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Major mathematical achievements of recent years (22 to 24 May)

In recent years a number of long-standing conjectures in various branches of
mathematics including Number Theory, Graph Theory, Analysis and Group T heory
have been proved or disproved and, in addition, significant advances have been made
towards the solution of a number of other outstanding problems. In these lectures,
which are intended for non-specialists, the history of these conjectures and problems
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’ will be given and the methods leading to their complete or partial solution will be //
-~ summarized. Specific problems to be considered include the representation of 7
7 irrationals by rationals, transcendence, the Mertens Conjecture, Fermat’s Last /7

Theorem and the Euler Generalisation and the Four Colour T heorem.

Fractals (25 & 26 May)

Although the concept and construction of curves, surfaces and solids of fractional
dimension goes back almost 100 years it is only since the work of Mandelbrot (1975)
illustrated through the medium of high quality computer graphics that the
extraordinary complexity and diversity of fractals has been revealed. The lectures will
be concerned with the theory, generation and various aspects of fractals.
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CERN Academic Training I .ogramme
May 22nd - 26th 1989

RECOMMENDED BOOKS/Articles
Recent Advances In_ Mathematics

Two very readable recent books which give, inter alia, very good

surveys of the topics covered in the |ectures for non-specialists are:

(1) Keith Deyvlin: "Mathematics : The New Golden Age" Pelican, London
(1988).

(2)_Philip_J.Davis and Beuben Hersh: “The Mathematical Experience”,
Pelican, London (1986).
These books also provide references to more specialised articles

and books as well as to original papers.

For the 4-colour problem:

Kenneth Appel and Wolfgang Haken: "The solution of the four-colour map
problem °, Scientific American, Vol. 237 (Oct. 1977), 108-21 -

this was the first ‘popular’ account by the pair who proved the theorem.

Fractals: Three books which cannot be recommended too highly both for
technical content and an aesthetic treat:

1. B.B.Mandelbrot: "The Fractal Geometry of Nature", W.H.Freeman & Co.,
New York, (1982).

2. H-O Peijtgen and P.H.Richter: "The Beauty of Fractals", Springer-Verlag,
New York, (1986).

3. H-Q Peitgen and Dietmar Saupe (Eds.) "The Science of Fractal Images”,
Springer-Ver!ag, New York (1988).

These books contain many references to original papers.

R.F.Churchhouse.



Preliminary remarks, definitiops

In these lectures when we speak of a polynomial of degree n

£(x) = apx + ap_1xP"1 + [ ay
we assume that all the coefficients (ap, ap-j, .. ap) are integers
and ap#0.

Definition O is said to be an algebraic number of degree n if it {is

a root of a polynomial of degree n but is not a root of any

polynomial of degree less than n.

A rational numbér is an algebraic number of degree 1, i.e. is of

the form p where p and q are integers.
q

An algebraic number of degree 2 or higher is said to be an
irrational algebraic number.
If a number is not a root of a polynomiél of any finite degree it
is said to be £¥anscendenta1.
Whereas the existencé.of irgational algebraic numbers is easily
proved (Euclid éroved that V2 is irrational) it is not obvious that
transcendental numbers exist and a proof that any given number
(such as T or e) is transcendental is never easy. Even proving the
irrationality of any given number may involve great ingenuity; it
is not known for example whether

e+ X
is irrational, let alone transcendental.

A basic reason why problems of transcendence are difficult is

that, whereas if 0, & are algebraic numbers so are

06+92 06 -0, 62 and 6/
it is not aiways true that the sum, difference, product or quotient
of two transcendental numbers 1s transcendental
E.g. if ® is transcendental (it is) then so is (4-m)
but T + (4-m) = 4

is algebraic.



LECTURE 1

RATIONAL APPROXIMATION TO
IRBATIONALS




RATIONAL APPROXIMATION TO IRRATIONALS

Problem If 8 is an irrational number how can we

find 'good' rational approximations p/q to 8, and how

'good’ are they likely to be?

eg. m= 3.14159265

_272_ = 3.14285714

- 1.3 x 10°3

(A
il

= 3.14159292
so|m - 355 |=:3x10'7
The second approximation is much

better but it involves larger integers

(355, 113) than the first (22,7).



It can be proved that given any
irrational number, 6, we can find an

infinity of rationals

P1/a1, P2/d2; ---s Pn/an; ---
such that if p/q is any one of them
6-81 < g

and the proof is "effective" since it
shows that these rationals can be
found from the continued fraction for
0. |

The theorem is "best possible" in the

sense that it holds with equality

when
— _1_. -



Continued fractions These are found

by a simple algorithm which involves

only the recursive application of

(i) finding the difference between
6 and its integer part,

(ii) replacing 6 by the reciprocal of
this difference.

Example
T = 3.14159265...

= 3+4+0.14159265...

3+ 1

- 7.0625133...
=3 + 1

7+0625133...
To save space we then write

t=3+ 4 1 1 1
7+ 15+ 1+ 292+ ...
The "good" approximations are found
by evaluating this expression, as a

fraction, after 1,2,3,... terms

n=3,22,333, 355, ...
1 7 106 113

A AT —horn

rn "r< 4+ __1
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Some numbers have continued
fractions which show a pattern, in
particular numbers which are
‘quadratic irrationals have periodic
c.f expansions e.g.

v2=1+1 1 1

2+ 2+ 2+....
which leads to the convergents
-("good approximations")

- T AR ¥ A

1 2 5 12 29
The number e, which s
transcendental (i.e. not the root of a
polynomial of any degree), also
shows a pattern

e=2+1 1 1 1 1 t 1 1
1+ 2+ 1+ 1+ 4+ 1+ 1+ 6+..-
the pattern (2n,1,1) extending to
infinity. © shows no pattern nor do
any known algebraic numbers of

degree > 3 (such as 21/3).




LIMITS TO THE ACCURACY OF THE
APPROXIMATIONS

We know how to find an infinity of
pairs of integers (p,q) such that

'9- P ‘_<_ 1
11 ¢2V5
- but can we do better than this?

Unless 6 is related to L(V5+1) we can replace V5
2

by V8 (and unless .....) but there is a fundamental

limit when 6 is an algebraic number of degree n
given by

Theorem (Liouville, 1844) If 6 is an algebraic

number of degree n there exists a constant ¢, which
depends only on 6, such that for all integers p, g

> C

qn

[
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Transcendental Numbers
The existence of transcendental
numbers follows from Liouville's
Theorem (and also from Cantor's
Theory of Enumerability) but proving
that any particular number such as

e, m or log2
is transcendental (or not) IS
extremely difficult:

In 1873 Hermite proved that

e _is transcendental

In 1882 Lindemann generallsed thlS
and proved that

"If x is algebraic (and not=0) then
eX is transcendental"

It follows from this that:
_is trancendental |

(for €2l = 1 and if & is algebraic so

is 2xwi, but this contradicts

- Lindemc..in's theorem).

