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Abstract

The generalization of the axial anomaly is considered. It is shown that

bilocal axial quark operators on the light cone possess, beside the point-like

anomaly, also a light-like anomaly. The consequences for the definition of

anomaly-free quark distribution functions and the effect of both the gluon

coefficient function and splitting kernels in polarized deep inelastic scattering

are discussed.
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I. INTRODUCTION

In the last years much effort was put, on both experimental and theoretical sides, into

understanding the spin structure of the proton (for reviews of the EMC spin crisis, see [1]).

New data for the polarized deep inelastic scattering (DIS) structure function g1 from SLAC

[2] and the SMC [3] are consistent with the previous EMC [4] result. Two different scenarios

can explain the data, large anomalous sea-quark or large anomalous gluon interpretation

[5–7], which are connected with the problem of the anomalous gluon contribution to g1. In

fact, a renormalization group transformation can shift the anomalous contribution to the

quark sector or to the gluon sector. In this way, either the anomaly manifested in the matrix

element of the axial quark current is responsible for the large polarization of the sea or it can

be perturbatively taken into account in the gluon coefficient function, while the quark matrix

element is anomaly-free. The dependence of this renormalization group transformation on

the gluon momentum fraction x is still controversial.

From the physical point of view, it is more natural that the anomaly is attributed to the

gluons. The gluonic coefficient function then absorbs only the short-distance contributions,

while the quark distribution corresponds to a conserved operator and may be invoked in

the low-energy description of the proton. The corresponding picture of the nucleon spin

structure is most popular and the gluon polarization is considered to be its most important

unknown ingredient. The problem of its x-dependence is the “physical” counterpart of the

above-mentioned renormalization group transformation.

The accounting for the anomaly by the finite renormalization transformation is effectively

resulting in the substitution in the partonic expression for the structure function g1,

∆q → ∆q̃ = ∆q −
αs

2π
∆g, (1.1)

for the first moment of the spin-dependent quark distribution for each flavour. The over-

simplified “naive” x-dependent analogue is just

∆q̃(x) = ∆q(x) −
αs

2π
∆G(x). (1.2)
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However, such an expression is not compatible, in principle, with the fact that the gluon

contribution starts at one-loop level only. The simplest, consistent approach was explored

in Ref. [8] a few years ago, by taking the infrared (IR) finite part EIR of the box diagram,

responsible for the photon–gluon interaction:

∆q̃(x) = ∆q(x) −
αs

2π

∫ 1

x

dz

z
EIR

(

x

z

)

∆g(z). (1.3)

However, the choice of the finite part is ambiguous and the specific role of the axial

anomaly remains unclear. This is why the attempt followed in Ref. [9] to perform the

decomposition of the box diagram, referring to its kinematical structure. The anomaly then

contributes to the singlet structure, associated with the spin structure function gT = g1 + g2

of the photon-gluon scattering1:

gn
T =

1

2n(n+ 1)
∆gn. (1.4)

Attributing the anomalous gluon contribution to this structure function resulted in its

1−x-dependence. Later, this expression was obtained and exploited in different approaches

[11,12]. However, both derivations and interpretations of this result do not seem complete

and some more solid ground is desirable.

The anomalous gluon contribution plays an exceptional role in the general classification of

perturbative QCD contributions. Formally, it is a part of the next-to-leading order (NLO)

contribution. However, due to the well-known growth of the first moment of the spin-

dependent gluon distribution, compensating one power of αs makes it essential also at leading

order. The recently calculated two-loop, spin-dependent anomalous dimensions [13,14] make

it now possible to perform the complete NLO analysis of the experimental data [15–18].

These NLO calculations were performed in the dimensional regularization using the ’t Hooft–

Veltman–Breitenlohner–Maison (HVBM) scheme [19] in which γ5 does not anticommute in

1The recent analysis [10] confirms that the zero first moment of this structure function is mani-

fested only for regularization schemes, providing the zero moment of g1 as well.
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the unphysical space-time dimensions. In this minimal subtraction (MS) scheme both chiral

invariance in the non-singlet sector and the one-loop character of the singlet axial anomaly

are explicitly broken and their restoration requires an additional finite renormalization.

