

24275

316/H/345

 $Div. DG/PU$
Distr. int. + ext.

Cours/Lecture Series

1990 - 1991 ACADEMIC TRAINING PROGRAMME

 243

Acad. Train 249

ABSTRACT

The lecture series will start with some fundamental principles of cosmic plasma physics. The main topics will deal with the sun, the interplanetary plasma, planetary magnetospheres, and energetic particles in the solar system. This includes the role of the sun in forming the heliosphere; manifestations of solar activity and the solar cycle, from large scale structures of the interplanetary medium to climatic changes; formation of planetary magnetospheres by interactions between the solar wind and planetary magnetic fields; the diversities of charged particle acceleration, in particular the role of collisionless shocks in the solar system. Some specific space projects exploring the heliosphere will be presented.

LECTURE: Space Plasma Physics in the Solar System

D-2300 Kiel) Universitat Kiel, Otto—Hahn—Platz 1, Kernphysik, LECTURER: G. WIBBERENZ (Institut für Reine und Angewandte

DATE: May 13-May 15, 1991.

Abstract

HELIOS and ULYSSES. of the University of Kiel to the International Sun Earth Explorer (ISEE) and the space probes specific space projects exploring the heliosphere will be presented, in particular contributions particle acceleration, in particular the role of collisionless shocks in the solar system. Some interactions between the solar wind and planetary magnetic fields; the diversities of charged of the interplanetary medium to climatic changes; formation of planetary magnetospheres by heliosphere; manifestations of solar activity and the solar cycle, from large scale structures energetic particles in the solar system. This includes the role of the Sun in forming the main topics deal with the Sun, the interplanetary plasma, planetary magnetospheres, and The lecture series starts with some fundamental principles of cosmic plasma physics. The

 $\mathcal{L}_{\mathcal{A}}$

 $\langle \cdot \rangle$

 \mathbf{L}

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{F}^{\mathcal{G}}_{\mathcal{G}}(\mathcal{A})$.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\frac{1}{2}$ $\mathcal{L}^{(1)}$

SPACE PHYSICS IN THE SOLAR SYSTEM

O V E R V I E W

- some fundamental principles 1. Cosmic Electrodynamics
- 2. The Sun
- an active star
	- domain of the solar wind 3. The heliosphere
	- Magnetospheres
		- streaming plasma - interaction between magnetic dipoles and
	- interactions with electric and magnetic fields Energetic particles in the solar system

COSMIC ELECTRODYNAMICS

Some particular aspects:

- high conductivity. trostatic fields, fields are generated by moving fluids of • No permanent magnetic fields and no stationary elec
- one reason for the high effective conductivity. • Huge volumina take part in the interactions which is
- may vary on different time scales. by the interactions processes itself, and their location to walls in laboratory plasmas). Boundaries are formed • In general, there are no fixed boundaries (corresponding

IDEAL MHD:

- High conductivity
- no space charges

REAL MHD:

- effects of finite resistivity
- •"diffusion" of magnetic field lines
- reconnection

Electromagnetic Forces

 $\vec{K} = e\left(\vec{E} + \vec{v} \times \vec{B}\right)$

on point charge e with velocity \vec{v}

$$
\vec{f}=\rho_e\vec{E}+\vec{j}\times\vec{B}
$$

on charge density ρ_e , current \vec{j} .

Euler's equation (no viscosity) for continuum (fluid) $\rho \frac{d\vec{u}}{dt} = -\mathrm{grad}\: p + \vec{j} \times \vec{B} + \vec{g}$

Without proof:

$$
\qquad \qquad f_i=(\vec{j}\times\vec{B})_i=\textstyle\sum\limits_{i=1}^3\frac{1}{\mu_0}\frac{\partial}{\partial x_i}(B_iB_j-\frac{1}{2}\delta_{ik}B^2)
$$

Maxwell's stress tensor for $\vec{B} = (0,0,B)$:

$$
\vec{f} = \nabla \vec{\vec{T}}
$$
 with $\vec{\vec{T}} = \frac{1}{2\mu_0} \begin{pmatrix} -B^2 & 0 & 0 \\ 0 & -B^2 & 0 \\ 0 & 0 & +B^2 \end{pmatrix}$

3

Maxwell's equations ($\mu = 1$, $\epsilon = 1$: no permeability, no dielectric properties, no space charges)

$$
\begin{array}{l} {\rm rot} \vec{E} \, = \, - \partial \vec{B} / \partial t \\ {\rm rot} \vec{B} \, = \, \mu_0 \vec{j} \\ {\rm div} \vec{E} \, = \, 0 \\ {\rm div} \vec{B} \, = \, 0 \end{array} \quad \longleftarrow \left\{ \begin{array}{l} \vec{B} \, = \, \mu_0 \vec{H} \\ \vec{D} \, = \, \epsilon_0 \vec{E} \\ \rho_e \, = \, 0 \end{array} \right.
$$