R




From Liouville's Theorem it not only
follows that transcendental numbers
exist it also enables us to construct
some e.g.
o =3 2-(nl)
R=0

It was not believed that Liouville's
Theorem was the best possible
result but it was more than 60 years
before an improved form of it was
established. What was sought was a
theorem of the type

"It © is an algebraic number of degree

n there are only finitely many pairs
of integers (p,q) such that

< 1 1]
qk

P-P
q

Liouville's theorem shows that this

is true when k > n and false when k =

2.

The great problem was: what, in the

interval (2,n) is the true value of k?
q



Closing the gap
In 1909 Thue proved:

"Forn >3 we can take k =4n + 1"
2_

In_1921 Siegel improved this to:

"For n > 2 we can take k = 2Vn"

In 1947 Dyson further improved this
to: |

"For n > 2 we can take k = ¥2n"

Then, in_1955, K.F.Roth achieved the

ultimate: _
For n > 2 we can take k = 2+h where h

is arbitrarily small"

- the gap was completely closed (and
Roth got the 1956 Fields Medal).

10



THE GELFOND-SCHNEIDER THEOREM

No really general theorems relating to
“transcendence were proved until 1929 when
Gelfond proved a particular version of a theorem
which was generalised by himself and Schneider
independently in 1934.

Theorem (Gelfond-Schneider, 1934) If a and b are
algebraic numbers, a0 or 1 and b is irrational then
ab is transcendental. |

This remarkable theorem solves, as a very
special case, Hilbert's 7th Problem (1900):

Is 22 transcendental? (It is). Even more
spectacularly:

Theorem: em is transcendental
(Proof; put a =i, b = -2i in the Gelfond-Schneider
theorem).

At the other extreme however we cannot even
prove that e+m is jrrational, let alone
transcendental (similarly e-n etc).

11!



RECENT DEVELOPMENTS

Both Roth's Theorem and the Gelfond-Schneider
Theorem have been generalised in recent years by
Schmidt and Baker respectively.

Roth's theorem deals with approximations to
algebraic irrationals by rationals. In 1970 Schmidt
generalised this to approximation to algebraic
irrationals by algebraic numbers of lower degree:

Theorem (Schmidt, 1970) If a is an algebraic
number of degree > n and h is any number >0 there
are only finitely many algebraic numbers b of
degree < n such that

la-b| < c-(n+1+h)

where c¢ is the largest absolute value of the
coefficients of the polynomial satisfied by b.

Roth's Theorem is the special case n=1 and the
theorem tells us, for example, that a cube root
cannot be approximated by quadratic irrationals
more closely than (effectively)

c-3.

17



BAKER'S generalisation of the C fond-Schneider
Theorem

The Gelfond-Schneider Theorem can be stated in
various ways including: |

Theorem If ai, a2, b1 and b2 are any non-zero
algebraic numbers such that log a{i, log a2 are
linearly independent over the rationals then

b1 log a1 + b2 log a2 + O.

This was generalised by Baker:

Theorem (Baker, 1966) If a1, a2, ..., an are
non-zero algebraic numbers such that log a{, log
a2..., log an are linearly independent over the

rationals then
1, log a1, log a2, ..., log an
are linearly independent over all algebraic numbers.

(Baker was awarded the 1970 Fields Medal for this
result).

13



Uns ved Problems |
Questions of irrationality and
transcendence are among the most
difficult in mathematics. Among the
many unsolved problems are:

(1) Euler's constant y (=0.577...) is

defined by
y=;im{d+L+1+ . 1)-logen
N—oco

Is y irrational?

(2) It is known that

1+1+14+ ... = 12
22 32 S

and 1+1+1t.. = @4 etc
24 34 90

so these numbers are not only
irrational but are transcendental;
however only recently has it been
proved that

1+1 +1 + .. isirrational: is it
23 133

transcendental?

Asfor1 +1+1 + .., isit
25 35

irrational?

i



(3) Continued fractions of algebraic
numbers of degree 3

Algebraic numbers of degree 2 have
periodic continued fractions so the
elements ("partial quotients") of
their continued fractions are
bounded.

Are the partial quotients of
algebraic numbers of degree 3
bounded or not?

(The statistical evidence suggests
that the answer is "No", but the
sample studied is not large and it is
not impossible that the partial
quotients are bounded but not
according to any simple formula).
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LECTURE 2

DIOPHANTINE EQUATIONS
HILBERTS TENTH PROBLEM

(with a brief introduction to

Algebraic Number Fields)

o



Algebraic Number Fields

If 8 is an algebraic number of degree n then numbers of the form

Mg + M18+m262+.....+ mp_10N-1

where mg, mq, ..., mp.q1 are rational numbers form a field under the
operations of +,-,x and +

These fields have elements which can be classed as (algebraic)
integers e.g. those elements which satisfy a polynomial (of degree < n)
with leading coefficient equal to one.

The fields also have elements which are "units®, divisors of 1, and
there may be a finite or infinite number of these e.g.
(1) in the "Gaussian" field where 0=i the units are i, -i, 1 and -1 and

are all generated by powers of i ("the fundamental unit");
(ii) in the field where 6=V2 there are an infinity of units generated by

all integer powers (positive, zero, negative)

of the fundamental unit (V2+1) (Note that (Vv2+1) (V2-1) = 1).

These fields also have primes._ integers which have no integer
divisors other than themselves and units. The ‘ordinary’ primes are not

necessarily primes in algebraic number _ﬁelds
eg. 5 = (2+i)(2-i)

and 2 = (14i)(1-)
are not primes in the Gaussian Field, whereas 3 and 7 are.

Unique factorisation does not hold in general in algebraic number
fields e.g. 6=2x3=(1+V-5) (1-V-5)
but 2, 3, 1 + V-5 are all primes in this field.

The field based on V-5 is the ‘first’ where unique factorisation
fails.
For further reading consult books on

Algebraic Number Theory.

17



- "DIOPHANTINE EQUATIONS
These are equations in one or more
variables where we seek a solution
in integers.

Such equations may have no
solutions, one, many or an infinity.

EG x2+1 =0 (NO SOLUTION)
2X+7 = 15 (x=4)

x2+y2 = z2 (an infinity of
solutions given by x = a2-b2, y=Zab,
Z = a+b?)

Given any particular Diophantine
Equation we are usually faced with
the problem of either finding a
solution or proving that no solution
exists. |

For example it is easy to prove
that |
X3+y3+23 =4
has no solutions but, despite
extensive searches no solution of

X3 + y3+ z3 = 30

has been found but neither has it
been proved that none exist.



HILBERT'S TENTH PROBLEM

In 1900 David Hilbert listed 23
major unsolved problems of
mathematics, the solution of any of
which would significantly advance
mathematical knowledge.

The tenth problem was:

Given a Diophantine Equation in an
number of unknowns and wit
integral coefficients to devise a
process by means of which we can
determine in a finite number of
~ operations whether the equation is
solvable in integers or not.

