
. OCR Output xx W \\\®~Q\}\\§\‘%§¤§§§;§

W

"“ E C TU RE N OTE

Modern issues .· intelligent data management.

Analysis: modelling, vermcation at the different levels.
Synthesis : Si-compilation.

Computer-aided circuit design .· the design trajectory.
Integrated electronics: technological families, emphasis on CMOS and NMOS.

ABs·1~RAcT

W9

i\Cc;(j· vf/l“‘*’V'

PLACE ; Auditorium

JQ

E L %.~·llhOO to 12hOO

DATE S ; 26, 27, 28 November, 1986

TITLE : Computer-aided engineering in electronics

3%
LECTURER : P. DE WILDE / Technological University, Delft

Zézzé
1986-1987 ACADEMIC TRAINING PROG

7 7/

7
%

AT0000042s

J /
ii/Z, i/ [4
%>2>>%’”

/07
#/>¤·Z

TG9 ru

GER

`i>

T This research hu been partly supported by the commission of the EC under ESPRIT contract 991 OCR Output

the general design situation. Foremost is the notion of signal flow graph which is
framework is obtained by combining and modifying classical concepts so as to fit
design system in one consistent framework. As we shall see, such a consistent
control structures. The emphasis will be on placing all the components of the
dedicated hardware: hierarchical refinement, partitioning and the generation of
concentrate on the problems associated with mapping algorithms on regular,
that at the 11mit any deterministic system can be so designed. However, we shall
or a system to compute eigenvalues. The methodology will be set up in such a way
methodology which can handle a broad class of algorithms, such as a matrix solver
control and high performance. Our interest will go to the definition of a design
structure that exhibits a number of desirable qualities: regularity, simplicity of
numerical algorithm down to hardware with the expressed goal of realizing a
wish to take a more general point of view where we develop the design path from a
A prototype example of this technique can be found in [1]. In the present paper we
adapted to the requirement of hardware minimization within the speed constraints.
accuracy. ln such very dedicated applications, the algorithms used can be optimally
limited area, taking into account numerical considerations like stability and
serial digital filters which are capable of achieving high throughputs with a very
physical area and with low power consumption. A good example is that of bit
Digital signal processing often requires very fast handling of data in a small

1. INTRODUCTION

the design of a pipellned matrix solver.
paper we present an hierarchical design methodo10SY. and apply it to
transformation of behavioral dwcriptions lnto structure. In this
that support system refinement, partitioning strategies and the
numerical applications and signal procesing requires design tools
The computer~aided design of dedicated pipelined processors for

ABSTRACT

Delft, the Netherlands
Delft University of Technology

Department of Electrical Engineering

and K. Jalnandunsing
P. Dewilde, J. Annevellnk, E. Deprettere

to a New Pipelined Matrix Solver'}'.
Hierarchical Design of Processor Arrays Applied

- 1

advantages of a functional style have been well documented in the literature, see OCR Output
also prone to error due to hidden states (or equivalently side elfects). The
here but not as llexible (LISP allows e.g. for the expression of constraints). It is
description [ll]. This approach is conceptually equivalent to the one presented
language, say FORTRAN, and generate from it a so called 'single instruction set'
approach would be to start from an algorithmic description in an imperative
attractive LISP dialect (Scheme [15]) to formulate behaviours. An alternative
the H]}'—`I system as shall be demonstrated by example in section 3. We shall use an
regular DG’s, see [11,12,13, 14]. All these partitioning techniques will fit nicely in
recent years there has been a lot of interest in the mathematics for partitioning of
This method was originally presented in [9] and is based on the work of [10]. In
scheduling in which tasks are assigned to devices, and schedules are generated.
itself an SFG). The DG representation is needed to allow for partitioning and
completely explicit - a dependence graph (DG) (it will turn out that the DG is
intermediate representation ln which the content of the algorithm is made
represent by an extended signal flow graph, in short an SFG) goes via an
that is supposed to realize an algorithm, and its structure (which we shall
and properties (section 2). 'I`he link between the behavioral description of a system
dwigner (through his design system) has to handle, together with their relations
’l`he PHFI system is based on an analysis of the various objects which the system

uniform method of description throughout.
structural description with attached schedule. Hence lt will be possible to use a
functional style is used, even algorithmic descriptions will take the form of a
the algorithmic components are mapped on a specific architecture). When a
components of an algorithm are made explicit) and a partitioning phase (in which
It is seen that any major design stage consists of a refinement phase (in which the

components sequentially (partitioning).
components whose behavioral descriptions and schedules realize the original
Clustering components together and mapping them onto a new set of

components (which then in turn mn be rehned).
Decompwing components into regular or irregular structurm of smaller

polnt numbers', to 'sequence of bits").
rehned (e.g. from 'matrlx' to "sequence of columns', to 'sequence of Hoatlng
Making the type of the data that is transferred between components more

system should support:
In the course of rehning a dwign several actions have to be taken, which the design

of a consistent (and novel) dwign system - the dwign system I-HH [8].
prment ln the literature, whlle devoting most of our attention to the development
can be found in [7]. Needlm to say, we have used freely some ideas already
languages for signal pro$ing has also been considered — a prime example of which
science literature [4,5,6]. On the other hand, the development of dwcription
both notions have obtained considerable attention wpecially in the computer
course with a diferent terminology) in computer science [2,3]. In the meantlme
(to a good observer) clasiml to signal proxlng and have been rediscovered (of
the notions of funaxbnal calculus and applicmive stme trmsitions, which are also
The model that we shall use 1.0 dxcribe system structure and behaviour is based on
clasical Ln signal proming, but needs modihmtion as will be explained further.

- 2

the nodes as "semant1cs" OCR Output
functional (i.e. described purely by mathematical functions) and attached to
Control and states at the given level must be explicit. Everything else is

2. Every description must be self-contained (and hence can be simulated).

l. The description must be uniform across design levels.

Ln the forthcoming f ormalization, we enforce the following requirements:
A schematic representation of the overall design procedure is as shown in Figure l.

[10,9], or tailored to regular algorithms[12, 11,22,23, 13,24].
schedules are derived. Partitioning methods mn be either for general situations
together into larger nodes, intermediate data is assigned to registers or storage, and
partioning phase, primitive functions in the dependence graph are clustered
also be interpreted as carrying relevant data to the nodes. ln a second phase, the
dependencies between the tasks and the propagation of data. Hence, the edges can
dependence graph of nodes containlng subfunctions and edges which indicate the
procedure, the refinement phase, this node will gradually be decomposed into a
(input, output, constraints and behaviour) by a node. In the first phase of a design
available devices. We shall represent a deterministic system with its attributes
and extract causal relations from the behavioral description and to map these onto
our system in LISP. It will be the task of the dwigner to distinguish subfunctions
semantics" [21], will normally be given in the form of a behavioral description - in
which describes their structure. The I/O map, which can be viewed as 'formal
outputs and a global I/O map. Inputs and outputs are characterized by a type
viewed globally. Hence it is an object that consists of a set of inputs, a set of
map between inputs viewed globally (i.e. over all time and space) and outputs
A 'deterministic system" is by definition a system for which there exists a (partial)

obtained.
fashion a consistent orthogonalization of semantics (behavior) and structure is
modification of the basic ideas, all the way to a hardware description. In this
composition). This decomposition can then be hierarchically refuted without
and the algorithm gets decomposed in structural parts (construction and
direct I/O functional specifications to a structural level where states become explicit
The gist of the HIFI design methodology is the translation from a semantic level of

2. the mapping of the algorithm onto a particular hardware architecture.

1. the specification of the algorithm and

Conceptually, the design of a system can be split in two phases:

rama in [18,19,20].
of the datailow and not only on the computational complexity. Examples can be
complexity of the overall solution is often strongly dependent on the organization
coding or simulation [16,17]. For these applications, it turns out that the
systems, like signal processors or matrix solvers as one has in speech coding, image
the hardware. This is especially true for the dxign of dedicated concurrent
descriptions to structure, a process that finally ends in the complete definition of
One may define systems' design as the successive refinement from behavioral

OCR Output2. SYSTEM DESIGN BY

- 4

design system OCR Output
ponents of

the basyc objectives. refnnernentof previous

that ny node in he des1gn is temnnatea nodes at the leaves of the by (VLSI) hdrdware. proceed with the introduction realize the
We lm8€¤1$[jC of [2]. Adescuptlon. Tln whlch the plementable
esctr qtoore general for all dtrmiTransitions (AST}" have such a ription is reached ee are directly
graph is [25]. The mps to be adeuate Appllcattve State - will be assumed when a d

requlre yrouting between algorlthm with a dependence a structured program. See stm "functxonal" and apeares is based on the "systemis systm
genera} enouny determinlguc algorithms epenence graph —°$1>¤:1ayy thosaaepenenbranching, that leads ecs. The poglbluty of rresntiroughly equzvalent to model that

bence graphs will not yes (there are marepresented by a dddynanuc (dtwidt) dvift
.$[{systel-·-een on dependedetellntmc sstmoannot be to structurecoval model er all m Semantics all d€t€U¤1¤L··Ccomputation able to cover ure: from