Ohm's law in moving fluid for plasma motion \vec{u} : (can be derived from Lorentz-invariance):

$$
\vec{j} = \sigma(\vec{E} + \vec{u} \times \vec{B})
$$

Replace

$$
\vec{E} \, = \, \frac{\vec{j}}{\sigma} \! - \! \vec{u} \times \vec{B} \, \, \, \vec{j} \, = \, \frac{1}{\mu_0} \text{rot} \vec{B} \, \, \,
$$

leads to MHD-equations

(relation between \vec{u} and \vec{B} !) MHD-equations:

$$
\rho \frac{d\vec{u}}{dt} = -\text{grad }p + \vec{j} \times \vec{B}
$$

Magnetic forces influence motion of plasma.

$$
\frac{\partial B}{\partial t}=\mathrm{rot}\left(\vec{u}\times\vec{B}\right)+D_{m}\Delta\vec{B}
$$

'frozen-in" term diffusive term

(Starting point for dynamo theory!) Motion \vec{u} of plasma determines \vec{B} .

Leads to time constant for fieldline diffusion Diffusive term with D_m

$$
t_{diff} \propto L^2 \mu_o \sigma.
$$

"DIFFUSION" OF MAGNETIC FIELD LINES

Let $\vec{u} = 0$

$$
t_{diff} \approx \frac{L^2}{D_m} = L^2 \mu_0 \sigma
$$

- 1. Cu, $L = 10$ cm: $t_{diff} = 0.7$ sec
- 2. SUNSPOT, $L = 30000$ km: $t_{diff} = 4$ years
- 3. INTERPLANETARY PLASMA, $L = 10^5$ km: $t_{diff} \approx 150\,000$ years

\rightarrow "FROZEN-IN" CONDITION MAY BE WELL FULFILLED IN COSMIC PLASMA.

The case of ideal MHD: $\sigma = \infty$

$$
\frac{\partial B}{\partial t} = \mathrm{rot} \left(\vec{u} \times \vec{B} \right)
$$

Consider plasma motion of closed contour C

$$
\phi = \int_C \vec{B} \, d\vec{\sigma} \qquad \text{mag}
$$

Without proof:

$$
\frac{d\phi}{dt}=0
$$

Theorem of "frozen-in" magnetic field.

field. Intimate relation between plasma and magnetic Plasma carries magnetic field (and vice versa).

Numerous applications

- Simple sunspot model
- 2. Solar prominences (filaments)
- Formation of magnetopause
- 4. Spiral shape of interplanetary magnetic field
- Alfvén waves

Special cases

- arches. ing perpendicular to field. Example: Coronal A $E_M \gg E_{Pl}$: MF keeps plasma from flow-
- Solar wind and interplanetary magnetic field. B $E_{Pl} \gg E_M$: Plasma carries MF. Example:

MHD-WAVES

$$
\text{general:} \quad c_w = \sqrt{\epsilon/\rho} \qquad \epsilon = \text{``elasticity''}
$$
\n
$$
\rho = \text{mass density}
$$

ALFVÉN WAVES (elastic waves along rope
 $c_{ALF} = \sqrt{B^2/\mu_0 \rho} \; \; \frac{\mbox{solar wind}}{}$ $c_{ALF}\thickapprox 45\, \,{\rm km\,s^{-1}}$

Q

Reconnection

How can we remove the pearls from the string?

- open magnetic field lines) photosphere of the Sun into the corona along ionosphere into the magnetosphere or from the • Thread it from the end (inject plasma from the
- reconnection. \bullet Cut field lines and glue them together again $=$

HOW and WHERE?

Important over small spatial scales. Remember: Finite resistivity required (non-ideal MHD).

 $t_{diff} \propto L^2 \mu_o \sigma$

RECONNECTION

region with $\vec{R} \neq 0$ IN

 $\vec{E} + \vec{u} \times \vec{B} = \vec{R}$ $\vec{R}=0$: $\sigma=\infty$ $\vec{R} \neq 0$: finite resistivity on small scales

REGION OF PLASMA HEATING

- \longrightarrow anomalous resistivity
- \longrightarrow increase of reconnection rate

LARGE ELECTRIC FIELDS

 \rightarrow particle acceleration

Domain of simulations!