In 1970 Yuri Matyasevich (aged
22) building upon results proved
between 1950 and 1970 by Martin
Davis, Julia Robinson and Hilary
Putnam proved that no such process
(i.e. algorithm) exists.

The proof lies in the area of
mathematical logic and
computability (i.e. Turing machines).



COMPUTABLE SETS SETS

A set of integers S is said to be
comﬁutable if there exists a Turing
machine program which, given any
integer N as input, halts with an
output 1 if N is a member of S and

halts with an output of O if N is not
a member of S.

Note that the possibility that the
Turing machine never halts is here
excluded, but is_ allowed in:

Recursively Enumerable Sets

A set of integers S is said to
recursively enumerable if there
exists a Turing machine program
which, given any integer N as input,
halts with an output 1 if N is a
member of S and otherwise either
halts with an output O or does not
halt at all. »

20



STEPS IN THE SOLUTIC. OF HILBERT'S
TENTH PROBLEM

Davis (1950) tried to show that for
every recursively enumerable set, S,
there exists a polynomial

Ps(X, Y1, y2, ... yn)

with integer coefficients with the
roperty that a positive integer N
elongs to S if and only If the
Diophantine Equation

pS(N1y1,y2,-..., yn) =0
has a solution. .

If this were so then by choosing s
to be a non-computable set it would
follow that no such algorithm of the
tzfpe sought by Hilbert can exist for
it it did we would know whether the
associated Diophantine Equation has
a solution so that s would be
computable, which is a contradiction.

Davies was unable however to
prove that such a polynomial always
exists.

21



E )BINSON (1960) collaborated wit

Davis and Putnam to show that
just one Diophantine could be foun
whose solutions grow exponentiall
then it would be possible to find
Diophantine Equation for ever
recursively-enumerable set and s
solve Hilbert's Tenth Problem.

Matyasevich (1970) constructed
Diophantine Equation in 14 variable
and terms of degree 4 based upon the
elements of the Fibonacci Series

1,1, 2, 3, 5, 8, 13, 21, 34, 55, ..

the terms which grov
exponentlaHY smce the n-th tern
asymptotically approaches

1 (1(1+V5))

YA )
The existence of this equatior
combined - with the

Davis-Robinson-Putnam resul
solves Hilbert's Tenth Problem.

22



MATYASEVICH'S DIOPHANTINE EQUATION

~ In the 10 polynomial equations
below v and u are related in such
away that v is the 2u-th Fibonacci
Number. |

Square each of the 10 equations

and add them togeher to produce a
single Diophantine Equation of degree
4 in 14 variables. This equation
settled Hilbert's Tenth Problem.

| “u+w;v'-'2 = 0,
I—'Zv-'Za—lv‘-_-vO.
I’%—lz‘;z’-l = 0,

| g-bt =0

#-gh-H -1 =0,

m-—c2h+g) -3 0

0
0
0
0

m-—fl-2

X —mry 4yt -1
d-D+u-x-~1 =0,
x—v—02h+g)(l-1) =

23



A PRIME-GENERATING POLYNOMIAL

For many centuries the question as
to whether there exists a polynomial
which takes only prime values when
its variables are integers has been
unresolved. It can be proved that no
ﬁolynomial in a single variable can
ave such a property although some,
such as | ~

n2 -79n + 1601
which is prime for 0 < n <79

do remarkably well.
| It is however a consequence of
the method of disproof of Hilbert's
Tenth Problem that there must be a
Diophantine Equation which
describes the primes which implies
that there must be a polynomial
whose positive values (as its
variables range over all the integers)
are the primes - but its negative
values may or may not be negative
pﬂme?. |
inding such a polynomial is a
different matter but in 1977 one was
found by Jones, Sato, Wada and
Wien- . ‘it is of degree 25 and
involvés 26 variables.

21




THE PRIME GENERATING PC YNOMIAL

OF JONES, SATO, WADA AND WIENS

This was found |n 1977; it involves

26 variables and is of degree 25 and
iS:

(k+2){1 —[wz+h+j—gqp
—[(gk_+2g+k+1)(h+i)+h-z]’
—Rn+p+qg+z-—p
—‘[16(k+1)’(k+2)(n+l)’+l-—f’]’
--[e’(e+2)(a+1)’-%-1--0"]2
-[@ -1y +1-2p- [16rPy* (@ -1)+1 - ')
—[((a+u’(u;‘--a))’—1)(n-l-4dy)’+l-(:!c+cu)‘]2
-[n"+1+'v-'y]= —[@ =141 =y
—lad+k+1-1-1p
[p+1(a-n—1)+b(2an+2a-n*'-zn—z)-mP
—l@+yla-p—1)+s2ap+ 20— p* - 2p - 2) - 2]
= [z + pla - p) + t(2ap — -pP=1)- — pm}*}.

25
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FERMAT'S 'LAST THEOREM

The Diophantine Equation
XN + yh = Zn

is the most notorious one of all. It
has an infinity of solutions when n=1
or 2. . _

In 1639 Fermat claimed that he
had a "truly marvellous" proof that it
had no solutions (other than the
trivial one where xyz=0) when n2>3.
He never published the proof and none
has been found to this day.

Hundreds of false"proofs" have
been produced and it is highly
probable that Fermat's proof
contained a flaw: he might have
assumed, as many others have done,
that unique factorisation holds in
algebraic number fields, but it was
only in 1844 that Kummer realised
that this is not always the case

e.g. 6 = 2x3 = (1+/5) (1-V-5)

- so unique factorisation does not
hold in the algebraic number field

based on V-5.



Kummer's attempted proof was valid
for the 7 odd prime values n < 19
§where the related algebraic number
ields do  possess unique
factorisation) |

[It is only necessary to prove the
theorem in the cases where n is an
odd prime or n=4; the case n=4 is
fairly easily proved]. |

By introducing the concept of
"ideals" Kummer was able to extend
his proof to cover all odd primes
<100 with the exception of 37, 59
and 67; but healso proved much more

An unexpected twist : the Bernoulli
Numbers

The Bernoulli Numbers, Bp, are
defined by a power series viz.

X =1+B;x +B.oXx2+ B3 Xx3 + ..
eXxX-1 1 < 2| 3!
so that

B1=1/2, Bz=1/6, B3=O, B4='1/30,

27



ALTHOUGH THE BERNOULLI NUMBERS
ARE INITIALLY QUITE SMALL THEY
EVENTUALLY BECOME LARGE

e.g. Bis = -3617/510
and  Bs, = 2577687858367/6

There would not appear to be the
slightest connection between the
Bernoulli Numbers and Fermat's Last
Theorem, but there is.

A prime p is said to be regular if
it _does not divide any of the
numerators of By,By, ..., Bs, ...,Bpa.

In 1847 Kurmmer proved that
Fermat's Last Theorem is certainly
true for all regular primes p. Of the
primes below 100 only 37, 59 and 67
are irregular (hence the result
above). |
Now |Bz.| grows very rapidly and
checking for divisibility by p by hand
is very laborious but Kummer did it
for all primes up to 163 and found
that only eight are irregular.



