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Two-particle correlation functions for positive and neg-
ative pions have been measured in Au+Au collisions at
10.8 GeV/c per nucleon. The data were analyzed using one-
and three-dimensional correlation functions. From the results
of the three-dimensional fit the phase space density of pions
was calculated. It is consistent with local thermal equilib-
rium.

Bose-Einstein correlations of identical pions can be
used to obtain information about the space-time-
momentum distribution S(r, t,p) of pions at freeze-out
(pion source) in a nuclear collision (for a review see
[1]). The two-pion correlation function C(p1,p2), de-
fined as the ratio between the two-particle density and
the product of single particle densities, shows a peak at
q = p2 − p1 = 0. The width of this peak is inversely
proportional to the size of the pion source. Analysis
of C as a function of different components of the rela-
tive momentum yields information about the source di-
mensions in different directions. The relation between
S and C is, under realistic conditions, complicated by
effects like three- (and more) particle correlations [2–4],
long-lived resonance decays [5–7], and the distortion of
the single-particle spectra by the two-particle correla-
tions [8,9]. The correlation must also be corrected for
the Coulomb interaction between the two pions [10–12].

In this Letter we present results of the correlation
analysis of pions produced in central Au+Au collisions
at 10.8 GeV/c per nucleon. The data were taken in
Fall 1993 at the AGS. The central trigger at the level
of 10% of the geometrical cross section was used. The
apparatus allowed a simultaneous measurement of posi-
tive and negative pions with a momentum resolution of
∆p/p ≈ 3%. With two field polarities used, the overall
acceptances for positive and negative pion pairs were sim-
ilar: 2 < y < 4 and 0 < pt < 0.5 GeV/c with 〈y〉 = 3.1

and 〈pt〉 = 0.1 GeV/c. The analyzed data sample con-
sists of one million central events and the total number of
analyzed π+π+, π−π−, and π+π− pairs is 130 k, 210 k,
and 340 k, respectively. The particle identification (PID)
quality was tested by varying the PID cuts in order to
deliberately accept background particles. No significant
influence on the results was observed implying that par-
ticle misidentification does not contribute significantly to
the overall systematic uncertainty. A more detailed de-
scription of the experiment and of the data analysis can
be found in [13].

Experimentally, the correlation function C(q) is de-
fined as the number of pion pairs in a q-bin (signal) di-
vided by the number of such pairs obtained by event
mixing (background). The variables qout, qside, and qlong,
used in the three-dimensional ‘out-side-long’ analysis,
are the components of q in the beam rapidity frame
yanal = ybeam = 3.14. Here qlong is the component par-
allel to the beam, qside is perpendicular to the beam and
to the average pair momentum, and qout is perpendic-
ular to qlong and qside [14,15]. In our one-dimensional
analysis we analyzed two-pion correlations as a func-
tion of q = |q| calculated in the pair c.m. frame. For
equal mass particles q is equal to Qinv which is defined
as
√

(p2 − p1)2 − (E2 −E1)2.
The background pairs were weighted with the Coulomb

correction factor to remove the effect of the Coulomb
interaction between the two pions from the correlation. It
is calculated by taking the square of the non-relativistic
wave function describing a particle in a Coulomb field
[16,17]:

H(k, r) =
2πη

e2πη − 1

∣∣∣∣F (−iη; 1; ik(r−
r · k

k
)

)∣∣∣∣2 , (1)

where F is the confluent hypergeometric function, k is
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the asymptotic momentum of a pion in the pair c.m.s.
(k = Qinv/2), and r is the relative distance of the two
pions at freeze-out. The relative velocity enters through
η = Z1Z2mπcα/Qinv where mπ is the pion mass and α
is the fine structure constant. For pions emitted from a
point-like source F is equal to unity and the Coulomb
correction becomes the well known Gamow factor [10,16]
(dot-dashed line in Fig. 1). For a finite size source, the
Coulomb correction factor can be obtained numerically
by averagingH(k, r) over r. The correction H calculated
this way for a Gaussian source with σx = σy = σz =
5 fm and σt = 0 is shown as a dashed curve in Fig. 1.
In addition, since it would be incorrect to divide data
which have been measured with a finite resolution ∆p
by a correction calculated assuming ∆p=0, we folded H
with the momentum resolution of the spectrometer. The
resulting correction H∆p is shown as a solid line in Fig. 1.
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FIG. 1. Coulomb correction factor for two-pion correlation
functions. The dot-dashed line G represents a correction as-
suming a point-like pion source (Gamow factor). The dashed
line H was calculated for a Gaussian source with a realistic
size. The same curve folded with the spectrometer momen-
tum resolution is shown as a solid line. This is the correction
used in the data analysis.

