

Cours/Lecture Series

1990–1991 ACADEMIC TRAINING PROGRAMME

SPEAKER	: S. CITTOLIN / CERN-CN
TITLE	: Trigger and data acquistion techniques overview
DATES	: 26 & 28 November
TIME	: 11.00 hrs
PLACE	: Auditorium

Acad. Thuin

241

241)

242 ZZ

Digital Signal Processing, Trigger and Data Acquisition at LHC Overview

S. Cittolin/CERN-ECP 26 Nov. 90

~ Introduction

CERN SppS Collider (UA1) Trigger and Digital Signal Processing (DSP)

CERN LHC Super Collider

Rate and Data Volume Data Acquisition at LHC Front end, Trigger Levels

- Technologies
- Readout and Computir
- Software

Short History

Big Bang

S. Cittolin. Sept 90

3

• HIGGS

Electroweak symmetry breaking Origin of masses

x • x • x •

New forces (symmetries) New particles Super symmetries Next step in compositness

LHC (Large Hadron Collider)

UA1 detectors

Central detector

- Charged particle imagingMomentum

Electromagnetic calorimeter • Electron, gamma identification

Energy

Hadronic calorimeter

Hadron identification

Energy

Muon detector

- Event tagging
- Momentum

4π ermeticityMissing energy, neutrinos

UA1 detectors

UA1 layout

Trigger

The trigger is a function of :

Since the detector data are not all promptly available and the function is highly complex, i(...) is evaluated by successive approximations called :

TRIGGER LEVELS

(possibly with zero dead time)

S. Cho,

S. Cittolin. Sept 90

Electron drift detectors

Single wire drift cell

Track normal to drift

Track at smaller angle to drift

Track in a magnetic field parallel to sense wire

Current division

Imaging parameters

FADC application

Central detector channel electronics

Pulse analysis basic tools

Numeric pulse analysis needs some fast tools directly available on the data stream. Such as :

+ channel calibration and monitoring tasks (programmable device

Three dedicated interaction regions

(in addition to the LEP crossings)

Parameters

P-P LHC (8+8 Tev) Luminosity Bunch separation 15 ns (66 MHz) **Event rate** No. channels

10³³ - 4•10³⁴ s⁻¹cm⁻² \leq **2 GHz** (\approx 40 Ev/bunch) $10^6 - 10^7$ General Purpose Experiment

CERN Collider (270+270 Gev) $10^{30} \text{ s}^{-1} \text{ cm}^{-2}$ Luminosity Bunch separation 4 µs (250 kHz) < 10⁵ Hz Event rate ≈ 10⁵ No. channels

LHC Events

Luminosity Bunch separation Event rate No. channels

 $10^{33} - 4 \cdot 10^{34} \text{ s}^{-1} \text{ cm}^{-2}$ 15 ns (66 MHz) $\leq 2 \text{ GHz}$ ($\approx 40 \text{ Ev/bunch}$) $10^{6} - 10^{7}$ General Purpose Experiment

\approx 10 Events/bunch at Luminosity = 10³⁴ s⁻¹cm⁻²

 \approx 1000 tracks/15ns

Apparatus

e

Basic Detectors

Track detectors

- Tracking, p_T, MIP
- Em. shower position
- Topology
- Vertex

Muon detector

Electromagnetic / Hadron calorimeter

n

р

U.

- Particle identification (e, μ, Jets, Missing p_T)
- Energy measurement

Magnetic field

Solenoid

No central field External toroid

General Purpose / Dedicated experiment

Dipole

Examples of:

Inner tracking

• Track-preshower (pads) : $2 \cdot 10^7$ channels • TRD straw tube (projective): $4 \cdot 10^5$ • Scintillating fibers (projective) : $\approx 10^6$ Expected occupation $10^{-3} - 10^{-2}$ **Calorimetry** (dominated by e.m.) granularity $\Delta \eta \cdot \Delta \phi = 0.02 \cdot 0.02$ (at least two sampling, $|\eta| < 3$ $2 \cdot 10^5$ channels Expected occupation $10^{-2} - 10^{-1}$

Muon tracking

Resistive plate chamber

10⁵ - 10⁶ channels

• Drift chambers

Expected occupation 10⁻⁵ - 10⁻⁶

CERN Collider Trigger Levels

- Level 1 trigger inter bunch crossings
- Detector cell memory less than 4µs
- Almost no event overlapping. Clean ever
- Most of electronics outside the detector

LHC Trigger Levels

- Level 1 trigger time exceeds bunch interval
- Detector cell memory greater than 15 ns
- Event overlap & Signal pileup
- Very high number of channels

Multi Events and Pileup

1

STRUCTURES

17

Partition & tree

CAMAC VME FASTBUS (Collider, LEP...)

Dynamic routing

VME Transputers (HERA, ZEUS...)