As the HVBM scheme is used, a further renormalization group transformation is per-

formed [16,20] in order to make the result compatible with the standard factorization pre-

scription and the low-energy intuitive description of the proton. However, only the value of

the first moment was fixed in that procedure, so that there remains an ambiguity in this

transformation. Note that the function 1 − x was also proposed for this purpose [12].

In the present article, we are suggesting the non-local generalization of the axial anomaly

based on the canonical Ward identities for light-ray operators. This allows us to give the

natural description of both anomaly-free singlet quark distribution and anomalous gluon

contribution, which fix the x-dependence of the renormalization group transformation. The

final result is a rigorous proof of the 1−x-behaviour of the anomalous contribution in NLO.

Here, we do not address the issue of higher loop corrections to the generalized axial anomaly.

The paper is organized as follows. Section II discusses the chiral invariance breaking

of flavour non-singlet light-ray operators due to the renormalization, and their restoration

by a finite renormalization. Then we derive Ward identities for light-ray operators and

compute the non-local singlet axial anomaly, which can be expressed as a divergence from a

generalized topological current. In Section III we use our results to define the anomaly-free

singlet quark distribution and show the consequences for coefficient functions and evolution

kernels in NLO approximation.

II. AXIAL ANOMALY OF LIGHT-RAY OPERATORS

As mentioned before, chiral invariance is broken in the HVBM scheme; however, as it is

known from the renormalization of the axial current, it can be restored by a finite renormal-

ization, so that the non-singlet Ward identity will be fulfilled. This finite renormalization

constant zNS can be computed for massless QCD from the requirement that the anticom-
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mutativity of γ5 is effectively restored [21], i.e.

zNS
〈[

j5,a
µ

]

ψψ̄
〉

=
〈[

ja
µ

]

ψψ̄
〉

γ5, with zNS = 1 −
αs

π
CF +O(α2

s), (2.1)

where j5,a
µ = 1

2
ψ̄[γµ, γ

5]λaψ with γ5 = iγ0γ1γ2γ3 and ja
µ = ψ̄γµλ

aψ are the axial vector

and the vector current, respectively, λa is a flavour matrix, the symbol [...] denotes minimal

subtraction, and CF = 4
3

is the usual QCD colour factor. Flavour and colour indices are

suppressed for simplicity.

The one-loop character of the singlet axial anomaly can also be ensured by some finite

renormalization of the current. This required a two-loop calculation of the Ward identities

sandwiched between the two-gluon state. The αs correction to the corresponding z factor,

zS = 1− αs

π
CF +O(α2

s), coincides with the non-singlet factor zNS. Because of the appearance

of so-called light-to-light subdiagrams, this coincidence is spoiled beyond the one-loop level.

Note that the one-loop approximation of zS can also be calculated by the requirement that

the singlet Ward identities are fulfilled for the two-quark state. Since at leading order the

axial anomaly does not appear in this Ward identity, it follows that the finite renormalization

factor is the same as that for the non-singlet channel.

The same problems as discussed above also occur for composite operators on the light-

cone, which appear in the definition of spin-dependent quark distribution functions. For

technical reasons we start with a more general definition of bi-local operators, which are not

necessarily on the light-cone:

O5,a
µ (x, y) =

1

2
ψ̄(x)Us(x, y)

[

γµ, γ
5
]

λaψ(y), (2.2)

Us(x, y) = P exp
{

−ig
∫ 1

0
dτAµ

k(xτ + y[1 − τ ])tk(xµ − yµ)
}

.

Here, Us(x, y) ensures gauge invariance, where the gauge field Aµ
k is path-ordered along

a straight line connecting the fermion fields. For light-like distances, i.e. (x − y)2 = 0,

these operators can be expanded in terms of local twist-2 and twist-3 operators. We set

x = κ1x̃, y = κ2x̃, where x̃ is a light-cone vector and, after contraction with x̃µ, we get the
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leading twist-2 light-ray operators [22]2:

O5,a(κ1, κ2; x̃) = x̃µO5,a
µ (κ1x̃, κ2x̃),

= ψ̄(κ1x̃)U(κ1x̃, κ2x̃) 6 x̃γ
5λaψ(κ2x̃). (2.3)

To determine the finite non-singlet renormalization constant in the forward case, we

require (for massless QCD), in analogy to Eq. (2.1), the validity of

∫ 1

0
dx zNS(x)

〈[

O5,a(0, κx; x̃)
]

ψψ̄
〉

=
〈

[Oa(0, κ; x̃)]ψψ̄
〉

γ5, (2.4)

where Oa is analogous to the definition of O5,a in Eq. (2.3), but without γ5 matrix. In the

dimensional regularization using the HVBM scheme, the leading-order result (restricted to

the forward case) is

zNS(x) = δ(1 − x) −
αs

π
2CF (1 − x) +O(α2

s), (2.5)

while in the Pauli–Villars regularization, chiral invariance holds true without finite renor-

malization.