RECONNECTION IMPORTANT CONSEQUENCES OF

ENERGY CONVERSION

(a) plasma heating

FEEDBACK

(b) \vec{E} -field: particle acceleration

LINES -2. RECONNECTION OF MAGNETIC FIELD

(not all solutions stationary!)

3. TRANSPORT OF PLASMA

4. CHANGE OF CONDUCTIVITY

THE SUN AND THE INTERPLANETARY MEDIUM

Some guidelines:

- layers: photosphere, chromosphere, corona. • The temperature profile 0f the Sun and the atmospheric
- Sun. • The solar cycle and the general magnetic field of the
- complex). The structure of the solar corona (unipolar, bipolar,
	- \bullet Individual features (sunspots, filaments, arches, ...).
	- The solar wind.
	- tures. The relation between coronal and interplanetary struc
	- interstellar medium. The extent of the heliosphere and the transition to the

SIMPLE SUNSPOT MODEL

Existance of magnetic field leads to COOLING.

$$
B \approx 4000 \text{ Gauss}
$$
\n
$$
\Delta T \approx 1600^{\circ}
$$
\n
$$
\frac{1}{I_{phot}} \approx \begin{cases} 0.13 & (3000\text{\AA}) \\ 0.46 & (10000\text{\AA}) \end{cases}
$$

BABCOCK'S MODEL

MULTIPLE WRAPPING OF SINGLE FIELDLINE \int $\sqrt[n]{x}$

 $\overline{\mathsf{S}}$ $-15 -$

MAGNETIC FLUX COMES TO SURFACE

(DEVERSAL $DULINQ$ SUBSEQUENT $cycce$)

ENERGY CONVERSION DURING THE **SOLAR CYCLE**

RECONNECTION leads to the most energetic processes of solar activity:

 $FLARES +$ CMEs (Coronal Mass Ejections)

 \overline{a}

 $\mathbf{17}$ $\overline{}$

(same age and mass \Longrightarrow same magnetic fields!) STUDY OF 74 SOLAR TYPE STARS

Brightness in Ca. H+K lines 13 stars studied monthly since 1966.

- $=$ measure for temperature
- = measure for magnetic activity.

flat". $($ \cdots \cdots): Roughly 1 /3 of solar type stars are "magnetically

of time in magnetic minima. Conclusion: Sun may spend considerable amount

 $\triangle S_{\odot} = 0.4\%$? \implies sufficient for $\approx 1^{\circ}$ CLIMATIC EFFECT

Giampapa, same place) (Baliunas and Jastrow, Nature 6 Dec 1990;

SOLAR WIND

Hydrostatic equilibrium

- 1957 Parker model: steady expansion
- 1962 Neugebauer and Snyder: Mariner 2

Results of continuous measurements:

1. RADIAL STREAMING without interruption

2. $\bar{V_w} \approx 400 \text{ km/s}, V_w = 300...700 \text{ km/s}$

3. $\bar{n} \approx 3 - 5$ protons/cm³, $n = 0.1 - 80$ cm⁻³

 $-4. T_p \approx 3 \cdot 10^4 ... 4 \cdot 10^5 \text{ K}$ $(T_c \approx (1-2) \cdot 10^6 \text{ K})$

- fast streams 5. Strong TEMPORAL VARIATIONS, "recurrent"
- origin 6. Plasma carries MAGNETIC FIELD of solar

Frozen-in magnetic field:

$$
\Phi = \pi B_1 r_1^2 = \pi B_2 r_2^2 = const.
$$

$$
B(r) = r^{-2}
$$

Earth's orbit = 213 r_{\odot}

Archimedian spiral

Change of magnetic polarities in the solar corona from solar minimum onwards

Interplanetary magnetic field structures generated by the Sun

- (a) Spiral and sector structure
- (b) Neutral sheet between regions of opposite polarity
- (c) Warped current sheet out to large distances
- (d) Corotating interaction regions

SOLAR WIND: SOME OPEN PROBLEMS

- coronal holes (supply of sufficient energy). 1. Realistic model for high speed streams from
- the corona. 2. Related to general question of the heating of
- loops to open field lines! Origin of slow solar wind: transition from closed

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$

Topological structure of the Earth's magnetosphere

24

PARTICLES AND FIELDS

(thermal) (suprathermal) FIELDS PARTIOLES PLASMA — MAGNETIC —— ENERGETIO

ACTIVE PLASMA:

- electric fields. Space charges (double layers) and magnetic field aligned
- A variety of effetcs leads to particle acceleration. The thermal plasma has a tail of suprathermal particles.
- plasma waves. Wave-particle interactions, generation of turbulence and

ELECTRIC FIELDS IN "ACTIVE" PLASMA

(Notably near boundaries and in complex magnetic fields)

 \Rightarrow PARTICLE ACCELERATION ($\vec{E} \neq 0$)

How do we get electric fields?