The mrcnroal Dmgn P odel must hetgune 1. Hiera

Node

Graph
HOW

``` Signal ` "`J
g ""

Pirtiti nin"""""0Graph )
gvendence

_```- v_
¤1inement

Behavior

- 5



Figure 2. Node Firing Discipline OCR Output

are token free
relevant (dashed) output edges

···•·- ·•l 1... I··•··- •

edges have token *.9
relevant (dashed) input

free from tokens — see Figure 2.
satisfied: (a) tokens are present on relevant inputs; (b) relevant outputs are
actual partial function f q may fire when the two following conditions are

1. Self—timing by a single token pass discipline. For each node in the SFG, an

must be consistent with our previous AST description, and are as follows:
relevant at this level explicit. The communication mechanisms used in our SFG's
Signal Flow Graph (SFG) which makes functional relations and state that are
At any given level of the design hierarchy, the system structure is represented by a

2.2 The Structure of Concurrent Systems

f a : VI -» V0 >< F : input -» (output , sucoessor—function)

for the Applicative State Transition (AST) mechanism is the definition of the maps
the values (ev. empty) that the output ports will obtain at event i. Characteristic
Let VI(i) be the values (ev. empty) of the input ports at event i, and let VO(i) be

with each f __ 6 F. When f m is executed, we say that we stand at 'event i"

f at , f al , f az ,

In any of its histories, the node will execute a sequence of functions:

3. O a collection of output ports also characterized by a (fixed) type.

2. I a collection of input ports characterized by a (fixed) type.

it maps some inputs to some outputs.
internal state is captured in a functional way). Each f G is a partial function:

1. F = {fn} — a set of functions which the node is able to execute (e.g. any

(dynamic) sequencw of functions. Hence to a node we can attach:
expressions, has an underlying AST description which decomposes it into
characterized before by a behavioral description, e.g. a sequence of LISP
constructive arguments that lead to set theory). Therefore, a node that was
motivated by the literature mentioned. (A proof would amount to reversing the
carefully defined mathematical environment, we take it as a working hypothesis,
Transition system [2]. Although this asertion cannot be proven except in a
Underlying any (structured) system description there is an Applicatlve State

2.1 Behavioral Description in Nodes

- 6



proposed here is internally consistent. OCR Output
l2s

obtain fu, f G, fa, and the SFG is itself an AST system. Because of it,the method
and the situation is now equivalent to the original. Proceeding recursively, we

replaced their function by a new function. 'I`he first overall fm has been reached,
free and can also be added to the set of free nodes. The nodes that have fired have
free nodes. In the latter case all remaining nodes and edges are token free are token
former case we may proceed recursively, adding nodes that have fired to the set of
one node will be able to fire, or all tokens will be on outputs of the SFG. In the
absence of mishts, one of the two following situations will occur: either at least
will still be acyclic, and will again contain maximal nodes. Again because of the
have token free inputs. Place them in a set of 'free nodes'. The remainder graph
will propagate input tokens to the next level. The nodes that just have fired will
Hence, at least one maximal node, and pomibly more, will be able to fire. They
the supply of tokens to the SFG and its nodes, violating one of the conditions.
SFG. lf none of the maximal elements is able to hre, then there is a misfit between
is acyclic, there will be maximal elements. Place tokens on the active inputs of the
all the nodes. Count only active input and output edges. Since the resulting graph
An informal proof of the property is as follows: Consider first initial functions in

an AST system.
Ifall the nodes in a SFG are ASTsystems and ifthe SFG is correct, then it is zlself

property then holds:
shall say that an SPG is correct if none of these two faults occur. The following
tokens at the input and (2) there might be delay-free closed loops (deadlocks). We
incorrect: (1) a misfit between the active function at event 1 and the supply of
the present level of abstraction. There are two ways in which an SFG can be
consider this a desired property, because it catches the relevant design problem at
synchronous, and mismatches between inputs and outputs are possible. We
'I`his SFG model requires timing verification because nodes are in no way

Figure 3. State Representation

which the memory is defined.
associative memories appears to be just an extension of the data—functions by
graphical representation. It is interesting to note that the path from simple to
others to come) of the basic building blocks, for which we have a special
cumbersome for design purposes. Hence, we single it out as one (among
While this description is mathematically sound, it is of course too

fdluil-•OXFZ1¤-•(d&t8,fi¤)

f unction f dm, with the function map:
ftmctlons as there is distinct data to be stored: for each piece of data one
provide for memory, its AST description will consist of as many elementary
type of node that is marked as 'delay'. Because its function is exclusively to

2. The state that is explicit at this level of the design is denoted by a simplified

- 7



T In this and other examples, we will use a simple and elegant dialect of LISP, SCHEME (15]. OCR Output

The designer can associate a behavior with a HIFI node. It is defined in a similar

(behavior (sqrt in)))
(outputs (:sca|ar root))
(inputs (:scaiar in))

(node—c|ass (hf—sqrt izscalar n))

A textual representation of the object thus created is given below:

(make :node·cIass hf—sqrt)

the top-level node. The itor is invoked by evaluating the expression:The editor allows the deigner to dehne the inputs, outputs and other attributes of
a scalar, which will represent systems realizing the desired algorithm (Figure 4).
graphics editor to define a class of nodes (keyword: node-class) parameterized by n,
into a I-IIFI environment (typically on a workstation). At the top level we use the A
equally nicely, have been specified in another language), we proceed by moving
from a running estimate (est). Given the algorithm (it could also, but maybe not
the integers used) by adding or subtracting decreasing powers of two (incr) to or
The algorithm proceeds Ln a frxed number of steps (depending on the precision n of

(sqrt-iter (— est incr) in (quotient incr 2)))))))
(sqrt—iter (+ est incr) in (quotient incr 2))

(else (if (< eq-est in)
(cond ((or (= sq—est in) (= incr 8)) est)

(let ((sq—est (* est est)))
(define (sqrt—iter est in incr)

(sqrt—iter B in (expt 2 (quotient n 2))))
(define (hf—sqrt in n)

gmin algorithm:a ta? architectural description has been reached. Let’s use the following simple
behavioral description) and proceed through rehnement and partitioning steps until
We start out from a description of the algorithm in (self-explanatory) LISP T (the

Example 1: compute square root of an integer.

be presented.
showing the concepts used. In the next section a more sophisticated example will
To illustrate the theory so far, we terminate this section with a simple example

hence be the subject of a structured design method.
dynamic routing of data). They can be verified and synthesized a priori, and can
form of a dependence graph. Such systems we shall call 'stat1c' (there is no
further - are AST systems for which an a priori scheme of operations exist in the
verified through exhaustive tracing. The other extreme — the one we consider
no reasonable operational description can be given. Such systems can only be
systems in which the order of the operations is so much dependent on the data that
above. no hxed schedule of operations need be posible. It is easy to conceive AST
A further classification of AST systems is possible. In the generality presented

- 3



environment. (eee e.g. [15]). OCR Output
T A tail recursive procedure is • procedure that applies itself just before returning to its calling

Since the procedure hf-sqrt, as defined above, is tail—recursive1' one will be able to

(behavior (sqrt-iter B in (expt 2 (quotient n 2)}))

using the procedure sqrt-iter:
To realize the algorithm described above, a better idea is to specify the behavior

designer will get either the procedure, or the node-class.
Depending on the environment in which the symbol hf—sqrt is evaluated the
environment, and to a node—class object in the current node environment.
the example above is bound to a LISP procedure object in the system global
mechanism. By doing so, there can also be no confusion of names, e.g. hf-sqrt in
environments can be created by the designer and serve as a flexible library
environment, whereas a node—class is defined in a node environment. Node
f unction sqrt. The LISP functions are normally defined in the system global
In the case just shown, the behavior is implemented by calling the standard LISP

selects the item eval from the editor menu.

evaluating its behavior. A node will actually be simulated when the designer
outputs of the node. Given a behavior it is pomible to simulate a node by
values returned as a result of evaluating the last expr¤ion are assigned to the
way to the body of a LISP procedure, i.e. as a sequence of LISP expressions. The

Figure 4. Initial Node Definition

return

eval

hf-sqrt i-B.;
behavior

paramete

output

input

redraw

- 9



(inputs (:sca|ar· est in incrl)
(node—c|ase (sqrt—i t)

The iteration node sqrt-it is defmed by the node-class:

Figure 5. Regular refmement of hf—sqrt

return OCR Output

inode

discon

············ connect

icount
--..... .-.. .......... sqrt—1t¤sqrt—lt0

source

redraw

generated by a source can be speclhed by the designer as a single LISP expression.
former just generate inltlal data, while the latter consume tokens. The data
some inputs and outputs. These circles denote sources and sinks respectively. The
suitable to implement the algorithm. In Figure 5 we see small circles attached to
We obtain (interactively) Figure 5, which describes a (parametrized) class of SFG’s

inputs and outputs of the node being reflned.
the nodes that are instances of the iteration node with each other and with the
node the designer may then proceed by interconnecting the inputs and outputs of
any of these nodes as the iteration node. After selecting the appropriate iteration
the nodes, i.e. their names, as known to the HIFI system. 'I`he designer can select
the right side of the display. When doing so a new menu will appear, that contains
change the iteration node by selecting the item inode from the menu appearing at
instances, so as to be able to specify the mutual interconnections. The designer can
sees two small circles. These circles are the iteration nodes. We need two
the inputs and outputs of this node. In the center of the refmement the designer
an elliptical boundary, denoting the node being refnned. At the boundary we End
rejinemenvof. Next this reflnement can be edited. Initially the editor will display