Since the π+π− correlation is dominated by the mutual
Coulomb interaction, we can use it to test the quality of
the Coulomb correction. This correlation function, un-
corrected, corrected by the Gamow, and by H∆p is shown
in the right hand panels of Fig. 2. The properly corrected
correlation should be equal to unity. The Gamow correc-
tion is obviously inappropriate. This is in agreement with
several theoretical studies [11,18,19] as well as previous
experimental observations [20,21]. The by H∆p corrected
π+π− correlation is close to unity. We therefore use the
same method to correct the π+π+ and π−π− correlation
functions.
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FIG. 2. One-dimensional π+π+, π−π−, and π+π− correla-
tion functions. Presented are from top to bottom: raw and
Gamow corrected correlations, and correlations corrected by
H∆p. The solid line is the Gaussian fit.

The Gamow correction would lead to a significantly
different shape of the corrected correlation (see Fig. 2
and Table I).

In order to test possible distortions of the correlation
function introduced by the apparatus and the data anal-
ysis we performed a Monte Carlo simulation in which
we generated events with realistic particle multiplicities
and momenta, and propagated the particles through our
setup using GEANT [22]. The simulated detector re-
sponse was used as an input to the data analysis code.
The obtained correlation functions were equal to unity
as expected for a simulation without two-particle inter-
actions. Subsequently, we generated events in which posi-
tive pions were correlated. The obtained correlation func-
tions were fitted and the fit results were compared to the
parameters of the original correlation. The observed 3-
10% and 20% reductions of the radius parameters and the
correlation strength (see below for definitions), respec-
tively, are consistent with the broadening of the correla-
tion peak expected from the finite momentum resolution
of the spectrometer.

The experimental, Coulomb corrected one-dimensional
π+π+ and π−π− correlations were parametrized by

C(Qinv) = 1 + λ exp (−R2Qinv
2) (2)
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with h̄ = 1. The results of a maximum likelihood fit
are shown as the solid line in Fig. 2. The fit parameters
are given in Table I. Fitting Coulomb uncorrected cor-
relations gives the same R but a lower λ value of 0.32.
We estimate the uncertainty of λ because of the assump-
tions entering the Coulomb correction to be half of the
difference, i.e. 18%.

In the ‘out-side-long’ analysis, which was performed
in the beam rapidity frame yanal = 3.14, the three-
dimensional correlation functions were fitted by

C(qout, qside, qlong) = 1 + λ exp(−Rout
2qout

2 −Rside
2qside

2 +

−Rlong
2qlong

2 − 2|Rol|Rolqoutqlong) . (3)

The projections of the correlation and of the fit, obtained
by averaging over the two other components of q in the
range from -50 MeV/c to 50 MeV/c with a weighting fac-
tor equal to the number of background pairs, are shown
in Fig. 3.
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FIG. 3. Projections of the three-dimensional π+π+ and
π−π− correlation functions. Solid lines represent projections
of the fit.

The particles were labeled such that qlong>0. The
asymmetric shape of the projection C(qout), well repro-
duced by the fit, is caused by the acceptance and the
finite width of the projection window. The parameters
obtained from the fit are given in Table II. The values
were corrected for the momentum resolution of the spec-
trometer using the results of the Monte Carlo simulation.

Similarly as in the one-dimensional fit, the π+ and π−

sources apparently differ in size. We attribute this to
the distortion of the correlation function caused by the
Coulomb interaction between each of the pions and the

rest of the system [12].
The parameter Rside is most directly related to the

transverse size of the pion source. In order to compare it
to the projectile size we first translated the r.m.s. radius
of a gold nucleus Rrms=5.3±0.1 fm [23] to an equivalent
Gaussian radius RG = 1/

√
3Rrms = 3.08± 0.06 fm. The

ratio Rside/RG is 1.3±0.3 for π+ and 1.8±0.2 for π−.
This increase of the transverse size, combined with the
recent finding of transverse flow velocities from analysis
of particle spectra [24,25], may be used to restrict the
expansion dynamics.

It has been shown recently that the two-meson correla-
tion function is related to the meson phase space density
(defined as the number of particles per unit volume h3

in six-dimensional phase space) at freeze-out [26]. Using
the results from [26] we obtained the following formula:

〈f〉p =
d3n

d3p

√
π

3
λ

Rside

√
Rout

2Rlong
2 −Rol

4
, (4)

where 〈f〉p is the phase space density of pions
with momentum p, averaged over the spatial coordi-
nates, d3n/d3p is the differential pion multiplicity, and
λ,Rout, Rside, Rlong, and Rol are the numbers obtained
from the ‘out-side-long’ fit to the correlation function.
This phase space density can be compared to a theo-
retical prediction assuming local equilibrium, i.e. to the
Bose-Einstein distribution function. However, pions from
long-lived resonances, which result in λ < 1 [7,27], de-
crease the mean phase space density. This component of
the source function is not thermalized and should be left
out from the comparison. Since for a case without long-
lived resonances λ = 1, and since the actual fraction of
pions coming from the core is

√
λ, the following formula

describes the average phase space density in the core:

〈f〉core
p =

d3n

d3p

√
π

3√
λ

Rside

√
Rout

2Rlong
2 −Rol

4
. (5)

Taking the correlation parameters from Table II (with
the error matrix properly taken into account) and us-
ing experimental d3n/d3p from Ref. [28], we calculated
〈f〉core

p for several points in the (pt, y) plane (Table III).
We assume that the correlation parameters do not change
significantly between the points and thus the entire mo-
mentum dependence comes from d3n/d3p; a more correct
approach would require a separate correlation analysis for
every (pt, y) bin.