With the coming of dec’ calculators
and computers the range of
application was widely extended and
by 1976 all regular primes less than
125,000 had been found. |

However only about 60% of primes
are regular so what about the 40% or
so which are not covered by
Kummer's Theorem?

The Bernoulli numbers provide a
specific test which provides an
assurance that Fermat's Conjecture
is true for certain primes, but there
are other, more complex, tests that
can also be used to cover primes that
do not satisfy the first test.

Combining these various tests it
has been proved that Fermat's
Conjecture is certainly true for all
primes < 125,000.

29



CAS "2 1 and CASE 2 OF THE FERMAT
CONJECTURE

A different line of attack on
Fermat's Conjecture distinguishes
two cases::

Case 1:If xp + yp = zp then one of
X,Y¥,z is divisible by p.

Case 2: None of x,y,z is divisible by p.

Case 1 is more amenable to atack and
by 1982 Lehmer had shown that
Fermat's Conjecture is true for Case
1 for all primes up to 6 x 1089.
It can also be shown that the Case
1 result holds when p is a Mersenne
prime viz: |
p=2a-1

where q is itself a prime and so In
articular holds for the largest

nown prime |
216091
2 -1

(found by Slowinski using a Cray
X-MP in 1985).



These Case 1 results all follow from
a criterion discovered by Sophie
Germain in 1832 and subsequently
- extended by Legendre viz

If p is a prime and if any of the
numbers | |

2p+1, 4p+1, 8p+1, 10p+1, 14p+1,
16p+1

is also a prime then Fermat's Last
Theorem is true for Case 1 for p.

In 1985 Adleman, Fouvry and
Heath-Brown generalised the
%ermain criterion further and proved
that

Case 1 of Fermat's Last Theorem
holds for infinitely many primes.
This is the only theorem so far
proved in relation to the Fermat
Conjecture that applies to an infinity
of cases not having a solution.
However since we have no such
result concerning Case 2 we still do
not know if the Fermat Conjecture is
true for an infinity of cases or not.

3l



Falting's_Theorem |

~ In 1983 Gerd Faltings, a 29-yea
old West German, proved the mos
important theorem in the history o
the Fermat Conjecture:

- The Diophantine Equation

XN 4+ yn = zn

has at most a finite number o
primitive solutions for n23.

("Primitive Solutions"” means tha
X,y,z have no common factor).

Faltings was awarded a 198t
Field's Medal for this result.- |

The Falting's result is importan
in a more general context. In 192:
Mordell put forward a conjectur
that any irreducible polynomial i
two variables of genus greater thar
or equal to 2 has at most a finit
number of rational solutions; this i
still unproved but Falting's theoren
is a special case - divide throughou
by zn and the equation becomes

un + vn =1

where u, v are now rational.



FERMAT'S LAST THE(C .3EM
SUMMARY

Xn 4 Yn = 2Zn
has no solutions in integers if
3<n<125,000
or if
n=p, X, Yy, or z is divisible by p and
Lp<6x1m

(and this case holds for an infinity of
values of p > 6 x 109).

Furthermore

The equation has at most a finite
number of (prir}?itivg) solutions for
all n=3.

23



Euler's Generalisation of EE[E[]EI'S Last Theorem

Euler (c. 1780) generalised the Fermat Conjecture to:
The equation

X4M +x20 4+ ...+ Xp4N = xpN
has no non-trivial solution in integers when n23.

When n=3 the Euler Conjecture is true, since it is the same

Fermat's Conjecture.

For n24 no progress was made until 1966 when Lander and Park
(Math Comp. 21, 101-103) discovered, with the aid of a CDC 6600 that

275 + 845 4 1105 + 1335 = 1445

thus disproving Euler's Conjecture when n=5.

In 1987 Elkies found a counter example when n=4:
(2682440)4 + (15365639)4 + (18796760)4 = (20615673)4

and indeed proved that there are infinity of solutions.

So, for once, Euler got it wrong!

3L



LECTURE 3

THE RIEMANN HYPOTHESIS

ME

EN'S CONJECTURE

and

THE FOUR COLOUR THEOREM
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THE RIEMANN HYPOTHESIS AND THE
MERTENS CONJECTURE

In the study of the prime numbers
the series

5(s) =% n-s

where s=a+ib is a complex number,
pla{) a key role. The reason for this

asically because of the identity,
discovered by Euler, that connects a
product over the primes with the
series over the integers

(-

f | (1-p=s)-1 = ¥ n-s

L=\

In 1859 Riemann in the course of a
fundamental paper on Prime Numbers
remarked that it seemed likely that
the series % (it .is now known as
the Rlemann eta-Function) had the
property that all its zeros have

~ real part (a) equal to 1/2 and that
this had important consequences in
many problems in Number Theory but
that he couldn't prove it.



This is the celebral I Riemanh
Hypothesis:

"The complex zeros of ¢ (s) all have
real part = 12" |

Despite over a century of effort by
hundreds of mathematicians the RH
(as it is often written) remains
unproved. There is however a lot of
evidence that it is true.

In 1914 Hardy proved that

%(s) has an infinity of zeros with
real part = 1

(but there might be some, even an
infinity, with real part not = 1/;)

Computation of the zeros began
before 1900; the first pair of zeros
(they occur in symmetric pairs) are
at

a=1/>2 + 14.134725i

and by 1903 it was shown that all
the zeros in the rectangle

O<a<1, -T<b<T

lie on the line a = 1/2 when T = 50.

277



Th range of values of T was steadily
exended T = 200 by 1918, 250000 in
1966, 1.2 x 108 in 1983 and so far
the first 1.5 x 109 zeros have been
found and all lie on the line a=t/.

So the computational evidence is
good, but cases are known where
even stronger evidence for a

conllecture has proved 1to be
misleading.

There is however support for the RH
from another direction, which
appears on the surface to be totally
unrelated.

The Mobius Function
The Mobius Function M(n) is

defined for positive integers n by
,\4213 =1
u(n) = (-1)k if n is the product of
k distinct primes

m(n) = 0 if n is divisible by the
square of a prime

Thus the sequence of values of pM(n)
begins

1, -1, -1, 0, -1, +1, -1, 0, 0, +1



near future.