- 1. Space charges $(\vec{E} \parallel \vec{B})$ + electrostatic waves (= turbulence with $\delta \vec{E} \parallel \vec{B}$, "stochastic" HF!)
- 2. $\partial \vec{B}/\partial t \neq 0$
-
- a) temporal changes (Betatron)
- $d\Phi/dt \sim \sqrt{\vec{E} d\vec{s}}$ b) moving magnetic fields (Fermi-effect)
	- c) reconnection

SYSTEM ACCELERATION PROCESSES IN THE SOLAR

 $? =$ hypothetical

Energetic particle components in the solar system

PROBLEM: no systematic forces

waves lead to losses and gains! arbitrary phase relations between particles and

Nature's solution:

lead to power laws a) stochastic processes $(+$ no particle collisions!)

DIFFUSIVE SHOCK ACCELERATION:

$$
t_{accel} \approx \frac{6D}{|V_{sh}|^2} \approx \frac{v_{part}}{|V_{sh}|} \cdot \frac{\lambda}{|V_{sh}|}
$$

BOW SHOCK:
19L SHOCK:
10⁵ eV
10⁶ eV
FLARES:
10⁶ eV
10⁸ eV
10⁹ eV
10⁹ eV
10⁶ years?
10⁶ years?
10⁶ years?
10⁶ years?
10⁸ eV

 $(Lindau/Kiel)$ ISEE-2 INSTRUMENT low energy electrons and protons

BOW SHOCK ACCELERATION

- 1. solar wind protons reflected
- 2. two-stream instability
- 3. proton-cyclotron waves
- 4. scattering of additional protons, Fermi-effect gets efficient (λ small!)
- 5. waves and particles grow together (positive feedback)

Time constant after switch-on to radial field direction: \sim 10 min $(\delta B/B \approx 7\%, \ \delta \epsilon_{part} \approx \delta (B^2/2\mu_0))$

Charged particle propagation in smooth magnetic fields: gyration, focusing/mirroring, and drift

COSMIC RAY INTENSITY CLIMAX AVERAGE to 1988 1953

Variation of cosmic ray intensity during one solar cycle: Superposition of individual solar cosmic ray events

34

References:

(The following list of references is far from representative. It will allow interested readers to enter into some of the fundamental principles and some recent developments.)

- 1. H. Alfvén, C.G. Fälthammar, Cosmical Electrodynamic, Clarendon Press, Oxford 1963.
- 2. T.J. M. Boyd and J.J. Sanderson, Plasma Dynamics, Nelson and Sons Ltd., London 1969.
- 3. H. Alfvén, Cosmic Plasma, D. Reidel, Dordrecht 1981.
- 4. E.N. Parker, C.F. Kennel, and L.J. Lanzerotti (Eds.), Solar System Plasma Physics, Vol. I-III, North-Holland Publ. Company, Amsterdam 1979.
- 5. M. Stix, The Sun, Springer-Verlag, Berlin 1989.
- 6. E. Tandberg-Hanssen and A.G. Emslie, The Physics of Solar Flares, Cambridge University Press, 1988.
- 7. A.J. Hundhausen, Coronal Expansion and Solar Wind, Springer-Verlag, Berlin 1972.
- 8. R. Schwenn and E. Marsch (Eds.), Physics of the Inner Heliosphere, Vol. 1 and 2, Springer-Verlag, Vol. 1 (1990), Vol. 2 (in press).
- 9. J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation, Springer-Verlag, Berlin 1970.
- 10. J.A. Ratcliffe, An Introduction into the Ionosphere and Magnetosphere, Cambridge University Press, London 1972.
- 11. B.T. Tsurutani and R.G. Stone (Eds.), Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph 35, American Geophysical Union, Washington, D.C., 1985.
	- 12. L. Koch-Miramond and M.A. Lee, Particle Acceleration Processes, Shock Waves, Nucleosynthesis and Cosmic Rays, Adv. Space Res. Vol. 4, Numbers 2-3, 1984.

Imprimé au CERN. Prix:

1.90 Fr.

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 ~ 40

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}$

 $\frac{1}{2}$

 $\label{eq:1} \begin{aligned} \mathbf{a}^{(1)}_{\mathbf{a}} & = \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \\ & = \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a}} \mathbf{a}^{(1)}_{\mathbf{a$