In the absence of tranverse flow and neglecting spectral
changes due to resonance decay, the phase space density
of pions in thermal equilibrium would follow the Bose-
Einstein distribution (for each pion species):

fBE(p) =
1

exp(mt cosh(y − yS)/T )− 1
(6)

with the pion transverse mass mt and rapidity y, and
the source rapidity yS . Since transverse momentum spec-
tra of pions and protons at these rapidities have similar
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slopes [28,29], the neglect of transverse flow seems to be
appropriate. Nevertheless, to estimate an upper limit for
the influence of flow effects we found by Monte Carlo
simulation that transverse flow with β=0.3 results in a
phase space density lower by 20% than the one given by
Eq.(6). Deviations of the spectral shape from thermal
distribution due to ∆ decays could be handled best if the
analysis was done in bins of pt and y. This is planned
for the high-statistics data sets taken in the ’94 and ’95
runs of E877.

Under these assumptions, we can test the thermaliza-
tion of pions by comparing the experimental phase space
density to that given by Eq. (6). The comparison is sim-
plified by the fact that the experimental differential mul-
tiplicity can also be parametrized by the Bose-Einstein
function:

d3n

d3p
=

A

exp(mt/Teff)− 1
(7)

with two fit parameters: effective transverse tempera-
ture Teff and normalization A. We assume that Teff =
T/ cosh(y − yS). Consequently, the comparison between
〈f〉core

p and fBE(p) is reduced to the comparison between
the parameters of the two-pion correlation function and
the normalization of the pion spectra A:

〈f〉core
p

fBE(p)
= A

√
π

3√
λ

Rside

√
R2

outR
2
long −R

4
ol

. (8)

Since the pt-spectra have a somewhat concave shape, A
depends on the range of the fit: low (high) pt’s yield high
(low) A. Using A obtained from a fit to the entire mea-
sured transverse momentum spectra 0 < pt < 0.6 GeV/c
in the rapidity range 3.0–3.3 and the correlation param-
eters from Table II, we evaluated the experimental-to-
thermal density ratio of 0.97±0.23 and 1.02±0.18 for π+

and π−, respectively. Thus the experimental pion phase
space density is consistent with the presence of local equi-
librium.

Summarizing, the multi-dimensional pion source pa-
rameters have been determined in the Au+Au system at
the AGS. The observed source is significantly larger than
a gold nucleus. The extracted pion phase space density
at freeze-out indicates local equilibrium.
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TABLE I. Parameters of the fit to one-dimensional cor-
relation functions C(Qinv) = 1 + λ exp (−R 2Qinv

2). For the
purpose of comparison we also quote the results obtained with
the Gamow correction (denoted as G).

with H∆p correction with G correction
λ R (fm) λ R (fm)

π+π+ 0.49±0.04 5.5±0.3 0.56±0.04 5.1±0.2
π−π− 0.51±0.03 6.2±0.2 0.62±0.03 5.9±0.2

4



TABLE II. Parameters of the fit to three-dimensional cor-
relation functions C(qout, qside, qlong) =
1 + λ exp(−Rout

2qout
2 − Rside

2qside
2 + −Rlong

2qlong
2

−2|Rol|Rolqoutqlong). The fit results are corrected for mo-
mentum resolution. That is why λ’s differ from the values in
Table I.

λ Rout(fm) Rside(fm) Rlong(fm) Rol(fm)

π+π+ 0.62±0.06 5.8±0.5 3.9±0.8 5.5±0.4 2.4±0.7
π−π− 0.62±0.05 6.5±0.5 5.6±0.7 5.8±0.4 3.7±0.8

TABLE III. Pion phase space density at freeze-out as a
function of pt and y. The statistical errors from d3n/d3p

are about 2%. The systematic error from d3n/d3p, combined
with the error from the correlation analysis, is 24% for π+

and 18% for π−. (This error acts on all numbers in the Table
collectively.)

π+ π−

pt (GeV/c) y=3.05 y=3.15 y=3.25 y=3.05 y=3.15 y=3.25

0.05 0.190 0.167 0.146 0.158 0.134 0.115
0.10 0.124 0.110 0.094 0.100 0.083 0.071
0.20 0.039 0.033 0.027 0.028 0.022 0.018
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