unspecifned, regular refmement of a node, using the procedure make-regular
refmements are specifxed graphically. The designer flrst creates a, further
(to be defmed) subnode implementing the iteration. In the HIFI system regular
'regular refinement', which will implement the node via repeated application of a
implement lt iteratively. This can be done with a standard HIFI procedure, called

- 10



(make :record ’est 8 ’in in ’incr (expt 2 (/ n 2))))) OCR Output
(behavior
(next-function sq—it)
(outputs state)
(inputs in)

(function (init—sq n)
(ast
(outputs (zscalar root) (:record state))
(inputs (:scaIar in) (:record state) (:c|ock clock))

(node—class (sqrt-node)

description for the central node 'sqrt_node" being:
have an appropriate HIFI description of its connections and behaviour, the
parameter of the clock node. Each of the nodes, including the standard ones, will
The fmal token in each cycle of n tokens is marked jinal. The value of n is a
input-less node that sends out originally initial and next starts counting modulo n.
Note that we make use of a standard HIFI node, clock. A clock is dehned as an

Figure 6. Partitioning of the regular rehnement onto one processor

return

sqrt_node
mot

eval

paramete

output

Input

clock redraw

with an appropriate schedule (i.e. AST description). Figure 6 shows the result.
algorithm ln one processor. Then all the present nodes have to be mapped on one
The next design step will be 'partitioning'. Suppose that we wish to realize our

(parametrized) SFG in Figure 5 is actually a (primitive) dependence graph.
Thls step is the 'reiinement procedure" for this case. It can be seen that the

(list (sub est incr) in (quotient incr 2))))))))
(list (add est incr) in (quotient incr 2))

(if (< eq—est in)
(else

(cond (lc sq—est in) (list est in incr))
(behavior (let ((sq-est lx est est)))
(outputs (zecalar est+ in incr+))

- 11



second example. OCR Output
constraint propagation mechanism. This will be explained ln more detail in the
The consistency of the nodes and refinements is maintained by means of a

(dsiag 1))
(make :record ’sst (} ’in (} ’incr ()}
(forna|—arg °stats (inputs—of sqrt—nods))

(connect (formal-arg ’stats (outputs—of sqrt-nodal)

state output and input of the n sqrt—node:The delay edge appearing in Fggtgre 6 is defined by an exprwsion connecting the

relation whatsoever.
although inputs and outputs can have similar names, this does not imply any
contained so that further refinements can take place autonomously. Note also that
Remark that all the node descriptions are independent of each other and self

(initial-function init—sq)))
(nods—cIass sq-it)}

sqrt—it))
finaI·sq

(nsxt-function (if (- clock ’final)
(¤snbsr—of stats incr)}

(outputs (¤snbsr—¤f stats est} (member-of stats in)
(•snbsr·—of stats incr·))

(inputs (¤smbsr—of stats sst) (nembsr—of stats in}
(function (sq-it nl

(¤smbsr—of stats sst)))
(behavior
(next-function init—sq)
(outputs root)
(inputs stats)

(function (final-sq n)

-1;



With appropriate partitioning of the matrices we obtain: OCR Output

_b0

· A` IA = |t

following [26], we f actorize the matrix:
presented a Gausian algorithm which incorporated t.he backsubstitution, and
operations to factorizatlon only. Inspired by the work of Faddeeva [27]. who
By a clever arrangement of the data it is, however, possible to restrict the

Fig1u·e 7. Architecture of the Classical Matrix Solver

LIFO

KW

LIFO

Figure 7.
architecture (also represented by a SFG) representing these operations is shown in
row in R, while the factorization produces the frrst row first. A conceptual
and x is found by backsubstitutlon on B. The latter operation starts with the last
transformed to B = Qxb, then the system of equations is transformed to Rx = B

,____ orthogonal for numerical accuracy and R is uppertriangular. If b is likewise
factoring A as A = QR where Q is a transformation matrix which we choose to be
and b a vector of dimension n. The traditional method of solving the system is by
Thus, given is a system of linear equations A x = b where the matrix A is nxn

show how the algorithm is mapped to the VLSI array, after further partitioning.
is ideally suited for implementation on a dedicated array of processors. We also
here. The algorithm does not require any intermediate accumulation of data, and
avoiding the backsubstitutlon step, was first proposed in [26] and will be presented
overcome this problem an algorithm which solves the system in one pass, thereby
step needs the data outputted by the factorization step in reverse order. To
datailow is very unfavourable for parallel procsing because the backsubstltution
which is then solved by a procedure called 'backsubstitution'. The resulting
compute the factorization of the matrix A to produce an upper triangular system
Classical algorithms for solving systems of linear equations of the type A x = b

3. SOLVING SETS OF EQUATIONS IN A PIPELINED FASHION

- 13



the elements of a list, its second argument, collecting the results in another list, OCR Output
procedure is mapcar, which applies a procedure, its first argument, repeatedly to
and cdr a list containing all elements, except the first. Another basic LISP
manipulation procedures cor and cdr, where car returns the hrst element of a list
result we can easily manipulate vectors and matrices, using the standard LISP list
represented as a list of (column) vectors, each of which is a list of elements. As a
recursive procedure [15]. In the above procedure we assume that a matrix is
recursively, it can be executed iteratively. This is because it is a so-called tail
Looking at its definition we notice that, although the procedure is specified

(unity-matrix (1+ (dimension a)))))l
(qr—iter (append (napcar append a (transpose bl)

(qr—iter (mapcar cdr a+))))})
(mapcar car a+)

; last iteration(if (sing|e—r¤u? a)
(cdr a))))

(let ((a+ (mapcar (lambda (col) (reflect col qi)
(let ((q (vector (car a})))

(define (qr—iter a)
(define (faddeeva a b)

specified in the form of a LISP procedure.
The _more interesting part is clearly the iteration procedure, which is easily

procedure returns the (transformed) elements of the last row.
recursion stops when the matrix has only one row left. In that case the
which is iirst reduced, i.e. the nrst row and column are stripped oil". The
argument matrix. Then it recursively calls itself on the transformed matrix,
matrix, computing a reiection vector q. It then reflects the columns of the
The procedure qr—iter reflects the first column of its first argument, a
2. Application of a recursive procedure qr-iter.

matrix I of dimension n + 1 to it.
transpose of b as the n+1°` row to A, and then appending the unity
Faddeeva procedure. The matrix A' is constructed by appending the

l. Create a (n+1)><(2n+1) matrix A', from A and b, the arguments to the

two parts:
The algorithm, which we will call orthogonal Faddeeva, itself consists of

3.1 The orthogonal Faddeeva Algorithm

Householder algorithm for which we refer to [28].
The operations performed during the factorization follow the classical

matrix.
u 21 “2z

where | , | is an orthogonal matrix and R is an upper triangular
Un ul2

` G- tu`z, uu] I—b0 ll I0 xuzz uu

Un uu] (At I ol IR Un ul2

- 14



(outputs (:vector xlll OCR Output
(inputs lzmatrix A) (:vector bl}

(node-class (Faddeeva)

node are gradually specified when they become known.
This is done interactively (cf. Figure 8) whereby the attributes of the Faddeeva

Arx== b

udth:

abstract level, i.e as a function that maps a matrix A and a vector b to a vector x,
The fust step is to defme a node representing the Faddeeva algorithm at its most
Given the LISP procedures, we can start to specify the HIFI nodes and nehnements.

have one element.

returns true when the matrix that is its argument has a single row, i.e. all columns
dimension returns the number of columns of a matrix, the predicate single—row?
returns the I matrix of dimension 11, where n is the value given by its argument,
that has one row and as many columns as the vector had elements, unz2y·mazrix

a vector, returning a matrixThe other procedures are simple: transpose t

u)l))
(cons (+ unor¤2 lt (car ul (car ull)

(cdr a)l))
(sqrt (+ unorm2 (* al al)l)l)

(let (lu (cons (+ a1 (* (if l< 8 al) 1 -1)
(al (car al ll

(let ((unorn2 (innerproduct (cdr al (cdr all)
cdr : reflection vector

list car : nor|—square of reflection vector
: output:
: a - input vector
; input:
; compute the Householder reflection parameters

(define (vector al

(mapcar (lambda (xi ui) (- xi lx x.u uilll x ull
(define x.u (* 2 (/ (innerproduct x u) normulll
(set! u (cdr ul)
(define normu (car ull
; output: the reflected vector

cdr: reflection vector

u — car: norn-square of the reflection vector
; input: x - input vector
: compute the Householder reflection of x with respect to u.

(define (reflect x ul

code for these procedures is given below:
representing Q as a vector, the multipllcatlon can be done effrciently. The LISP
when applied to an arbitrary vector x, performs the actual reflection. By
which transforms v into a vector in the direction of the first unit vector. Rejiect,

nqu’

2

computes a vector q which represents the elementary reflection matrix,
we also make use of the procedures vector and renect. Given the vector v, vector
which is returned as the result of the procedure. Within the Faddeeva procedure

- 15



evaluates the assertions and builds a constraint network from them. This OCR Output
to the number of rows of A. A specialized eval procedure has been defrned which
This assertion is used to specify that the number of elements of b should be equal

(== (rous (input Al) (length (input bl ))

An example of an assertion is given below:

parameter.

propagation mechanism checks the mrrectness of all assertions ailllcted by the
the value of the parameter. When a parameter gets a value, the buildin constralnt
Since these nodes in turn may have parameters, such an assignment need not yet hx
node is used as a building block in the implementation of a more complex node.
algorithms etc. The parameters of a node are usually asigned valux when the
replaced by a little circle. Values of parameters can be used by synthesis
graphically as an input, except that the arrow pointing towards the node is
whereas input values are unknown to the designer. A parameter is represented
an input is that the value of a parameter is ultimately specified by the designer,
We can also specify parameters for nodes. The difference between a parameter and

dlmension of the matrix A.
zmatrix has properties rows and cols. Thus it is possible to specify e.g. the
outputs. When defrnlng types, we can also specify a set of properties; e.g. the type
assertions, which specify constraints on the value or other properties of inputs or
It is possible to add more specifrc information to the definition of a node by adding

Figure 8. Faddeeva: top level node

retum

eval

Faddeeva
behavior

ramete

output

input

redraw
addeeva

zmatrix and zvector.

asociated with it, i.e that the inputs and outputs of the Faddeeva node are of type
The above defmltion is simple, although it already has some speclfrc information