18

High parallelism and multilevels

Trigger Rate

Basic building blocks:

e μ jet p_{t miss} signatures **Basic selection:** rough particle id. and E_t thresholds

INCLUSIVE RATES

Muons

full rate (12 λ Pb)	10 ⁵ - 10 ⁶ Hz
p _t > 20 GeV	2 • 10 ³ Hz
p _t ^{1,2} > 20 GeV	25 Hz

Electrons

 $p_t > 20 \text{ GeV} (10^2 \text{ rej.})$ 10⁵ Hz ($p_t^{\pi 0} > 20 \text{ GeV}: 2 \cdot 10^4 \text{ Hz}$) $p_t^{1,2} > 20 \text{ GeV}$ 10³ Hz (but x10 MC uncert. for $p_t^{\text{jet}} \approx 20 \text{ GeV}$)

Jets

$p_t^{1,2} > 180 \text{ GeV} (\text{or } m_{1,2} > 400)$	10⁴ Hz
$p_1^{1,2} > 300 \text{ GeV} (\text{or } m_{1,2} > 800)$	10 ³ Hz

Missing p_t

$p_t > 50 \text{ GeV}$ (cracks, 3-jets only)	10 ³ Hz
(but increase > x10 from 2-jets)	

S. Cittolin.90/11 6

Trigger Rate

Rates from examples of physics channels.

Тор		
l + jets	p_t^{μ} > 40 GeV	200 Hz
	p _t ^e > 40 GeV	5 •10 ⁴ Hz
e + µ	$p_t^{\mu} > 50 \text{ GeV}$	100 Hz
	$p_t^e > 50 \text{ GeV}$	400 Hz
Higgs		
4	$p_t^{2\mu}$ > 20 GeV	25 Hz
	p _t ^{2e} > 20 GeV	10 ³ Hz
eνjj	p _t ^e > 100 GeV	15 Hz
SUSY		
p _t ^m +jets	p _t ^{3j} > 200 GeV	500 Hz
4 I +jets	p _t ^{2µ} > 30 GeV	10 Hz
	p _t ^{2e} > 30 GeV	10 ² Hz
	_	

LVL-1 rate $10^4 - 10^5$ Hz

S. Cittolin.90/11

7

Frontend

Frontend main challenges :

- Analog to Digital Converters
- Pipelined readout structures (Analog/Digital)
- Digital Signal Processing
- Systolic trigger and data flow processor systems
- Data access, Control and Calibration
- Power, radhard, cabling, packaging

Pipelines

LHC Trigger Levels

Level 1. Particle identification & energy cuts

- High p_T electron, muon, (jets), (and missing E_T)
- Energy sums and cuts
- Local pattern recognition and energy evaluation on prompt macro-granular information

1, 2 e, Jets.. $\approx 10^4 - 10^5$ H; Top/Higgs/SUSY $\approx 10^4 - 10^5$ H;

 $\approx 10^4 - 10^5$ H:

 $\approx 10^5 \text{ Hz}$

Reduction $\approx 10^{-5}$

Level 2. Clean particle & kinematics signature

Muons

- Finer granularity transversal and longitudinal profile
- Kinematics cuts

S. Cittolin, Sect 90

19

- Track reconstruction
- Detector matching and topology

Level 3. Physics process identification

LHC General-Purpose DAQ

Pipeline

Delay line or random access ?

Architecture study

S. Cittolin, Sept 90

to identify the basic components and confine to a minimum the detector dependent area.

- CERN-LAA HARP project
- 3 µm CMOS 64 cells pipeline
- Zeus Calorimeter. 64 Cells 10MHz
- Acoustic Charge Transport delay line..

Today's Pipelines

The frontend of a drift time detector (e.g. lcarus) readout has several aspects in common with an LHC calorimeter channel. Both systems need signal conversion and pipeline. Signal processing and zero-skipping are common as well although the timing and synchronization are tighter for LHC.

Level 2 Data Access

S. Cittolin.90/11

Digital Conversion

Digitizing means measuring something (charge, amplitude, time..) that is compare it with a reference unit.

S. Cittolin. Sept 90 28

Flash ADC

Compare entity with a series of rulers in sequence (standard ADC, counting) or in parallel (FADC, decoding)

Dynamic range	critical for	Calorimeter (15-16 bits)
Resolution	¥\$	Calorimeter (9-10 bits)
Power consumption	ŦŦ	Inner detectors
Speed	FF	All (n• 67MHz n≥1)

S. Cittolin.90/11 2

Sigma Delta ADC

Compare entity with a ruler, subtract ruler from entity (Sigma Delta ADC)

Sigma Delta ADC

(CERN-LeCroy) 9-14bit \approx MHz

Pipeline Conversion

Compare entity with a ruler then subtract ruler from entity and halve the result (HARP pipeline ADC)

ADC pipeline (CERN-LAA HARP) 12 Bits 1MHz

Time Memory Cell (KEK/Hiroshima/NTT)

S. Cittolin.90/11

Digitize/Digital Buffer/Process

- Digital signal analysis
- Timing and synchronization
- Data driven
- Radiation hardness
- Power dissipation
- Cabling

Design of electronics is related to the engineering of the detectors

S. Cittolin.90/11 10

Trigger Architectures

Level 1 trigger.