It is easy to see that the Mobius
Function is related to the Rlemann
Zeta Function by

Y (mns = ( (s))-

n=1

Mertens Hypothesis
| In 1897 F. Mertens produced a
table of values of (n) for n up to 104
and included also a table of the
cumulative sum
M(N) = 21 (n)
N= |
thus the values of  (N) begin

i, O, -1, -1, -2, -1, -2, -2, -2, -1, ..
and he noticed that, up to N = 104 at
least it was always true that

- IM] €£4N

and he conjectured that this |is
always the case; this is the Mertens
Hypothesis.
It can be proved that:

If the Mertens Hypothesis is true so
is the Riemann Hypothesis. but the
Riemann_Hypothesis may be true and
the Mertens Hypothesis Fa‘se
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A personal conjecture

In 1968 | used Atlas (at what is now
RAL) to study (N) for N up to 10s. My
idea was that (n) might behave like
a random variable when considered
over a large range of values of n,
taking the values 0, +1 and -1 as
follows

(n) = + 1 with probability a2
(n) = -1 with probability 3/w2
(n) = with probability 1 - &/m2

(the probability that n is divisible by
the square of at least one prime is
1-6/m2)

Assuming that we can treat (n) as a
random variable we would expect
that, in any block of 106 consecutive
integers  (n) would be zero about

106(1-s/m-2) = 392,073 times

The table of counts for the first 33
blocks of one million is as shown -
the agreement is quite astonishing.



TABLE 2

Million o Million Yo
1 - 392,074 18 392,088
2 - 392,049 19 392,039
3 : 392,104 20 392,037
4 : 392,037 21 392,072
5 + 392,103 22 392,084
6 392,076 23 392,096
7 392,053 4 302,047
8 392,101 25 392,096
9 392,061 26 392,071
10 392,051 27 392,071
11 392,073 28 . 392,065
12 - 392,078 29 392,079
13 392,073 30 392,065
14 392,095 31 392,083
15 392,083 32 392,077
16 392,093 33 392,076
17 392,057
. -+ TaBLE 3
N ve E(v) v — E(v)
235,000,000 9,301,820 9,501,322.5 - 2.5
50,000,000 19,603,656 19,603,645 +11
75,000,000 29,405,440 29,405,467 —927
100,000,000 39,207,306 39,207,290 +16

(TABLES 2,3 FROM PAPER BY RFC/IJG IN MATH.COMP 22 (1968) 857-862)
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The Jreement between expected and
observed values continued right up to
n=108; table 3 shows the situation at
25, 50, 75 and 100 million.

These results strongly suggest
that we can regard Nm; as a random
variable and hence M(N) as a random
walk.

| showed these results to 1.J.Good,
a well-known expert in probability
theory, who was at the Atlas
Laboratory at that time and he said
that the results were so strong that
we would be justified in applying the
Central Limit Theorem. :

We did so and put forward a
number of conjectures in
consequence, one of which is:

Conjecture (IJG-RFC, 1968)
The upper limit of
M(N) (N log log N)-1/2 is V12/x

and pointed out that this implies
that

(i) the Mertens Conjecture is false;

(ii) the Riemann Hypothesis is true.
42



DISPROOF OF THE MERTENS
CONJECTURE
There seemed, in truth, to be no
obvious reason why the Mertens
Conjecture should be true and the
evidence of Jack Good and myself
indicated that it was probably false.
Computer studies were pursued in
the hope of finding a value of N such
that M(N)>N1/2 but the Mertens
Conjecture was finally disproved by
Odlyzko and te Riele in 1983 by a
different method involving the
computation of 2000 zeros of the
Zeta Function to 100 decimal places
which took 40 hours on a Cyber 750
and a further 10 hours on a Cray-1.
The proof shows that there exists
an N such that

M(N) > 1.06VN

but that such an N exceeds 1030, so
that a direct search for it is out of
the question. | |

The |IJG-RFC Conjecture is
strengthened by the disproof of
Mertens but, since it implies the
truth of the Riemann Hypothesis |
doubt if anyone will prove it in the
near future.
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THE FOUR-COLOUR THEOREM

In 1852 Francis Guthrie (a student)
observed that it always seemed to be
possible to colour any map drawn on
a piece of paper with (at most) 4
colours in such a way that no
countries having a common border
were coloured the same. .
NOTE:
(1)Countries which meet only
at a point are not considered to
have a common border;

(2)A country is a connected region -
regions without a common border
are considered distinct;

(3)The (infinite) region which
surrounds the entire map is also
considered to be a country (or
ocean) which must be coloured.

So, in the map of the United States
the States of Arizona and Colorado,
which meet at a point, are not
considered to have a common border,
and so may be coloured the same. On
the other hand the State of Michigan,
which consists of two disconnected
regions is to be regarded as 2
different States.
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A few people, including de Morgan
and cayley attempted to prove the
Four olour Conjecture without
success and aroused interest in it
and in 1879 A.B.Kempe (a barrister
with a mathematical training)
published what he, and everyone else,
‘thought was a proof.

In 1890 P.J.Heawood pointed out a
flaw in Kempe's proof but, despite
this flaw, Kempe deserves great
credit for not only was his method
the one that ultimately led to the
roof, 97 years later, but also
eawood used it to prove that 5
colours are certainly sufficient.

Kempe began by defining

Normal maps are maps in which

(i) no country is entirely enclosed by
another country;

(i) no more than 3 countries meet at
any point.



ATTEMPTS TO PROVE HE
FOUR-COLOUR THEOREM, 1890-1975

Following the publication of
Heawood's paper in 18390 many
attempts were made to prove the
Four Colour Conjecture and proofs
were obtained that if a map required
five colours then the map must
contain at least a certain number of
countries where "a certain number"
was steadily increased from 26 (in
1922) to 96 (in 1975).

In 1976 Appel and Haken proved

the Four Colour Theorem.
Maps and Graphs The first step in the
proof of the Four-Colour Theorem is
to convert maps into graphs since
graphs contain all the information
about maps and the well-developed
mathematical theory of graphs can
be applied. The actual shape of a
country doesn't matter, onl?/ which
othedr countries hit adjoinsl. (In otﬂer
words, it is the topology that
matters, not the geometry).

Basically we replace each country
by a point (we can think of it as the
capital of the country) and join two
points if, and only if, their
corresponding countries have a
common border.
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Definition A planar graph is a finite
collection of points (called vertices)
with some of the points joined by
arcs (called edges) with the property
that edges do not intersect except at
vertices.

When drawn in the plane such a
graph breaks the plane up into a
number of regions, called faces.
Example of a map and its
corresponding graph.

:
A



The Graph version of the Four-Colour
Conjecture
The problem of colouring a maEI SO
that no two adjacent countries have
the same colour is equivalent to
colouring the vertices of a graph so
that no two vertices which are
joined by an edge are coloured the
same.
Euler's Formula
If a planar graph as V vertices, E
edges and F faces then V, E, and F are
related by a fundamental formula
which was discovered by Euler in the
18th century: |
V-E+F=2 |

So, for example in the graph below

we have V=10, E=17, F=9 (recall that
the outside region counts as a face).
A suitable colouring with 4 colours
is shown.
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Key steps in the proof of the Four
Colour Theorem

Step 1 Kempe's approach was to
assume that some maps exist which
require 5 colours. He proved that
among these would be normal maps.

He then concentrated on a normal
map with the minimum number of
countries which requires 5 colours
(there might be more than one such
map). A

His aim was to show that such a
map could be "reduced" to a normal
map with even fewer countries but
which still required 5 colours. This
contradiction would prove the 4
colour theorem.