As in the case of the axial current one expects, in leading order, that the same finite

renormalization as in Eq. (2.5) has to be performed for the singlet light-ray operator. Beyond

the leading order this is no longer true and the question is: How can we fix this finite

renormalization constant?

After we have seen that the restoration of chiral invariance requires an x-dependent

finite renormalization, a second question arises: Does the axial anomaly also depend on x?

To answer this question we use the equation of motion to derive Ward identities for the

divergence of the non-local operators (2.2). A straightforward calculation provides that the

divergence of this operator is

2 Since x̃ is an external four-vector that can be kept four dimensional in the dimensional-

regularized operator vertex, it follows that in the HVBM scheme the relation
[

6 x̃, γ5
]

= 2 6 x̃γ5

is valid, so that indeed Eq. (2.3) comes from the definition (2.2).
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(

∂µ
x + ∂µ

y

)

O5,a
µ (x, y) = ΩEOM(x, y) + iψ̄(x)Us(x, y)γ

5maψ(y) −

ig
∫ 1

0
dτ ψ̄(x)Us(x, xτ)γαF

αβ(xτ + y[1 − τ ])(xβ − yβ) ×

Us(y[1 − τ ], y)γ5λaψ(y), (2.6)

ΩEOM(x, y) = ψ̄(x)([6D(x) − im]Us(x, y) + Us(x, y)[6D(y)− im])γ5λaψ(y), (2.7)

where ΩEOM(x, y) denotes the equation of motion operators, Fαβ = F a
αβt

a is the field strength

tensor, and ma
ij = (mi +mj)λ

a
ij is a mass matrix.

For (x− y)2 6= 0 the operator is ultraviolet-finite and the Ward identity (2.6) should be

satisfied. However, the situation will be changed if we go to a light-like (not only short, as

usually discussed) distance. Then the operator has to be renormalized, and anomalous terms

can occur. For instance, if we naively anticommute 6D(y) with γ5 in the second expression

in the r.h.s. of Eq. (2.7) then the use of the equation of motion will provide only contact

terms. However, in the HVBM scheme the non-anticommutativity of γ5 gives an anomalous

term, which should be cancelled by a finite renormalization (see the discussion in [23]), so

that the anticommutativity of γ5 is effectively restored as discussed above. We calculated

this anomalous term and after an appropriate definition of the appearing operators the finite

renormalization constant (2.5) was extracted from the Ward identity. As discussed above

for the local case, because of the absence of the singlet axial anomaly in the Ward identities

for the Green functions of quark fields at one-loop order, it follows that zS(x) coincides with

zNS(x) at this order.

For the singlet case (a = 0, λ0
ij = δij , m

0
ij = 2miδij), we expect an anomalous term of the

form ǫαβγδFαβ(· · ·)Fγδ(· · ·), which can be computed from the difference of the l.h.s. and r.h.s.

of the Ward identity (2.6) sandwiched between the two gluon states (see diagrams in Fig.

1). We now set x = κ1x̃, y = κ2x̃ with x̃2 = 0 and choose the light-cone gauge, i.e. x̃A = 0.

After a straightforward calculation, it turns out that in both Pauli–Villars regularization

and HVBM scheme the same anomaly appears, so that the singlet Ward identity is actually

given by
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(

∂µ
(κ1x̃) + ∂µ

(κ2x̃)

)

O5,0
µ (κ1x̃, κ2x̃) = OF (κ1, κ2; x̃) +

αs

4π
Nf

∫ 1

0
dx

∫ 1−x

0
dy 2 ×

F a
µν ([κ1(1 − x) + κ2x]x̃) F̃

aµν ([κ2(1 − y) + κ1y]x̃) , (2.8)

where

OF (κ1, κ2; x̃) = −ig
∫ κ2

κ1

dτ ψ̄(κ1x̃)γαF
αβ(τ x̃)x̃βγ

5ψ(κ2x̃). (2.9)