Level 1 Trigger

Scope

- Segment findingEnergy clustering
- Energy Sums

Techniques

- Analog processors
- Systolic processor arrays
- Associative memories
- Data driven processors

Level 2 trigger

Asynchronous processor systems

- Pixel processors
- Neural nets
- µP farms
- Data flow architectures
- Full calorimetry
- Track reconstruction
- Kinematics
- Detector matching

Level 1 Trigger

≈100 kHz

Particle signatures :Electron, muon, jets identification

- Energy clusters and sums
- Missing p_T

- \approx 1 10 µs latency
- \approx 10-4 reduction ratio

Track segment recognition

Prompt hits from fast detectors: (scintillators, TRD, Tubes..)

Cluster finding & Energy cuts on pseudo-rapidity/azimuth

'Lego' plots made of calorimete 2-D e/h segments of suitable granularity.

Clustering in the η/ϕ 'Lego' plot.

• EM showers, Jets, Energy sums, missing p_T

Tracking

Lookup table

The hit pattern is used as address. Simple control, but large memory size (UA1. Muon cone finding ≈2µs)

Associative memory

Х

Memory is addressed by its contents. Large control, limited memory size (CDF. Segment & track finding 1-10µs ASP massive digital parallel processors)

Data Driven

- Flexible structure
- Natural pipeline

Track following algorithms are

translated by subsequent steps of arithmetical units driven by the availability of the operands.

(x,y) Transforms

Hough- parameter, polar coordinates Trackfinding by (x,y) mapping into an appropriate coordinate system. (CERN-LAA. MaxVideo)

Analog/Digital automata

Find pattern via elementary rules describing the interaction (logical/analog) of contiguous cells

Neural networks

Not algorithmic analog processors trained to classify patterns. (CDF. Analog INTEL ETANN $\approx 1\mu$ s)

S. Cittolin. Sept 90 33

Digital Signal Processing

The signals generated by an LHC calorimeter cell will be diffused over more than one bunch crossing. A digital channel with programmable filter capability is needed to extract the physical information and to associate events within bunch crossings.

In addition, for those detectors where the particle (e/π) can be identified by the signal shape in a single channel, the digital analysis can perform the first step of the trigger process.

Apart from considerations of power consumption, electronics packaging and radiation hardness, it seems very attractive to go digital immediately after the preamplifiers, complementing the analog shaping with a **pipelined digital signal processor**.

Level 1.

Local object identification and cut on energy sums. (e, μ , jets, track segments)

Each trigger subsystem is local to a part of the detector and it will be limited to flag events by cuts on the sums of energy over contiguous calorimeter cells or by recognition of a track segment in a binary matrix.

For a deadtimeless first level trigger, the trigger processor must itself operate as a **pipeline** at the 66 MHz bunch crossing rate (eg. **systolic processor**).

Multilevel matrix

- Cluster pattern recognition
- Multiply / Add
- Cell / processor mapping

Binary matrix

- Model matching
- Contiguity rules
- High connectivity

Trigger Level 2

Level 2.

Full measurement and cuts on the kinematics parameters. Pattern recognition may be still needed (if fine granularity tracking detectors are used)

At this level data are locally buffered and the data flow can proceed asynchronously.

The processor architecture can be either **massive parallel** (with asynchronous units) or **data flow** or **farm** based.

(according to amount of data and the data collection architecture)

When the selection is made on kinematical cuts then the basic operation to perform is a 3(4) dimensions scalar product.

Sparse data collection and data flow computers

Timing

Bunch crossing timing must be distributed around the detectors.

Is this sufficient to identify the data belonging to the same event?
Event identification based on an absolute time tagging (e.g. T₀ from stiff tracks. Mean time measurements...)?

Data driven flow with time info lists ?

S. Cittolin. Sept 90 40

BiCMOS prediction and no assumption of :

- technological changes (GaAs)
 new architectures (massive parallel, neural net)
- new technology optical computers, quantum effect electronics

Industry

In the last 20 years, the requirements of to telecommunication and in particular to television have strongly contributed to the development of standard technology (CMOS, BiCMOS) and mass production by industry.

Together with other fields, the high energy physics experiments have exploited these developments extensively.

Flash ADC Analog memory Personal computers Helical scan recording Data compression Image processing Cheap MFlops

for image synthesis

In recent years the world television industry has undertaken a new challenge :

the High Definition TeleVision (HDTV).

