

y

Z y

0
xdx�(x)e��(x): (15)

Here y = r=�r,

� = 2:52� 1017
4�nglglBre�r


c

1

s
; (16)

and �(x) = �x=(1� e�x
2=2), where

� = 0:123 � 109
U

m!2
b�r

1

cm
: (17)

For the parameters given above, � = 3:55, � = 0:56 � 10�2 for ng = 1013 cm�3, lg = 1

cm, and 
 = 106.

The kick (�pr=p)=� is shown in Fig. 2 as function of r=�r for several values of �. For

small Lambda, � << 1, the kick grows almost linearly with r=�r up to large r=�r ' 10�20.

For large Lambda, � ' 3�5, the kick is almost zero for the core particles, r=�r < 0:8, grows

sharply and almost linearly up to r=�r ' 2 � 4, and then rolls o� inversely with r=�r.

The linear part of the kick, �pr=p = ��r=�r, with the slope � is equivalent to a kick of a

focusing quad with the focusing length 1=F = ��=�r. Calculations gives � = 1:6 � 10�4 at

� = 3:5 de�ning F = 3:52 m. This has to be compared with F = 25 m for a FODO lattice

with the average �? = 50 m. Hence, we can go to much lower gas density and pressure for

a single bunch.

The main potential problem here is that some core particles may be kicked to large

amplitudes. A point of concern might be particles located at very small transverse amplitudes

or within few microns (of the order of c=!b) close to the head of the bunch where ionized

electrons have no time to escape. Although the fraction of such particles is of the order of a

percent of the total bunch population, the absolute number of such particles nevertheless can

be as large as 108, much larger than acceptable level of 104 � 105 halo particles per bunch.

We hope that this is not the case because, as was mentioned above, the nonlinearity for the
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core particles is small and, additional to that, for particles having small initial amplitudes,

the mismatch amplitude modulation is small.

In summary, this scheme of collimation may be advantageous making collimation much

more compact than in the present design. However, constraints from the Coulomb scattering,

three-body recombination time and suppression of the e�ect of plasma oscillations may close

the window of acceptable gas density. More numerical simulations of the particle dynamics,

especially of particles in the head of the bunch, are needed to evaluate perspectives of such

method of collimation.

We thank T. Katsouleas for the useful discussion. Authors would like to thank organizers

of the Workshop for the warm and inspiring atmosphere at Arcidosso which lead to the ideas

described in this paper.
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Figure 1: Energy spread at the end of the NLC linac after compensation by placing the

bunch 30o degree ahead of the rf crest for the last 20% of the linac. Without compensation

the head has higher energy than the tail with a roughly linear correlation and 1% rms
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Figure 2: Dependence of the kick on the o�set.
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