- 16



into the HIFI system using the I-HF! refinement—editor. This editor allows the OCR Output
rennement ls specified ln the form of a (dependence) graph. The graph is entered
separates the mapping at the input, from the actual qr decomposition. An explicit
For the Faddeeva algorithm the flrst step is an explicit reflnement. This refinement

recursion.

between the iteration nodes. Regular refinement is the HIFI analogon for tail
iteratlon node, an iteration count and a specification of the interconnections
node. The dehnltion of a regular refinement amounts to the specifxcation of an
iteration count. Also all nodes are of the same node—class, the so-called iteration
number of nodes is not known a priori, but instead given by a number, the
A regular rehnement will also result in a dependence graph. This time however the

and outputs of the node belng refnned.
inputs and outputs of nodes. The inputs and outputs of the graph are the inputs
graph. The graph consists of inputs, outputs, nodes and edges. The edgw connect
An explicit refinement spmlfxes the behavior of a node ln the form of a dependence

2. regular refinement

1. explicit refinement

of refinement:
of the behavior of the Faddeeva node via a refinement. We distinguish two forms
The next step is to defme a dependence graph that gives an alternatlve specification

3.2 Rchnemcnt

procedures throughout.
objects are created by this generic make, thus making it possible to use generic
will dispatches to the appropriate maker procedure. We will assume that all
type using the auxiliary arguments of make. According to its fust argument, make
datatypes have a speclflc make procedure, their maker, that creates an object of its
list of numbers, is transformed into a vector, by the generic procedure make. All
(column) vectors, so that we can use the procedure mapcar. The result of qr—iter, a

J to transform A from a matrix to a list ofHere we have added a selector

(unity-mat (1+ (dimension A))))))))
(co|umns—of (transpose b)))
(co)umns—¤f A)

(append (napcar append
(qr-iter

(behavior (sake :vector
(=· iparanster dinension) (rous (input A))))

(assertions (·· (rous (input A)) (length (input b)))
(outputs (:vector xl)
(inputs lznatrix A) (zvsctor bl)

(node-class (Faddseva (:integer di¤ension))

following exprxionz
Including the above in the deftnition of the Faddeeva node we would get the

previous section.
The designer can also associate a behavior with a HIFI node, as discussed in the

constraint on the value of the property.
assertion to the property list of the corresponding input, output or parameter as a
procedure recognizes the selectors input, output and parameter, and adds the

- 17



due to a constraint mismatch are found, the refinement will not be put back. OCR Output
refinement insofar this is not already done by the editor. If inconsistencies, e.g.
internal representation. This procedure also checks the consistency of the
refmement it is interpreted by a procedure that converts the refmement to an
both parameters and properties of inputs and/or outputs. After editing the
The designer specifnes the number of iterations as an expression that may contain
Figure 10 shows the rehnement after editing by the designer.
node. The next step then is the specifxcation of a regular refmement of this node.
To simplify the example somewhat, we wil concentrate now on the f ad-qr—decomp

(behavior (qr—iter A)))
(outputs (:vsctcr x))
(inputs (:natrix Ai)

(node-class (fad—qr·—decc•mpi

(unitgemat (1+ (dimension A)l))i)
(columns-of (transpose b)))
(columns-cf A)

(behavior (append (napcar append
(outputs (znatrix Ai}
(inputs (:natri¤ A) (:vector bi)

(node—c|ass (fad-in—nap)

ae e gdpconsists o, t are instances of ad—in-map and a —qr-decomp. The definitions of these nodes are as follows:f the node-classesIn this csthrah f two nodestha

Figure 9. Faddeeva: f1rst explicit refinement

return

discon

connect

map decomp
fad-qrfad-in

source

redraw
fad_sr1

the refmement.
shown in Figure 9, in the form of the display shown to the designer when editing
designer to graphically enter the dehnltions. A representation of the refmement is

- 13



refinement, these nodw are implicitly repeated, as many times as necessary. OCR Output
is shown ln Figure 12. Here we have again S and C nodes. In the case of regular
iteration of reilect operations on individual columns of a matrix. This refrnement
The fourth step ls then the regular refmement of the matrix reflect node as an
procedures.
behavior of these nodes is easily specifred using generic selector and constructor
element and a composite value, and outputs a combination of the two. The
cdr operate on lists. In the HIFI system we also have C nodes. A C node takes an
component and the remaining components, much like the LISP procedures car and
The S node splits a composite input value, e.g. a vector or a matrix, into its frrst
ll, we remark that the circle labeled S is a standard node, like sourcw and sinks.
LISP procedure. The reflnement is shown in Figure ll. With reference to Figure
two nodes, corresponding to the vector and matrix reflect procedures in the original
The third step is again an explicit refmement. This time the node fad—rr1 is split ln

speclhed as being equal to the number of rows in this matrix.
implemented through the regular refrnement. The number of iterations can be
matrix that serves as input to the node f ad-qr-decomp, the node that was
The number of iterations of this node is given by the number of rows in the A

(outputs (aatrix a) I)
(inputs (matrix al)

(node—cIass (fad—r·r1)

be something like:
refrnement of the Faddeeva algorithm is called fad-rrl. Its initial defmltion could
For now we wil assume that the node selected as the iteration unit for the regular

Figure 10. Faddeeva: frrst regular refrnement

return

inode

discon

connect

lcount

—·-·»··¤| r•~ ----·••·-- —•| •-•- ·-—·-fad__IT1¤fad*I`r10

source

redraw
fad_r·rl

.. 19



original algorithm as shown in Figure 13. Although we have p "by hand', OCR Output
It should be clear that by this time we have reached a DG representation of our

Figure 12. Faddeeva: Second regular refinement

return

node
`"`--`

discon©
__

__ Q-—--·

connect

count

---... .... ......... reflectureilecto

sink

source

redraw

reflect'

Figure 11. Faddeeva: Second explicit refmement

return

disconreHect* \—•·"

connect

vector sink

source

redraw
fad_sr2

.. 20



(node—functlon (control_l) OCR Output
(behavior (list control)))

rsf|ect))
vector

(next—function (lf (= control 1)
(outputs control)
(inputs control)

(node—functlon (control_B)
(ast
(initial-function controI_B)
(outputs (:scalar r) lzvector A q) (:bit controll)
(inputs (:v=ctor A q) (zbit controI))

(node-class (VR)

The deftnition of the VR nodes in Figure 14 is as follows:

partitioning results in Figure 14.
processor space is chosen horizontally, and the scheduling space vertically the
·the behavior of the processor nodes in the form of an AST definition. If the
nodes in the DG are mapped on the nodes in the processor space, thereby deriving
proceeds by choosing a processor space and a scheduling space. Subsequently, the
chosen. For instance, the designer can start with 'linear partitioning', in which he
refinement onto a processor array. At this point a partitioning technique must be
The last part of the example discussed here is the mapping of one or more levels of

13 hdapphqgon¤on;u¤ccsxu·array

Figure 13. Faddeeva: Expanded Dependency Graphs

-—--—-~ ---——···--·----··-·-- ~ ····——·—--—-—-—·-—··z¤+r-·(R)—~——(R

An -®—-(1%-·» --·-- ----- -------—-------·--------- » ----- »~--—--—---f§

·- -·-······---·-·-· -·-------·-·-·-·-- ———-—~·—--··—-·····--—·—An-1

the dlscusion.

it should also be clear that this result could have been obtained automatically — see

-21



encoded, by not propagating the control bit ln state c0n1rol_1 . OCR Output
reduction in the number of columns along the array, is now quite naturally
This would disturb the regularity, and complicate the partitioning. Note that the
square—root example, the position of the nodes would have to be made explicit.
partitioning. If we for example had delined the VR nodes using a clock as in the
By doing so, all VR nodes can be exactly equal, which will simplify further
The VR nodes are controlled by a control bit that is propagated along the array.

(delay 1))
(: vector)
(formal—arg ’q (inputs-of VR))

{connect (forma|—arg ’q (outputs—of VR))

The data state appearing as a delay edge in Figure 14 is defmed as f ollows:

(nods-class ref|sct))))
(next-function controI_B)
(outputs A q r}
(inputs A q)

(n¤de—functi¤n (reflect)
(node-class vsctor))
(next-function contro|_1)
(outputs q r)
(inputs A}
(vector)(n0de—functi¤n
(behavior (list controI)))

reflect))

vector

(next-function (if (= control 1)
(inputs control}

Figure 14. Faddeeva: Partitioned SFG

return

U--anVR1
eval

........... paramete

output

input

cd r raw
linux-pa.rtiti¤¤.i41g

- 2 2



initial state. This can be accomplished by means of an additional control bit. OCR Output
continue passing data from left to right. The final token resets all switches to their
thén pass it to the left. The input switches fust pass data from up to right, then
OSD switch after n + 1 tokens. The output switches first pass their data down, and
where N is the size of the processor array. The two rightmost ones, resp. ISI, and
the rightmost ones, are programmed so that they switch after the first N tokens,
implements a type of FIFO buif er. The input and output switches (rs, OS), except
box labeled delay line in Figure 15, is shown in more detail ln Figure 16. In fact it
The switching network associated with this partitioning, denoted by the dashed

Figure 15. Faddeeva: LPGS partitioning

return
L ```````` J

E ¤¤¤ E
?.iéi1§l
""

o LE

clockdoc? /5

redraw

lpgs-partitioning

divisible by N, the A matrix should be properly extended.
global iterations, the so-called global iteration index. In case n is not evenly
the row dimension of the A matrix, and p is an integer that denotes the number of
which pN = n, where N is the number of processors in the (partitioned) array, n is
An example of the LPGS partitioning strategy is shown in Figure 15, for the case in

global memory.
A combination of the two strategies allows one to control the ratio of local and

2. LPGS, Local Parallel Global Sequential

1. LSGP, Local Sequential Global Parallel

[13,14].
Given a ’regular’, ’un.idirectlonal’ SFG two partitioning strategies are possible

smaller than) the number of components ln the SFG.
Further partitioning is if the available resources do not match (are

- 23



of the paper. We refer to recent publications of some of the authors: [29,26] OCR Output
number of control functions. Presenting thse results here would exceed the scope
dedicated hardware, and the switching network around it contains a minimal
attractive systems in which the algorithm is completely implemented with
LSGP/LPGS type in the horizontal and vertical directions. This leads to very
more or lss like in the Householder use, we can perform partitioning of the