Here, F̃ aµν = 1
2
ǫµναβF a

αβ , with ǫ0123 = +1, αs = g2

4π
, and Nf is the number of flavours. Here

we applied the equation of motion and neglected the quark masses. In the local case, which

follows from setting κ1 = κ2 = κ, the operator O5,0
µ (κx̃, κx̃) coincides with the local singlet

axial current j5,0
µ (κx̃) and from Eq. (2.8) we recover the well-known expression for the local

anomaly: αs

4π
NfF

a
µν (κx̃) F̃ aµν (κx̃).

Finally, we introduce a non-local generalization of the topological current

Kµ(x, y) =
αs

4π
Nfǫ

µαβγ
[

Aa
α(x)∂βA

a
γ(y) −

g

3
fabcA

a
α(x)Ab

β(y)Ac
γ(y) + {x ↔ y}

]

, (2.10)

with x = κ1x̃ and y = κ2x̃, so that the anomaly in Eq. (2.8) can be written as a divergence

(

∂µ
(κ1x̃) + ∂µ

(κ2x̃)

)

Kµ(κ1x̃, κ2x̃) =
αs

4π
NfF

a
µν (κ1x̃) F̃

aµν (κ2x̃) . (2.11)

We are now able to define the anomaly-free operator

Õ5,0
µ (κ1x̃, κ2x̃) = O5,0

µ (κ1x̃, κ2x̃) −

2
∫ 1

0
dx

∫ 1−x

0
dy Kµ([κ1(1 − x) + κ2x]x̃, [κ2(1 − y) + κ1y]x̃). (2.12)

III. CONSEQUENCES FOR POLARIZED DISTRIBUTION FUNCTIONS

As shown in the previous Section light-ray operators possess anomalous contributions.

For the non-singlet case these anomalies are a pure artefact of choosing a non-invariant

chiral renormalization scheme. The polarized quark distribution functions should be defined

in a chiral invariant manner, so that in a general renormalization scheme an additional finite

renormalization is necessary
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∆qNS(x,Q2) =
∫ 1

x

dy

y
zNS
5 (y)

∫

dκ

2π(x̃S)

〈

P, S
∣

∣

∣

[

O5,NS(0, κ; x̃)
]∣

∣

∣P, S
〉

ei(x/y)κ(x̃P ), (3.1)

where Sρ denotes the polarization vector of the nucleon and the renormalization point square

µ2 is set equal to the momentum transfer squared Q2. The leading-order approximation of

zNS
5 (y) in the HVBM scheme is given in Eq. (2.5). This finite renormalization affects the NLO

approximation of both quark coefficient functions and splitting kernels and agrees with the

additional renormalization group transformation performed in the NLO calculation [13,14].

Because of the anomaly, the naive definition of the singlet distribution function

∆Σ̃(x,Q2) =
∑

i=u,d,...

∆qi(x,Q
2) + ∆q̄i(x,Q

2), ∆q̄i(x,Q
2) = ∆qi(−x,Q

2)

=
∫ 1

x

dy

y
zS
5 (y)

∫

dκ

2π(x̃S)

〈

P, S
∣

∣

∣

[

O5,0(0, κ; x̃)
]

+ {κ→ −κ}
∣

∣

∣P, S
〉

ei(x/y)κ(x̃P ) (3.2)

(please note that ∆Σ̃ is defined in terms of the operator O5,0) cannot be interpreted as

probability for finding a polarized quark flavour singlet configuration with given longitudinal

momentum fraction x. In addition to the finite multiplicative renormalization3, it is also

necessary to remove the axial anomaly from the definition of this function [5–7]. Thus, one

has to define the singlet distribution function in terms of the anomaly-free operator (2.12),

which provides

∆Σ(x,Q2) = ∆Σ̃(x,Q2) − k(x,Q2), (3.3)

where

k(x,Q2) = 2
∫ 1

x

dy

y
(1 − y)

∫ dκ

2π(x̃S)
〈P, S |x̃µKµ(0, κx̃) + {κ→ −κ}|P, S〉 ei(x/y)κ(x̃P ), (3.4)

and the generalized topological current Kµ is defined in Eq. (2.10).