This represents a tremendous effort of research and development in the field of standard technology. In Europe it is organized under the project EUREKA 95.

S. Cittolin. Sept 90

42

Eureka 95

Eureka HDTV project EU95

Directorate : Bosch, Nokia, Philips, Thomson + 20 firms, universities and national centres 1986 estimated development cost \$1 billion 1990 spent \$350 million

• 50Hz \approx 1.7 Gbit/s

Camera sampling rates : 144MHz (36MHz) luminance(colour)

MAC (Multiplexed Analog Components) transmission system. MAC is raster-compatible with PAL/SECAM. A MAC decoder allows the satellite reception on existing B/W and colour sets.

Main areas :

43

S. Cittolin, Sect 90

Origination	Production	Transmission	Display	Replay
Fast ADC Pixel proc.	Mass storage CDV	Optical fibres Data compr. TDM time division multipl.	ADC Pipeline Dig. filters	CDV

HDTV chain

HDTV Spin-off

+ Gbit/s optical links, data compression and mass storage

VSP (DAVIS)

Data Driven Video Signal Processor

1D/2D digital filters and Convolution
Frequency decimation

DAVIS

HDTV

Transmission encoding Receivers

144 MHz, 10bit 16-30 MHz, 10bit

- High speed ADCs
- Mass storage
- Image processors
- Data communications

High Performance Imaging

- Digital filters
- Delay lines
- High speed ADC/DAC

High E	nergy	Physics	
Multi-T	ev ca	lorimetry	/

60-150 MHz
15 bit dynamic range
10 bit linearity
10⁵⁻⁶ channels

A tremendous effort : Developed by European industry Exploiting the standard technology

S. Cittolin. Sept 90

45

HDTV

Event builder

It has to perform the merging of multiple sub-detector data streams into a single detector/event data stream in order to be processed by a subsequent trigger level.

Data links & Connectivity

100-1000 data sources. Optical links

VME-FastBus Event Builders

Buses

• FDDI

. . . .

CAMAC/REMUS

- Geographic addressing
 Built in block transfers
- Hierarchical structure

VMEbus, Fastbus

- Multi processor system
- Master/slave
- Logical addressing

- Preprogrammed data path and auto block movers
- General purpose buses for control and monitoring
- Redundant access

VME 64/256.. VXI **Futurebus** SCI, HIPPI... (standard protocols and point to point)

Virtual Event & Cache Readout

Experiment Computer Center

Event filter & Data reduction

The event filter constitutes the final selection step based on global event physics analysis.

A distributed multi-stack of Power servers integrated in the event builder system with standard hardware access and development tools.

Distributed Computing
 Offline production, Data base, Calibration, Control&Simulation

Laboratory & World interconnection

Mass storage

100Mbyte/s. Tbyte/day. Event server facilities

 10^3 Hz ≈ MB/event

10-100 Hz 10-100 MB/s

1 event 1 sec	Event Filter	Analysis
UA/LEP	10 MIPS	400 MIPS
LHC	10 ⁴ MIPS	10 ⁶ MIPS

53

RISC Workstations & Power Servers (1990)

Silicon Graphics. (Mips3000 33 MHz) Parallel CPUs 160 MIPS (600 MIPS next) - HPPI (200 MB/sec)
FDDI (100 Mbit/s)....
Dolphin, Nord Data. (M88000 25 MHz)
Farallel CPU structure 120 MIPS (1000 MIPS next)
SCI (1 GB/sec)

• IBM 6000 (IBM RISC processor)

Ranging from 15-50 MIPS

- Hyper channel (40 MB/sec)

Array Processor & Parallel Computing

• **INTEL** parallel computers 64K nodes 2D-3D topology 100Mb/s bandwidth, 10⁶ MIPS

• Transputer net (H1-100MIPS/node. 1991..)

S. Cittolin. Sept 90

54

.

S. Cittolin. Sept 90

55

Control & Calibration

- Standard networks ?
- Transputers (H1) as general interface for distributed intelligent control ?
 - Transputer-Workstation interface
 - Transputers as standard electronic system controller

Architecture Modelling & Simulation

- Hardware description language
- System modelling (from gate to complex)
 - Behavioural simulation and animation
 - Timing and statistics analysis

Methods for :

- Specification and Description Language
 - Graphical and textual system description language
 Tools for complete system design and code generation
- Object programming (FORTRAN and C).
- Operating system & development
 - UNIX (hidden UNIX) ...
- User interface. Virtual reality
- Data base. Multimedia
- Expert Systems

- Maintenance / debugging / documentation.

Software must be reusable !

The Problem View

LHC Euro-DAQ

1 LHC channel \approx 1 TV channel LHC DAQ \approx 10M home HDTV systems