DG, which will provide the basis for further partitioning. Proceeding further,
dimensional, and it will be necessary to move back to a (now three-dimensional)
sequence of Givens rotations. The resulting architecture now becoms two
possible to proceed further and to decompose the Householder procssor into a
Having reached a satisfactory partitioning of the Householder algorithm, it is

Figure 16. Faddeeva: LPGS partitioning - delay line

return

15 IS P`] )Ni$ `''`' Ni$( I ) Nn'( IS°>n+ljD

ND

OSC]}*] )•-—— ---·- A OS]05

redraw

delay·l.ine

the propagation of the control bits.
not shown in Figure 15. It is intersting to note that the partitioning also applis to
For clarity the bits controlling the operation of the VR nods and the switches are

after the final iteration.
outputted to the right. Both, the IS and OS nods are rset to their initial state
pass tokens from the left down, except for the final iteration, when data is
the first iteration. Subsequently it passs data from down to right. The OS nods
which is represented by a clock. The IS nods pass tokens from left to right during
The IS and OS nods in Figure 15 are controlled by the global iteration index,

- 24



and outputs out and state+. Switching between f 1 and f 2 is not outside our model, OCR Output
On the other hand, if do = 1, then f 2 is executed, which takes dr and state as input,
state, and outputs state+.
then the node has to execute f 1, which takes bits 1 .. n of d (d,) as input, discards
word, with do a control bit, with the following meaning: if d arrives, and do is 'O",
clarify the issue. With reference to Figure 17, suppose that d is an (n + 1) bit
model does not allow routing decisions on the basis of inputs. An example may
brought some possible problems to light. The main objection seems to be that the
The HIFI computational model has been tested on a variety of examples. This has

4.3 On the model used

subject of another paper.
propagated down the design tree and verlfred at lower levels. This topic will be the
converted into synchronous machines. The timing constraints can then be further
arrives). ln this way, the asynchronous single-token pass machine can be
all tokens must be present at relevant inputs of a node, when a clock—token
propagation on edges and nodes. Timing constraints can be added and verified (e.g.
Once a SFG is correct (in the sense of section two), timing can be assigned to the
However, it should be clear that the formalism developed so far will allow for it.
ln the present paper, the question of timing verifncation has not been considered.

4.2 Timing Verihcation

a design that is 'Correct by construction'
the design explicitly (although they greatly influence the performance !) we obtain
etc. can be generated automatically. Since the partitlonlng parameters do not enter
of a partitioning step. All the rest: structure as described in the SFG, scheduling
LISP code. The only decisions left to the designer are choosing the characteristics
what was done by hand in section three can actually be done by interpreting the
consequence the refmement phase of the design procedure can be made automatic:
attached [15]. The LISP interpreter generates, in elf ect, the dependence graph. As a
new environments to which instances of variables and of operations will be
When parsing the code, the LISP interpreter will force the creation of a sequence of
but because a number of operations (grouped together) are formally equivalent.
hldlng of actual values is done not because they are (conceptually) overwritten,

,._ transformations (functions) that are forced on the data during operations. The
contrast to the Fortran code, the LISP code gives detalled information on the
description of the same algorithm. There are however some major differences. ln
single asignment statements as one would do when faced with a Fortran
have to make these variables explicit. Doing this is ln fact equivalent to producing
instances Hence the path from the original algorithm to the dependence graph will
with the same name - e.g. "a' and 'q" — will be duplicated and represent different
three. Because of the repeated calls to the procedure qr-iter, a number of variables
assignment form. See e.g. the code of the Faddeeva algorithm early in section
First of all, there is the question of compilation of the original code into single

4.1 Single 1: and automatic design

some more attention ln this section.

ln the preceeding pages a number of issues have been raised to which we devote

4. DISCUSSION

- 25



branches to f dk which in turn simply discards OUT and branches back to f in). OCR Output
branches to fm; fwm takes input IN, produces outputs C, address and IN, and
after which it branches to fm which takes input OUT and outputs OUT and
the previous example (fwd has no inputs, and outputs C, address and (dummy) IN
then switches to f md or f wm which will take care of the token dispatch, just as in
token. The controller node starts from f in which interprets {C, address} solely,
stable as F(RAM). ln all casa it will consume input tokens and produce an output
by C (read or write). F(RAM) will either modify itself to F(new-RAM) or stay
takes as inputs {C, address, IN} and generates OUT. Depending on the mode coined
The F(RAM) function is dependent on the content of the RAM (addres —» data) It
follows:
represent as complex a circuit as a RAM. In the present model this can be done as
case in the actual circuitry). The question could next be raised whether we can
representing D has to be operated dynamically (which will almost certainly be the
timing already at this level of the dwign. Incidentally, we see that the store
f 2). With a good estimate on this time, attached to fi, we can actually veruf y the
in the model. In an actual electronic circuit it will take some time to set up fl (or
and generate tokens on out and state+. The switching action of do becomes explicit
stat.e+. after which it will revert to f i. F2 will consume a token from state and dr
decides between f I and f 2. F1 will consume a token from dt and generate one on
The initial function of the node now is f i, which takes a token from do and then
the model.
representation for this case is shown in Figure 18 and illustrates the properties of
but having f 1 and f 2 handling different inputs and outputs ls. A correct HIFI

Figure 17. Example of a system that falls outside HIFI

state+state

fl, fz
out

- 26



major standard functions. It shows also that the dwigner is f oroed by the model to OCR Output
The example shows that the present model is sumciently powerful to represent

Figure 19. Representation of a RAM

acmress

controller
OUT

dd a r ’ OUT IN \

FCRAMD

Figure 18. HIFI solution for the problem of Figure 17

state+state

rx f1'f2 li

- 21



Processing, ed. S.Y. Kung, H.J. Whitehouse, T. Kailath, Prentice Hall (1985). OCR Output
Implementation of Signal Procxing Algorlthms," in VLSI and Modern Signal
P. Dewllde, E.F. Deprettere, and R. Nouta, "Parallel and Pipellned VLSI

Networks and Systems MTNS-85, (June 1985).
Signal Processing Algorithms/’ Proc. Intl. Conf. on Mmhematical Theory of
J. Annevellnk, "A Hierarchical Design System for VLSI Implementation of

Rennes, France (January 1985).
Flow Oriented Language for Signal Processlng," Publication # 246, IRISA
P. Le Guernic, A. Benvenlste, P. Bournal, and T. Gautier, "S1GNAL: A Data

Iteration," Comm. of the ACM, pp. 519-526 (July 1977).
E.A. Ashcroft and W.W. Wadge, "Lucid: A Non-Procedural Language with

(Dec. 1983).
Computation," T echn. Rept. Dept. of Informazion Science, Univ. of Tokyo,
A. lzawa and T.L. Kunli, "Graph Based Design Specihcation of Parallel

794-818 (Oct. 1979).
R. Milner, "Flowgraphs and Flow Algebr·as," Journal of the ACM 26(4) pp. ,__

(1985).
Signal Processing, ed. S.Y. Kung, H.J. Whitehouse, T. Kallath, Prentice Hall
Algorithms in terms of Appllcative Dataspace Notation/' in VLSI and Modern
A. Cremexs and T. Hlbbard, "Executable Speclhcation of Concurrent

(August 1978).
Functional Style and its Algebra of Programs," Comm. ACM 21 pp. 613-641
J.Backus, "Can Programming be Liberated from the Von Neumann Style? A

Theory, ed. C.l. Byrnes, A. Lindquist, North—Holland ().
VLSI," pp. 409-418 in Computational and Combinatorial Methods in Systems
G. Goosens, "An Optimal and Flexible Delay Management Technique for

References

sumcient proof of the power of the method.
The elegant description of the partltlonlngs obtained in section three should be
concrete reprxentation of the system from which a silicon compiler can take off.
system. It is not purposed to be yet another hardware dscriptlon language, but a ___
description that results from a dwign procedure is intend& to represent a concrete
As a conclusion, we would like to emphasize that the Signal Flow Graph

make design decisions explicit at every level of the design.
situations, it dow put rwtrictlons on the daigner, who is forced by the model to
dlmcult. Although the model is powerful enough to handle all deterministic
actually being executed by the nods. Timing verihmtion would become very
the data at that event, and hence would make it dependent on the functions
implicit routing: it would make the state of the SFG at a given event dependent on
and decide further routing on the basis of it. We have decided not to allow such
handlw more implicitly whereby the controller would interpret the control bit
after having interpreted the (dataiow) control bit C. It muld also have been
data. ln the RAM example, the controller is forced to dispatch the data explicitly,
discipline dos not allow for hidden efects, especially concerning the routing of
make relevant functions (State transitions) explicit. The single token·pass

.. gg



York (1959). OCR Output
27. V.N. Faddeeva, Computational Methods in Linear Algebra, Dover publ. , New

Optoelectronic Applied Sci Ezgineering, (Aug. 1986).
Equations Solver for real-time Signal Processing} SPIE Symp. on Optical and

26. K. Jalnandunsing and Ed. F. Deprettere, "A novel VLSI System of Linear

derivations of programs," Comm ACM 18(8) pp. 453-457 (August 1975).
25. E.W. Dijkstra, "G Commands, nondeterminacy, and formal

Technology, (August 1986).
Partitioning of Systolic Arrays," Tech. Report, Dept. of HJ, Delft Univ. of

24. H. Nells, K. Jainandunsing, and Ed. F. Deprettere, "Automatic Design and

23. S.Y. Kung, VLSI Array Processors, (to appear) Prentice Hall (1986).

1986).
22. S.Y. Kung, "VLSI Array rs," Intl. Workshop on Systolic Arrays, (July

Applied Mathematics 19. pp. 19-32 (1967).
21. R.W. Floyd, "Assignlng Meanings to ," Proceedings of Symposia in

Journal on Selected Areas In Communication SAC·4(1) pp. 39-48 (Jan. 1986).
8 Concurrent Solver for N Coupled Least Squares Fitting Problems," I

20. K. Jalnandunsing and Ed. F. Deprettere, "Design and VLSI Implementation of

oxaw Hill (1984).
19. K. Hwang and F. Briggs, Computer Architecture and Parallel Processing, Mc.

Computer Science Press (1981).
18. H.T. Kung, B. Sproull, and G. Steele, VISI Systems and Computations,

Processing, Prentice Hall, New Jersey (1985).
17. S.Y. Kung, HJ. Whitehouse, and T. Kallath, VLSI and Modern Si