In practice he considered not

maps but their corresponding planar
graphs.

<n



Valency of a vertex

The valency of a vertex of a graph
is the number of edges which meet at
that vertex.

Step 2 An early discovery in the
study of the 4-colour conjecture was
the fact that:

the 4-colour theorem is true if and
only if it is true for graphs in which
each vertex has valency 3.

Such graphs are called "3-valent.

Step 3 In any minimal 5-colour graph
each face has at least 5 edges.
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Step 4 If E and V denote the number
of edges and vertices of a 3-valent

graph
2E = 3V

(For every edge joins 2 vertices and
at each vertex 3 edges meet).

Step 5 Let pi denote the number of
faces of a graph with exactly i
edges, then the total number of edges
in the graph when we count in this
way is 2E (since every edge gets
c?unted twice) but the number is
also

2p2 + 3p3 + 4p4 + ... =2E (2)

Step 6 The total number of faces is

P2 + P3 + p4 + ... (3)
and if we now combine Euler's

Formula with (1), (2) and (3) we.
obtain the very important result that

4po+3p3+2p4+ps-p7-2ps... = 12 (4)



STEP 7 It follows fron™ (4) that at
least one of the positive terms on
the left must be non-zero hence:

A _minimal 5-colour graph has at
least one face having no more than 5

edges.

This result was the basis of Kempe's
attempted proof and of the
successful proof of 1976.

Step 8 Any minimal 5-colour graph
must, in consequence of Step 7, have
at least one of a- number of
particular sub-graphs which are
shown on the next slide.
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otep 9

Kempe thought that he had reduced
the 4-colour conjecture to the
discussion of a relatively small
number of cases. Unfortunately it
was at this point that he had made
his mistake and the number of cases
to be considered eventually turned
out to be about 1500 (it had been
thought that it might be as many as
10000). |

The proof of the theorem then
required a study of all these cases to
show that each of them could be
"reduced" to produce a graph with
fewer faces.

Appel and Haken began their detailed
analysis in 1972 and 4 years later,
after 1000 hours of computer time
all the cases were finally resolved
and the 4-colour theorem was
proved. ~

N
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Variations on the 4-colour theorem

(1) Maps on surfaces which are not
planesor spheres

If we have a map on the surface of a
torus we find that 4 colours are no
longer sufficient to ensure that
adjacent countries are not coloured
the same and, in fact, we require 7
colours. |

Remarkably this result, and an even
more general one, was proved by
Heawood in 1890. A torus can be
regarded as a sphere with one handle
and Heawood's result is:

Theorem On a sphere with n handles
(where n=>1) a map can always be
coloured with at most

7+ 1Z +4&1} colours,

where [x] denotes the integer part of
X.

The proof is invalid when n=0 so,
ironically, what would appear to be
the simplest case of a general
theore m turns out to be the most
difficurr.
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(2) Countries with colonics

If we allow countries to have
colonies which must be coloured the
same as the parent country we have
to consider two cases

(i) the countries and colonies are all
on one planet (or surface of a sphere,
or plane) |

- if no country can have more than
one colony it has been proved that 12
colours are both necessary and
sufficient;

(i) when the countries and. their
colonies are on different planets
(such as would happen in the Moon
was colonised) it is known that at
least 8 colours are necessary and
that 12 -will suffice, but the exact
number which is both necessary and
sufficient has not been determined.



Additional References

Rational A imation o lrrationals and Diophantine Equati
There are many good introductory books on the Theory of Numbers (such as
that by G.H.Hardy and E.M.Wright, Oxford Univ. Press, 1977) which cover the

more elementary aspects of the topics covered in Lectures 1 and 2.

(i) "The Four Colour Problem" by Thomas L.Saaty and Paul C.Kainen,
McGraw-Hill, 1977.

(i) "Map Coloring, Polyhedra and the Four-Color Problem™ by David
Barnette, Math.Assoc. of America, 1983.

The Ri Hyoothesis and Mertens Coniect

There are no elementary books on these topics, though Devlin's book has a
very readable account. For those with a good knowledge of Complex
Variable Theory:

"The Zeta Function of Riemann" by E.C.Titchmarsh, Oxford

Univ.Press, 1951 is a classic.
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end.

(The lectures were illustrated by
some 30 colour slides, examples of
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. FRACTALS

The idea’ of fractional dimensions has béen.famili;;
to mathematicians sincg the‘eayly pirt of this century, arising
from the work of Hausd&rff; but it is only relatively recently,
beginning with the work of Mandelbrot that fractional dimensions
have been shown to be relevant to several branches of science
and technology including geograpl';y, microbiology and turbulent
flow in hydrodynamics.

A common feature.of curves of fractional dimension,
whether they have a natural or purely mathematical basis, is

self-similarity : no matter how small a section of the curve is

studied it contains all the features of the whole curve. 1In
‘ -
nature, coastlines have this property approximately and we can

construct such a curve mathemat}call§ quite easily, as follows.

We begin with an equilateral triangle with unit

sides (Figure 1), clearly the length of its perimeter is 3 units.



We begin with an equilateral trianglewith unit

sides (Figure 1), clearly the length of its perimeter is 3 unit:

de,

Now on the middle third of each side erect an equilateral
triangle of side 1/3 uqit: remove.tﬁé base of gach of these

triangles so arriving at ?lgqrg'i

Figure 2 has 12 sides, each of'length 'l/'_3 upit'; the length
of its perimeter is therefore 4 units.



1

On the middle third of each of these 12 sides .
:onstruct an equilateral triangle of side 16 unit: then remove

heir bases, S0 arr.lving at Pigure 3 :

gure 3 has 48 sides each of length 1]9 unit; 'the length of
s perimeter is therefore 48/9 units.
Continue in thih-ﬁiy for n stages; it is easy
sece that after the n-th .stage wWe will have a figure of 3(4n-?)

n-‘
‘es each of length (—) vnits giving a total perimeter of -

4\’
3(—3—) units
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As n > oo the length of the perimeter also -> 00 although

the figures are all containeé in a finite area. The mathematical
dimension of such a curve is defined to be the (unique) number

d such that as n > .-' h |

(Number of sides in the figure)x{length of each side)d

approaches a noﬁ-ze:o, 'tini'te value.

The existence of the unique number d for more general
. curves and surfaces and the consistency of this definition of
dimension with the conventional one is due to Hausdorff and

" 4s dealt with in books on Measure Theory.

In the particular case of the figure above this
_ rxequires the value of d to be that for whic¢h

. 3 4n-1l - : f n-1
' @ ha 3(3")

. tends to a positive constant as n ->oo. Clearly we need

~

to take d so that 3%9=4 .or:

d= loq 4 =]1.262...
log 3

(the base of the logarithms is immaterial, since the ratio of

two logarithms is involved).