The problem that Kµ is gauge-variant, and thus that k(x,Q2) contains also unphysical

components, can somehow be resolved by the choice of a physical gauge. In the light-cone

3This renormalization is due to the diagrams without two-gluon intermediate states, which are

the same for the non-singlet and the singlet case, so that zS
5 (y) = zNS

5 (y), as discussed in Section

II.
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gauge, the gauge-invariant twist-2 gluon operator

G(κ1, κ2; x̃) = ix̃αF̃aαβ(κ1x̃)F
βγ
a (κ2x̃)x̃γ (3.5)

can be expressed in the forward case by

G(0, κ; x̃) = −
(

αs

2π
Nf

)

−1

ix̃∂κx̃
µKµ(0, κx̃). (3.6)

Furthermore, from the definition of the gluon distribution function

∆g(x,Q2) =
1

x(x̃P )

∫

dκ

2π(x̃S)
〈P, S |G(0, κ; x̃) + {κ→ −κ}|P, S〉 eixκ(x̃P ), (3.7)

and from Eqs. (3.4) and (3.6), and after performing a partial integration, we find that

k(x,Q2) is actually given in terms of the gauge-invariant gluon distribution function. Thus,

to remove the axial anomaly of the polarized quark distribution function it is sufficient to

subtract a certain amount of the gluon distribution function:

∆Σ(x,Q2) = ∆Σ̃(x,Q2) −K(x) ⊗ ∆g(x,Q2), K(x) = −
αs

π
Nf (1 − x), (3.8)

where the convolution is defined as

A(x) ⊗ B(x) =
∫ 1

0
dy

∫ 1

0
dz δ(x− yz)A(y)B(z). (3.9)

Indeed, removing the axial anomaly is equivalent to the following (additive) renormal-

ization group transformation:

∆Cg(x) = ∆C̃g(x) +K ⊗ ∆C̃q(x), ∆Cq(x) = ∆C̃q(x), (3.10)

∆Pgg(x) = ∆P̃gg(x) +K ⊗ ∆P̃gq(x), ∆Pgq(x) = ∆P̃gq(x),

∆Pqq(x) = ∆P̃qq(x) −K ⊗ ∆P̃gq(x),

∆Pqg(x) = ∆P̃qg(x) −
β

g
K(x) +K ⊗ [∆P̃qq − ∆P̃gg − ∆P̃gq ⊗K](x),

where ∆Ci are the coefficient functions, ∆Pij are the spin-dependent splitting kernels, and

β = µ d
dµ
g(µ) is the renormalization group coefficient of the running coupling constant.
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Because of gauge invariance the operator product analysis suggests that the zero moment

of ∆Cg vanishes. After the transformation (3.10) is performed, the gauge-variant axial

anomaly contributes to the gluonic sector, so that the zero moment is now given by

∫ 1

0
dx ∆Cg(x) =

∫ 1

0
dx K(x) +O

(

α2
s

)

= −
αs

2π
Nf +O

(

α2
s

)

. (3.11)

For completeness we give the difference of the splitting kernels in NLO:

∆Pgg(x) − ∆P̃gg(x) = −
(

∆Pqq(x) − ∆P̃qq(x)
)

=
(

αs

2π

)2

2CFNF [3(1 − x) + (2 + x) lnx] ,

∆Pqg(x) − ∆P̃qg(x) =
(

αs

2π

)2

Nf{CF [(1 − x)(1 − 4 ln(1 − x) + 2 lnx)] +

CA [(1 − x)(−16 + 4 ln(1 − x)) − 4(2 + x) ln x] }, (3.12)

where the Casimir operator CA is equal to the number of colours. Note, that these differences

will vanishes in the limit x → 1. For small x they contribute only to the subleading

behaviour of the NLO result (the leading terms are given by ln2 x).

Another opportunity to perform the evolution coincides with the one proposed by Cheng

[12]. Namely, one should perform the evolution in the gauge-invariant (say, MS) scheme and

afterwards restore the anomaly-free distribution by applying Eq. (3.8). The 1−x behaviour

in this approach is actually coming from the mass term in the box graph. The contact with

our derivation may be achieved by noting that the cancellation of normal and anomalous

divergence, resulting in the effective conservation of axial current in the limit of infinite

quark mass, is valid for the non-local anomaly as well. It is especially clear for the Pauli-

Villars regularization, when the contribution of regulator fermions (calculated in Section II)

is looking, up to the sign, precisely such us that of the quark masses, which is the starting

point of the approach of Cheng.