16. T. Kallath, Modern Signal Processing, Springer Verlag (1985).

Programs, MIT Press (1985).
15. H. Abelson and G. Sussman, Structure and Interpretation of Computer

Systolic Arrays," Proceedings ISCAS-8'7 ( to appear), ().
Mapping Algorithms of Arbitrarily Large Dimensions on to Fixed Size

14. H. Nelts, K. Jalnandunsing, and Ed. F. Deprettere, "A Systematic Method for

943 (May 1986).
y PI`0C€SSOl'S," Proc. IEE Intl. Conf. on Circuits and Systems, pp. 940

13. K. Jalnandunsing, "Optima1 Partitlonlng Schemes for Wavefront/Systollc

1986).
Fixed Size Systolic Arrays," IHE Trans. on Computers C-35(1) pp. 1-12 (Jan.

12. D. Moldovan and J.A.B. Fortes, "Partit1on1ng and Mapping Algorithms Lnto

ornla (Oct. 1985).
Procwor Arrays," Ph.D. Thesis, Information Systems Lab, Stanford,

1 1. Sailesh K. Rao, "Regular Iterative Algorithms and their Implementations on

1972).
strategies in a multiprocessor system," IEEE Trans. on Compmers 2l(2)(Feb.

10. C.V. Ramamoorthy, K.M. Chandy, and M.J. Gonzalez, "Optimal scheduling

- gg



Speech, Signal Processing, pp. 41A6.1—41A6.4 (March 1984). OCR Output
fast VLSI fxltering and array proce$ing," Proc. IHI Int. Conf. Acoust.,

29. E.F. Deprettere, P. Dewilde, and R. Udo, "Pipelined cordic architectures for

(1971).
28. J.H. Wilkinson and C. Reinsch, Linear Algebra, Springer Verlag, New York

- gg



verification. OCR Output
1. How to exploit the multiview/hierarchical structure of the data to achieve efficient

In the following sections we shall describe solutions to the following basic three questions:

even be possible to check a large repetitive structure like a large memory array.
in order to achieve theoretical efficiency. Without due care to the latter aspect, it may not
and not uncompatible with the design hierarchy, do not exploit that hierarchical structure
Many classical design tools like Design Rule Checkers (DRC’s) or Extractors while efficient

programmer has on the localization of the design data.
to be extremely slow. A major problem with them is the poor control the application
functional or logic languages like LISP [1] or PROLOG [2] are too unspeclfrc and tend also
applicable databases have unsuitable datatypes. are rigid and slow. On the other side,
The requirements detailed above are surely not easy to satisfy all together. Generally

"ob ject oriented" style will do in particular.
The system must be designed in such a way that expert tools can be addm. An

(in a way that is compatible with the hierarchy).
and (controlled) multiuser acmss. In particular, version control must be supported
Support has to be given to design evolution, top—down as well as bottom—up design,

of abstraction. E.g. merely dehning a higher level description languqe will not do.
The system must support fast interactive handling of the data, even at higher levels

application at hand.
programmers should be given a standard view on the data independmtly of the
many present day systems is the neoesicity of frequent reoonversion of data. The
and design functions are independent and non—redundant. A major problem with
The system is build in a modular and additive way, in particular data management

exploited to redux the complexity.

1. Explicit use is made of the structure of the data, i.e. views and hierarchy are

requirements are satished:
We consider the problem of managing the VLSI design data so that the following

1. Inuoduction

of the data at a high level of abstraction.
satisfying the requirements of (interactive) emciency and of transparent handling
object oriented design data manager is constructed and how it is capable of
show how it is applied to produce a useful schema. Finally, we show how an
needed to reprsent the structure of the data. We dehne a semantic datamodel and
increase design emciency. It soon becomw obvious that a vcsatile datamodel is
and hierarchiml structure of the VLSI dxign data mn explicltely be exploited to
utmost importance. The prwent paper starts out with showing how the multiview
'intelligent systems', the logical representation of dwign data becomw of the
With the held of Computer Aided Circuit Design moving into the imlm of

Abstract

Delft, the Netherlands
Delft University of Technology

P. Dewilde, J. Axmevelmk, R. van Lcukcn and P. van der Wolf

INTELLIGENT VLSI DATAMANAGEMENT

ESQRF 5

O9 . uq



be done precisely is to be found in [14, 15] . and will briefly be described here. OCR Output
indicated in fig 1. The checking program should recognize such a situation. How this can
The interaction between the subcells belonging to the array should be checked only once as

many times in any slngle VLSI design).
that is repeated a large number of times in a square array (fig. 1 - this situation happens
Suppose that your hierarchical definition at a certain level - called cell -, contains a subcell

more critical, and there is a need for tools that achieve indeed minimal complexity.
or even submicron), the electrical verification of still more complex circuits becomes even
cited there exist now 'classical' tools. Yet with the advent of smaller dimensions (micron
algorithmic and system design, placement and routing, silicon compilation. In all the arms
illustrate the concepts. Other arms where hierarchy plays an important role are;
problem of low level design verification (Design Rule Checking and Extraction] to
In this section we shall show how the latter can be done. To fur ideas we shall use the
another to actually have design tools exploit that structure to achieve maximal efficiency.
It is one thing to say that a dmign system stores data in a hierarchical way and quite

2. The Multiview/Hierar·chica1 Structure of the Design Data

representation of the data.
multlview/hierarchical design problem onwards to the abstractions needed for intelligent
new concepts mentioned above. We shall take a rather inductive approach: from the
In the present paper we shall not attempt to make an exhaustive presentation of all the

design rehnements [13] .
programs" which in CACD proves to be very useful, especially to describe designs and
programming" which was proposed in [12] . We borrow from it the concept of 'algebra of
different line of approach, yet with equally attractive features, is 'functional
efficient datahandling. Good references for this circle of ideas are [10,11] . Finally, a
representation of the design data at a high level of abstraction, yet without preventing
with them, a very powerful environment can be created that allows for natural
Together with the use of 'generalized datatypm' and the inheritance mechanisms connected
object oriented extensions of classical languages like C or LISP have been proposed.
nicely with the concept of 'f rames' dear to artificial intelligence [8, 9] . In recent times,
It takes the point of view of procedural semantics, and its concept of "objects' meshes
intelligent reprmentations of abstractions has been made by the creation of Smalltalk [7] .
Mathematics as well as in Database work. A major step forward in practical and
rmtrlctive and also unnatural because the more iexible notion of 'set" is fundamental in __
present proposals for semantic datamanagement are based solely on fixed types and are toc
[6] we borrowed the principle of equivalence between an object and its attributes. Many
functional and semantic datamodels can also be found in that reference. From ter Bekke
contribution in the field is e.g. DODM [5] . A description of diferent approaches to
suited for design work is the functional datamodel fust proposed in Daplex [4]. A recent
control in a hierarchical environment is not easily solved. A datamodel that is much better
the literature, can easily be shown to be inadequate. Especially the problem of version
general were well recognized by Katz [3] . The relational datamodel presented earlier in
litterature. The special datamanagement properties needed for VLSI dmign and CAD in
The rmults presented in this paper have been arrived at after extensive study of the

other hand design tools can retrieve large amounts of data.
data manipulations and intelligent (expert) representations are supported, and on the

3. How to implement the datamanager so that at the same time fast (interactive) design

multiuser access.
hierarchical structure, independence of data and functions, version control and

2. How to model the data so that it includes in a logical way the multiview and



form of 'checktype" information. OCR Output
to the active region are promoted to "oeLl" with an indication of their status, ln the

2. For all the critical instance of the subcells, the primitivm of the subcell that belong

pased to the DRC.
belong to the respective active regions are attached to the instance, which are then

1. The critical instances of the subcells are evaluated, and the primitives of "cell' which

subcells. At this point two strategies are possible:
_v_ "actlve region" - lt occurs at the boundaries of cell and its subcell as well as between
geometrical I'€gl§1__ where subcell primitives can influence the higher leve1iscalled an
fake errors are reported (see further for an example) and (3) redundancies are avoided. A
primitives belonging to its subcells ln such a way that (1) all errors are detected, (2) no
is classical DRC. The problem is the checking of the primitives of cell w.r. to the
have of course to check all the original primitlvs of 'cell" with respect to each other: that
that "subcel1" (and all its subhlerarchy) are already checked and are proven correct. We
Let us consider the problem of checking 'cell" at its own hierarchical level, i.e. presurmng

against its neighbours
A Figure 1. The subcell belng repeated in an array in cell should be checked only once

checktype 'O'

nl II

• 1 1I i 1 • I r lv

rl I I uzn I 13a

n 7e I • 6a

array of subcells

cell



accomodation of more complex design rules, see [18] . OCR Output
on this subject, e.g. the use of the method for lay-out-to circuit extraction or the
directly to reduce the complexity of the verlhcation of the lay-out. For more information
From this section it should be clear that it is indeed posible to exploit the hierarchy

terminals have also group information), fake errors due to connectivity can be avoided.
number". Because this information is already propagated through the subcells (their
beside the checktypes is that of connectivity which is attached to the scan as a 'group
as state inf ormatlon. In the case of design rule checking the only extra information needed
was originally proposed in [17] with the necessary global information attached to the field
"State—Ruler-Scan": it consists of a left-to—right scan of the layout primltivs (edges) as
solution to the problem has been presented ln [16] . The method uses what is called a
a global way of interaction between primitives which cuts through the hierarchy. A
repetitive designs, and the system should be able to remove them. Connectivity clearly is
Although such fake errors seem trivial, they tend to occur very often wpeclally Ln

Figure 3. Fake error due to connectivity

cell

subceli

due to connectivity. In frg. 3 such a situation between cell and subcell is depicted.