2. Quadratic iteration and the Mandelbrot set
A standard mathematical method for solving an

dquation £(z)=0 is to re-write it 1n the form

. z = F(Z) B (2.1)
(which can be done in an 1nfinity of ways)
and then - ‘turn it into an 1terative process by replacing 2

by Zn on the right of (2.1) and by 25,1 on the left, viz:.

Zney  Fl2g) . (2.2)

We start from some arbitrary, vélue-Zo, use (2.2) to calpulate

Z,, then again to calculate 2, and so on, Anqzwe hope that

the sequence {Z,)} converges to some value Zsa which satisfies

(2.1) and hence our original equation i.e. £(Z) = 0. Unfortunately
the process doesn't always converge though it will if 2, is not
too far from a and IFI(u)|<1, ("not too far" is very vague, but

this needn't concern us here).



s
unately
not

but
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The simplest non-linear equation that we can be

asked to solve is the quadratic

“azl+ bz +C = 0 - T (2.3)

By re-arranging terms and changing the variable 1£'necessary

one possible iterative method for solving such an equation
may’' be written . o

+ o S ’ (2.4)

-We shall assum; that C is, in general, a comgiex number

If we start from Zo=0, (2.4) g;ves L= C, 2, = Czﬂ:and

sO on. There are 3‘possibilities:

(i) the: sequence {Zn) converges to a limit, a, which
provides a solution of (2.4), and hence of (2.3),

(2) the sequence (2,) does not converge but the points '



(Zz,) remain within a bounded region of the complex plane

for all n;

(3) the points {2,) eventually move outside any bounded

region of the complex plane.

Consider a few cases: )
(i) Cg-1c ZOBO 2""’1' z; '0 z, ="‘1 ss 0 ase
the sequence does not converge, but cycles with -

period 2; this is an example of case (2);

i) c=1;2 =0,2; =1, 2; 2,72y =5, 2y= 26,.....

the sequence |2Z,]| is clearly unbounded; case (3)

(13) C = i; 2o = 0, 2, = &, 2, = =144, Zy= = 4, 2, = =1+4,
the sequence does not converge, nor does it return
to its original value, but it settles into a cycle

of period 2; another example of case. (2);

{dv) .

the sequence converges to one of the roots of

the equation { }(1-/3) = ~ 0.366 ...); this is case (1).

c— .. .

C = "O.S; -z.-.op zl. - ooS, zz. - 0-25, Z: = -004375,-00

squai
othe:

is is

This

entir
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3
entirely inside the circle x

Thesé éxamples show that each of the three
possibilities (1), (2}, (3) does occur for some values
of the complex numbexr C. Usin§ a computer (even a micro

will do) we can investigate for a lattice of values of C such

as C = (0.01) (+ki), =200 < 3,k<200

starting (2.4) in eabh’iase with 2e¢= 0.0 and continuing
for 100 iterations or until |2 [52 (which is sufficient to
establish case (3))to decide to. which class ((1),(2), or (3))

each lattice point should be assigned.

If we addpt the convention that if a

particular valué ‘of -C leads to-case (1) or.'(2) then the

square of sides 0.01 with C at its centre is coloured black,

otherwise it is coloured white we £ind that the black region

is as shown ,*~

This black reélén is calleé the Mandelbrot Set; it lies

B !
+y =4, °

.
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MANDELBROT AND JULIA SETS

The Mandelbrot Set, M, is defined by
Zo = (0,0) -
Zn+1=Zn24cC |
M(c e C, |Zn| + =)

If P is any point on the boundary of
the Mandelbrot Set we can study the
set (of values of Z such that)

Jp(ZoeC, Zn +1 =2Zn2 + P, |Zn| $ )

which is the 'filled-in Julia Set'
associated with P.

Using quite simple programs and a
colour graphics screen remarkable
pictures of Julia Sets can be
generated.

Julia Sets are interesting from
several points of view (mathematics,
physics, control theory, turbul ent
flow, biology...). They possess the
'Fractal property' (self-similarity)

and are of fractional dimension.

10



- Cardif

For superb colour pictures of Julia
sets see the books by Peitgen and
Richter and by Peitgen and Saupe.

Black and white versions of some
Julia sets (reproduced from my
Presidential address to the IMA, (9))
are shown on the next slide. These
were Produced from output from the

Multics via Postscript on an
Apple laser printer using an 800X800
mesh covering the square - 2 < Re(z),
"Im(z) < 2 giving a map about 7 inches
square at a resolution of 115 pixels
to the inch.

//
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Fig. 7. Julla set attractive cycle o

f period 3 (Cm ~0.12 +0-74/)
Fig. 4. Mandelbrot set

© Fig. 8. Julia st of the region ~0-745 + 0.113

Fig. 5. Julia set associated with the point =0-11 + 0-6557;

Fig. 9. Julia seq associated with the point ~0-39054 ~ 0-58679;

Fig. 6. Julis set associated with he roint 0-27334 + 0-0074%



3. Affine Transformations

The Sierpinski Gasket gas
ger

Let Pg, P4 and Pp be 3 arbitrary non-collinear points on a piece of paper. in
maj

Let Zg be any point inside the triangle ABC. Let RAND(n) be a random -
number generator that generates 0, 1 and 2 with equal probabilities (i.e.

1/3). A sequence of points Z4, Z5, ... is now constructed as follows: W

If RAND (n) = k then Z,,1 = izl (Zn + Py

For
- that is, the new point Z,,1 is the mid-point of the line joining Z, to
. are
whichever of Pq, P{ or P» is indicated by the random number generator. o~
Generate a large ‘numberfof points in this way and then reject the first
few (10, say). If the points so generated are associated with the nearest
points of a fine-mesh lattice and these "visited" lattice points are then The
coloured black with “unvisited® la_tﬁce points coloured white the resultant mag
picture will be as shown below. - are
we
are
One
prod
whicl



This radordinary figure is often referred to as "the Sierpinski
gasket” (or "Sierpinski triangle”). It can also be generated by an important

general technique based upon affine transformations which may be defined
in two dimensions as transformations of the (x,y) plane into itself by

mappings of the type:
X\ = aqqx +‘a1:2y + b4

y az,x + agoy + bo
For any such transformation there exists a constant S such that if x and y
are any two points of R2 and W(x), W(y) their images under W

| [We - weg ] <] z-x]|

The constant S is called the Lipschitz Constant of the mapping; if S<1 . the

mapping is said to be coniractive: these are_the transformations which
are of most interest to us.

In the case of the Sierpinski gasket starting from the triangle PgP 1P

we note that the gasket consists of three half-size copies of itself which

are formed from the original triangle by the three affine transformations
Wi :2 -+12- (Z+P;) i=0,1,2
One application of each of these three transformations. to PgP4Po

produces the figure

which has an area %4 of the area of that of the original triangle.