For practical purposes, irrespective of the used evolution scheme, it is possible to define

an effective gluon distribution, which is just the combination appearing in g1, i.e. the

convolution of (1 − x) with ∆g(x):

∆geff(x,Q2) = 2(1 − x) ⊗ ∆g(x,Q2), (3.13)
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so that the first moments of effective gluon distribution coincide with the “original” one,

while the structure function g1 has at leading order the simple partonic form, suitable for

the extraction of partonic distributions from the experimental data [24]:

g1(x,Q
2) =

1

2
∆Σ̃(x,Q2) =

1

2

[

∆Σ(x,Q2) −
αs

2π
Nf∆g

eff(x,Q2)
]

. (3.14)

It is convenient to have the evolution equation directly for effective distribution functions.

While the diagonal kernels are not changed, the moments of the off-diagonal kernels are

changed in a straightforward manner:

∆P eff
gq (n) =

2

n(n+ 1)
∆Pgq(n), ∆P eff

qg (n) =
n(n+ 1)

2
∆Pqg(n). (3.15)

Note, especially, that the influence of the effective gluon distribution to the quark evolution,

governed by ∆P eff
qg , appears to be much less singular in n. We are not presenting the explicit

form for effective NLO anomalous dimensions, which are rather lengthy. At leading order,

when the x dependence is easily restored, Eq. (3.15) results in the equations

∆P eff
gq (x) =

αs

π
CF [3(x− 1) − (x+ 2) lnx], ∆P eff

qg = −
αs

4π
Nf

d

dx
δ(1 − x). (3.16)

The first moments of the splitting kernels provide an important check for the normal-

ization of the non-local contribution and determine the evolution in the corresponding sum-

rules. So we summarize the consequences for the zero moment of the splitting kernels, which

come from general renormalization arguments of the axial vector current and the topological

current, which are verified up to two- and three-loop order, respectively [25]. From current

conservation of j5,0
µ = j̃5,0

µ − kµ (here, j̃5,0
µ refers to the original definition in terms of quark

fields), the Adler–Bardeen theorem, and the renormalization properties of gauge-invariant

operators, it follows that

∫ 1

0
dx ∆Pgg(x) =

∫ 1

0
dx ∆P̃gg(x) + γj = −

β

g
+ γj,

∫ 1

0
dx ∆Pgq(x) =

∫ 1

0
dx ∆P̃gq(x) = −

γj

Nf [αs/(2π)]
,

∫ 1

0
dx ∆Pqg(x) =

∫ 1

0
dx ∆P̃qg(x) = 0,

∫ 1

0
dx ∆Pqq(x) =

∫ 1

0
dx ∆P̃qq(x) − γj = 0, (3.17)
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where the three-loop order approximation for the anomalous dimension of the axial vector

current γj and for the β-function are known4 [25,26]:

γj = −
(

αs

4π

)2

6CFNf +
(

αs

4π

)3 (

−
142

3
CA +

4

3
NF + 18CF

)

CFNf , (3.18)

β

g
= −

αs

4π

(

11

3
CA −

2

3
Nf

)

−
(

αs

4π

)2 (

34

3
C2

A − 2CfNf −
10

3
CANf

)

−

(

αs

4π

)3 (

2857

54
C3

A + C2
FNf −

205

18
CFCANf −

1415

54
C2

ANf +
11

9
CFN

2
f +

79

54
CAN

2
f

)

. (3.19)

These results allow [27] the extraction of the anomaly equation renormalization for a

number of loops exceeding that of γj by 1. For the leading three-loop contribution, this

coincides with the calculation of Anselm and Johansen [28], while the four-loop correction

require a one-loop finite correction to the gluon matrix element of the topological current

[29]. As a result, the four-loop correction takes the form

Zj = −
(

αs

4π

)3

6CFN
2
f +

(

αs

4π

)4 (

−
214

3
CA +

4

3
NF + 18CF

)

CFNf . (3.20)
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Figure 1: Diagrammatical representation for the l.h.s. (a) and for the r.h.s.

(b) of the non-local singletWard identity (2.8) in the one-loop approximation.

The symbol dO refers to the divergence
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