primitives of unequal checktype. This seems good enough except for possible fake errors
for all the primitives of level ’0’ are satisfied and (2) the design rules are satisfied for
e.g. of elements belonging to the same subcell. "Cell" will be correct if (1) the design rules
checlctype information to the promoted primitives so that no checks are made
effect on "cell" is called the "augmented.1nstance' of 'cell'. It is important to attach the
The primitives of "ce1l' together with selected primitives of subcells which have a direct

primitive at one level of the hierarchy with one at another?
the same, e.g. what must happen when a transistor originates from the intersection of a
Fig. 2 illustrates the issue for the case of DRC. In the case of extract the situation is much

to be instantiated at that level.
Any primitive in the subhierarchy that may have a non-local effect on the top level has

it is an instance of the following general principle of hierarchical verincation:
out to be more eihcient: only one pass through a DRC is needed and (2) it has logic appeal:
While both approaches are technically correct, we prefer the second one because (1) it turns



understandable, less prone to mistakes and better malntainable. OCR Output
became the more abstract levels will necessitate much less code, will be more
highly desirable from an implementers point of view provided efficiency ls maintained.
Modern datamanagement systems have been moving up in level of dehnition. This is

3. A Dcuabase is the concrete implementation of a schema in a given case.

datamodel choosen.
2. A Damschema shows the representation of the data in a specthc environment using the

relations between sets of primitive data.
A classical datamodel is the "relatlonal" in which all data is represented as belonging to
the datarepresentation.
l. A Dczmmodel is the collection of mathematical oonoepts used to describe the structure of

expressed in a dammodel. These basic notions we quickly review:
The accepted way of presenting the structure of a database is by showing a dazaschema

Dambase Principles

become crucial.
to face it. Moving into the realm of "lntelllgent systems', data representation issues
seriously tried to set up a system that has to manage complex design data has been f oroed
of the (naive) designer is to plainly ignore the problem. However, anybody who has

A good systems and solutions are so scarce and problems loom so large. The original reaction
The tricky datamanagement issue! Thene ls no topic in CACD (or in general CAD) where

3. Hierarchical Multivlew Datamanagement

consider is that of ettlcrent datamanagement.
need for systematic use of the_hlerarchlca1 information, the next topic that we shall
hierarchy and in the scan procedure (proportional to the number of edges). Because of the
here has the advantage that it achieves minimal complexity both in the exploitation of the
Other systems have been proposed in the litterature, see e.g. [19] . The system proposed

of the subtree, or dow one demote active elements of the parent?
Figure 2. Deciding the question: for checktng hlerarchles does one promote active elements

Augmented Instance of Subcell
Augmented Instance of Cell

Subcell "`_ __—`
Cell

1. III ..... .1

· I I '1' I

Q?| Ichecktypi

checktypq I r *····· -3

Cell

Subcel



status 'actual' has the cell consistent upward and downward in the hierarchy. The Past OCR Output
the problem is proposed in [18] . Each cell has as an attribute a 'version status'. Only T-b€
small modifications in a given cell may propagate throughout the system. A solution of
advisable to change the status of parentcells automatically, because that would mean that
consistently take the subcells to be independent of their parents. But it is also not
not advisable to change the status of the subcells when a new cell version is produced - we
hierarchical context of a cell should migrate with it from version to version. It is surely
version is modelled as an attribute of 'cell'. It is not a priori obvious what part of the
Introducing versions in a hierarchical environment presents special problems. Ln fig. 5 a
It contains hierarchies, a multiview specialization, versions and (multidsignerl locks.

Figure 4. The two semantic datasbstractions

Generalization: design generalizes "layout", circuit, system

design

layout

circuit

system

A99F€96fl0¤i type design = designer, name, date, project

designer [ [ name [[ date [ [project

design

A somewhat idealized picture of the designer’s schema is shown in fig.5.

The Designers Schema

inheritance hierarchies established.
them, and how. Relations between such objects can again be arranged into clwses and
help to characterize them and which define what kind of operations can be executed on
Objects as defined in Smalltalk [7] additionally possess a collection of methods which also

specializations of an object inherit its attributes (with additional attributes added).
that a given object is equivalent to the collection of its attributes. In a similar vein
A semantic dataschema must satisfy the basic requirement of invertrbility which states
Each block in fig.4 represents a class of objects which are characterized by their attributes.
hg.4.
respect. decomposition into attributes and specialisation. They are shown schematically in
datamodels use two types of abstractions: aggregations and generalizations (with inverses
Litterature: see DAPLEX [4] SMALLTALK [7] and ftu·ther [20,5,6] . Semantic

The Semantic Datamodel in the Design Situation

application.
considerations, let us just work inductively and construct a semantic dataschema for our
datamodel for the design situation is the semantic. Instead of diving into database
In the course of our own work in the area [18] it has been become clear that the best



captured by the 'metadata', the description of the relations existing between design objects. OCR Output
(even multivlew). As we saw in the last chapter, some insight in the design is already
There is more to defxnlng a dwlgn than the specifrcatlon of the components of the design

4. Intelligent Dehnition of the Design Data

achieve this with not too much e&`ort will be the subject of the next section.
the interface f unctlons handle the data in an efncient, Le. properly locallmd, way. How to
translates the user’s view (i.e. the schema) to the implementation and (3) by lnsurlng that
system while respecting the schema, (2) by providing an 'interface 1lbrary' which
These requirements can be satlshed by (1) defrnlng a map of the design data onto the frle

3. Design tools should be independent of the actual implementation of the database (see hg.

e.g. although multiuser the metadata must reside in virtual memory.
2. The datamanager must be able to access the metadata with the hlghwt possible speed,

poslble, using its basic capabilities. A simple map to a frle system may be sufhclent.
1. The actual (detailed) design data should be mapped to the system in as simple a way as

design is unimportant. The f ollowlng will be required as properties of the implementation:
appropriate tools (editors e.g.) can handle - for the datamanager, the actual contents of a
is necessary to keep the design management uncluttered of details which in any case only
between meradaza (information on the properties of the design data) and design data. This
have left the actual design data outside the modelling, thereby achieving a clear separation
The schema as presented so far consists of objects whose attributes have a frxed size. We

Dcuabase Implemmmtion

shows the appropriate part of the schema.
In addition to version control, the system should also provide for designer locks. Fig. 5

installation of the parents recursively.
checked for consistency. This is done by flagging the effected changes upward and f ordng
when the 'lnstall' procedure is called. Only at that time shall the upward hlerarchy be
not remain consistent with its upward hierarchy. A "work1ng" cell can become actual
fg editing, its [status changes to 'jvorking" and its subhlerarchy can freely be used. It does
downward hierarchy is neoessarlly consistent. Finally, when a designer checks out a cell
history of the cell can bc kept as "backup" for which neither the upward nor the

belong to difexent views."
is an aggregation of design objects which possibly
The hierarchy is modelled as an object which
of the objects in the views.
The central object "ce1.l" is a generalization
[Ig Semggyc Design DataschemaFigure 5.

type | [name ] [date

NBIHE BBQ \A.¤.i¤¤erl I *¢r$i¤¤

cell

termi

@00] I Idesiqner Hyuut

$v~¤¤* IFR? {EK
tooltransacti¤n

circuit

system
equivalencehierarchy

1 · ,l a gonthm



terms in such a way that a direct mapping of a precise architectural description to OCR Output
of microprocssor design, the overall architecture of the system can be described in general
place is f orrnally defined, and refinement functions are available. For example, in the case
cases be "intuitive" but can also be formalized if the environment in which the design takes
that actually has been realized. The mapping from function to structure shall in many
the expected behaviour, so that later on he will be able to verify it against the behaviour
the design. However, it will be advantageous if the designer has more precise knowledge of
characteristic is that it exists: only the ports on which it has an influence are then part of
many cases, the relationship may not be consciously known to the designer. Its only
certain set of input and output waveforms is consistent with the desired system). In
of a functional relationship between its inputs and outputs (i.e. at the end of all times, a
informally by an 'expected behaviour'. Formally, this expected behaviour taks the form
Any system that is to be designed - before the design is realized — is characterized
refinement of the corresponding structure).
2. a refinement of the types in which the function is exprwsed (with simultaneous

Figure 6. Mapping Design Data to the File System

data

design

• ' ‘ 0b3•¤t•
;1 _] 12 \_l5

rclatrons

,y¤¤z circuit •y•t•n

•. ·
\5p\Op

infn info

. •• project n

lib prajectl

1n!¤

;:;;::•1¤n

mx

1. a transformation of "function' into 'structure';
components:

In the functional approach we have adopted, any design step is seen to consist of two main

It is however a natural language for expressing design actions.
drawback seems to be that it uses a language that is a foreign to traditional programmers.
digital [22] design and yields some very promising results in both fields. Its main
attractive is the so called "functional" approach. It is useful for analvg [21] as well as for
of some of them at the end of this section. The approach we have found to be the most
Quite a few approaches have been proposed in the literature and we shall give an account

through, and which can be supported by the design system in an "intelligent' way.
can be found between the various stages of development a dsign and his designer will go
use interaction may be warranted). ’I`he question arises whether a common denominator
that can be handled automatically by the available synthesis tools (and even after their