W



Applying the three transformations to each of the sub-tridagles and so on
indefinitely produces the Sierpinski gasket. Since each iteration is applied
to 3 fundamental regions of linear measure one-half of that of the
previous fundamental regions the fractional dimension of the Sierpinski

gasket is

log 3
= 1585

ret——— .

log 2
(In general, a bounded region R which is the ﬁnéop of N non-overlapping
sub-regions each of which is congruent to kg"ﬁas fractal diménsioh
logN/log ”k.)
For the Sierpinski gasket we used three affine transformations, applying
each of the three once at each iteration. We can generalise this process in
a number of ways includ:ing:‘ ,
(i) use more than three affine transformations;
(i) apply the various transformations in a random manner with
different probabilities;

(iii)  the fundamental region from which we start need not be a triangle.

Combining all these generalisations a typical ums_d__mngtm
scheme (IFS) involves

(i) aregion R
(ii) n affine transformations w; with associated probabilities p;

(i=1,..n). -

—
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Images of Clouds and Plants by IFS
If the transformations w; are all contractive and the union of all of them

applied to R
n

U wi(R)

L=\

overlaps R itself to a considerable extent in that most, if not all, of R will
be covered and some parts of R will be covered more than once, then an IFS
provides a method for generating pictures of clouds, landscapes and
plants. The method adopted is as follows:
(1) Choose a basic region, R, of approximately the desired shape; ._
(2) Cover R with a rectangular NxM mesh; associate a couﬁter,

initially set to zero, with each mesh point;
(3) Construct a set of contractive affine transformations wj(z)

. (i=1,..,k) which collectively provide a covering of R to a

considerable extent, with some overlap;

(4) Associate a set of probabilities {p;} with {w;j(z)}, i = 1, .., k,
(5) Let zg be a fixed point of one of the transformations i.e. zg =

wi(z,) for some i; let zi' be the most recent value of z obtained;
(6) Use a random number generator to choose an integer s, say, in the

range <1k>, where the probability of choosing s is pg, and then

apply wg to zj to produce a new .value gf Z, Zj,q = ws(zj).

M.



(7) if ("j-mj) is the mesh point nearest to z increase the counter

associated with (nj.mj) by 1;

(8) repeat steps (6) and (7) K times, say, where K is large compared
to NxM;
(9) represent each of the NxM mesh points by a pixel and colour the

pixel according to the counter associated with the mesh point.

By varying the probabilities (pi{'the “pictures displayed can be

" made to appear as if illuminated from various directions. For

some very impressive examples of landscapes and blants
generated in this way by Barnsley and others see [$ ].

The fractal dimension of such regions is not so easily found since
some parts of R may not be covered at all and other parts may be covered
_ n;ore than once, and, in addition, the Lipschitz constants of the various
transformations may be different. In the special case where R is exactly
covered with no overlaps by the k affine transformations the fractional
dimension is d where

" :
Erids"

=il

and r; is the scaling factor associated with the transformation wi(z).
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.. Coastlines : Midpoint displacement
A method which has been used to generate fairly realistic looking
coastlines is based upon a randomised version of the midpoint
displacement method (which was used by Archimedes around 250BC to
find the area enclosed by part of a parabola).
Let A and B be two points joined by a straight line and let d be the

distance between them. Let C be the midpoint of AB.

A dIgL c 9> B

We now displace C as follows: generate a Gaussian random number, g, with
zero mean and unit variance and displace C a distance

gdZ-h
yvhere h is a fixed real number in <0,1>. The intervals AC and CB are now
bisected and M midpoints displaced by random multiples of

g2-2h
..... and so on.

To approximate a ‘cboastline we begin with some fixed points on the
coastline and join adjacent points by ;traight lines; midpoint
displacements are then made in directions normal to the local straight
line. A series of maps approximating to the map of Australia produced by

Fournier et al | Lf- ] are shown below; the maps are based on 8 sample

18



points and 8x127 points were interpolated with 4 different values of h
(0.5, 0.7, 0.87, 1.0). The value of h is related to the fractal dimension,
which for the coastline of Australia appears to be about 1.87, hence the
choice in Map 12.

Instead of joining two adjacent data points by straight lines we
could use cubic splines which would then provide higher orders of
continuity - though these are only meaningful in a statistical sense.

A criticism of the midpoint-displacement method is that once a
point has been positidned it is never moved again and a relatively large
movement at an early stage in the process can be seen to persist
throughout all the later stages which can produce a rather artificial

effect.
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Fig. 9. Ausinalia: 8 Sample Points,

ﬁt 10. Stochastic Interpolation. 8 original points and 3 X 127 intes-
polated points (h = 0.3),

Fig. 1. Stochastie Interpolation. (h = 0.7). -

Fig. 12, Stochastic Interpotation. (h = 0.47).

Fig. 13. Stochastic Interpolation (h = l..O).
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5 E ] l [ l. _ .I.' I
It is possible to write instructions for a simple graph-drawing
automaton ("a turtle™) to produce some of the more angular fractal curves.
The simplest such curve is the von Koch snowflake curve which can be
generated by the following:
Algorithm (von Koch generation).

Let an automaton obey the following instructions on seeing the

appropriate symbol:

Symbol Action
F draw a straight line a unit distance forward
+ turn right through the designated anglg

- turn left through the designated angle

On any other symbol, preserve the pr_esent state.

Then: (i) set the designated a,mgle to 60° the cycle number = 0;
| (i) let the instr:uciiﬁn be "F";
(iii) obey_}he_ instruction and increase the cycle number by 1;
(iv) replace F in the ir!xstru'ction by "F-F++F-F"
and go to (iii) unless the cycle number exceeds N, in which
case stop.

The first 6 stages in the generation of the von Koch curve are shown

below: -







For more complex curves the
"production” rules are themselves
slightly more complex, e.g. for the
space-filling Peano curve, the first 6
ﬁtages of which are illustrated we
ave:

(i) let the cycle number be zero,
the designated angle be =/2
and the instruction be X;

(ii) obey the instruction;

(iii) replace X by:- YF+XFX+FY-Y
and replace Y by : +XF-YFY-FX+

in the instruction; increase the
cycle number by 1;

(iv) go back to (ii) unless the cycle
number exceeds N.
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6. LANDSCAPES ; USE OF FOURIER

SERIES.

REALISTIC LOOKING LANDSCAPES
HAVE BEEN PRODUCED BY MEANS OF
>-DIMENSIONAL FOURIER SERIES. THE
HEIGHT OF THE SURFACE ABOVE THE
POINT (x,y) IS COMPUTED FROM AN
EXPRESSION SUCH AS:

N-\

Z(x,y) = 3. z Ck,me2mi(kx+my)

k=0 m-=o0

forx,y =0,1,2, ..., N-1
N N N -

WHERE THE COEFFICIENTS Ck,.m ARE
RANDOM VARIABLES WITH

E(|Ck,m|2) oc (k2 + m2)-H-1

It is then necessary to produce a
slide showing how the landscape
would look to an observer at a
- foreground point with illumination
coming from a specific direction -
this requires a lot of computation.
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