by defining objects at an immediate lower level and so on until one reaches descriptions
from a definition of one’s insights at a higher level, verifies them interactively, refines them
However, defining a design is an intellectual or intelligent process, in which one moves



data in a well controlled way. OCR Output
agregation and generalization needed with in addition the functions necessary to act on te
th extented to full-Hedged object—orien1ed data management, because the latter supports e h
e of abstract datatypes. ‘I`he dataschema presented in the previous section can useful y
should be handled ln a (level independent) transparant way. This is done y e pg
of design attributes, the maintainance of sets or sequences, are common to all eves at bthcooe
(technically called the deref erencing of a pointer to a tuple), the defining and instantiating lln
il abstraction. Many design operations, such as accessing specific fields ln a csiz¤ *3environment with which he can defme his designs at any level of type remement g
oriented schema. Central to our agproaceEcient1y (and interactively). The signer should be presented with a logically unftorrg fal
representation method based on framesis ooe, y, dsiatg h will be the need to handle the gnexperyimprecise and too slow. Instead we shall take an intermediate approach where the basic Al "" fllwdet with a more rigidapplicagiox

t sstems in the context of design defrnltion - we find these systems stlmu o
lgtzatgbefugtihjgfiemed themselvs. We are not yet ready for usage oa generapéhppll othods d r the design process described above, the data representation me Irrorlf l trse
ln [21] and [13] examples of the use of the functional approach can be found.

structure and type refinement
Figure 7. The design strategy with its two types of steps: conversion of function to

level 2

decomposition
level 1 ) ,g " I

'_ .{ level ]

type refinement
]¤,,] 1 vertfftation

4/ (CU" I
sE;2?E;k¤x(syntacttca ) W E

/ ,\ ».,.r ,Z§Z¥$EE.r,$Zl,
(semantlcal
descriptions
functional

Fig. 7 shows a representation of the design strategy described so far.

dependent on continuous time').
carry electrical waveforms, and their type is further refined to 'vector of 16 reals,
sequence'). Later in the dwign, the pins which carry the bits will tum out to actually
parallel (in which case "lnteger" refines to "vector of 16 bits dependent on an event
'integer" is now a sequence of 16 bits) and in another, the refrnement will be 16 bits in
In one refinement, these 16 bits are presented in a bit serial fashion (the refinement of
signal may consist of a sequence of integers which later will turn out to consist of 16 bits.
important component of the design strategy. For example, at a given level of the design a
descriptions will be active (consciously or not). Refinement of these types hence become an
abstraction as possible, he will choose high level data types between which his functional
known. Since a designer always wishes to handle his information at as high a level of
input and output waveforms, in which presumably the type of the inputs and outputs is
So far we have thought of the behaviour of a system—to—be-designed as a map between
where all the possibilities described above have to be used [23] .
more ambitious, example is the automation of the design of dedicated array procmsors,
hardware via ‘logic synthesis’ and ’placement and routing’ can automated. Another,



to achieve efficiency. However, to keep this step also versatile, we use (1) interface OCR Output
preoompiled by the constructors of the system - this seems to be the price one has to pay
contrast to a general purpose object oriented system like Smalltalk, the possible schema is
Each type is a specialimtlon of a cluster, and contains an aggregation of subtypes. In
object extension of the C language — EC - to define the object typw and their functions.
here is that the object definitions are precompiled. Here we use the already mentioned
implementation of the design objects takes place. Characteristic for the approach described
One level down is the object oriented datamanagement level where the efficient

query language.
manipulates a f unctlonal or logic language like LISP or PROLOG which serves as database
relevant. At this level, accw to actual data is exclusively done with tools. The designer
semantirs. Only higher level representations of the design data and their relations are
The intelligent users’ semantic layer manipulates objects in the sense of procedural
jig. 8 shows the layers of the system we £nnally_h_ave arrived at.

Layers of Implementations

becomw possible.
higher datatypes so that more sophisticated "cachelike" handling of higher data aggregates
would have done lt. It should be clear that the method explained here can be extended to
has now been made sensitive to the localimtion of the data, just as the program designer
functlons in the cluster are properly programmed - because the database access function
not dependent of the level at which he is programming. Enlclency results — when the
not have to take care of the localization of the data in the system. (2) the basic operation is
to keys. All this is transparant to the application programmer in two ways: (1) he does
derefenenclng is done), or fetching it when needed, update pointer counts, translate pointers
management: checking whether the required data is already in core (in which case the tsual
standard dereferencing operator, and will in addition take care of the necessary data
cluster reference. It will contain a dereferencing function (say `) which will replace the
without cluttering the system and preventing multiuser access. The solution is to define a
data and metadata ls in a (large) design database, it cannot be accssible in this way
computer and its localization has been properly taken care of by the compiler. When the
extremely efficient because the data is typically already in the virtual memory of the
most often done by "dereferencing" a pointer to the data needed. Such an operation is
standard general purpose programming languages like C or Pascal, the accessing of data is
major cause of inefficiency is the poor localization of the data describing the object. In
Most datamanagement operations ultimately consist of accessing or storing objects. A

Ejjiciency

classes) and to inherit properties from more general clusters.
definition language allows f orf or cluster definitions to be parametrized (grouped into
Similarly, there will be sequence, reference and one-of clusters. An advanced object
one can denne specialised functions specific for certain types of sets (e.g. a box file).
the presence of an element and dereferenclng. In the same way as with the basic tuples,
set deflnitlon and maintainance operat.ions like adding or deleting elements, checking for
tuples are agglomerates like "set" or 'sequence'. The system's cluster ser will allow basic
the EC programming language which we use - a cluster [ll] . A level higher than the
interactively. These additional operations will be defined in what we shall call- following
lay-out primitive, it will be representable on a bitmap, and one will be able to edit it
additional collection of operations that are characteristic for them. E.g. if a tuple defines a
course, system provided. Aside from such general operations, specific tuples may have an
that allow its definition (representation) and manipulation. Part of these functions are, of
mask information. The generic object tuple is characterized by a given set of operations
sequence of tuples consisting of coordinates of rectangles together with repetitions and
Much design data has the form of a collection (set or sequence) of mples. E.g. a boxfile is a

Generalized Types



users’ lnterf aces. The solution we have presented uses an intermediate layer that consists OCR Output
stringent requirements of hierarchical/multiview design with effrclent tools and intelligent
As a general concluding remark we can state that it is indeed possible to reconcile the

based systems is also resolved.
In this way the dichotomy between "black box" silicon compilers and CAE workstation
intuition) is needed, appropriate interaction both with tools and the manager is supported.
lntelllgenoe of the human designer (especially in pattern recognition and electrical
design intelllgence becomes integrated in the design manager and where the superior
interaction, whereby low level repetitions are relegated to the tools ln the toolbox, general
and open environment. A (delicate) balance can be struck between automation and
system to integrate design defrnltion and representation with verification ln one consistent
The VLSI datamanagement methods presented here allow the constructors of a design

the taking care of the integration in a system, and (e) the generation of test procedures.
instantiation of the lay—out of structural components, (c) their routing and placement, (d)
are taken to consist of (a) the translation of f unctlonal descriptions into structural, (b) the
recently given by Gajskl, Dutt and Pangrle in [25] in which the slllcon compilation tasks
measured behaviour of circuits. A more germane characterization of the term is the one
often overlooks the dlmculties that constantly arrlse with the actual intended and
came to be designated with that name as well as cell generators. The term in its generality

·, related design tools such as control generation, iloor planning, global and local routing
indicate the automatic assembly of parametrlzed pieces of layout. Later on a number of
A much used and misused word ls "slllcon compilation". It was originally intended to

5. Discussion

principles, and is now available in prototype form [24] .
A design system for the VLSI Array Processors has been build according to these

EC precompller that allows the quick generation of EC code from some general properties.
libraries that support users’ views as explalned in section 2, (2) general clusters and (3) an

Figure 8. Layered Construction of an Efhcient and Intelllgent Datamanagement System

[C, Module 2]

Design Function Layer

LEC - Object Lisp · PEARL]

Object/Cluster Definition layer

[LISP - PROLOG]

Intelligent user’s, semantic layer



Netherlands (1986). OCR Output
18. P. Dewilde, The Integrated Circuit Design Book, Delft University Prm, Delft, the

Inte1sections"," IEEE Trans. on Computers 6-28(9) pp. 643-647 (Sept. 1979).
17. J.L. Bentley and T.A. Ottman, ' "Algorlthms for Reporting and Counting Geometric

I Artwork Verlf1cation," in Proc. IE ICCD Conf., . New York (1983).
16. J. Fokkema and T.G.R. van Leuken. "An Efficient Datastructure and Algorithm for

Delft University Prss (1986).
Rule Checker," pp. 2.2-2.50 in The Integrated Circuit Design Book, ed. P. Dewilde,

15. T.G.R. van Leuken and J. Liedorp, "An Hierarchical Technology Independent Design

Systems - ISCAS. (1984).
Veriiication of VLSI Artwork," pp. 44-52 in Proc. IHE Symp. on Circuits

14. J. Annevellnk, P. Dewilde. T.G.R. van Leuken, and J. Fokkema, "H1erarch1cal

Systems - MTNS-85, , Stockholm, Sweden (June 1985).
ry of NetworksProcessing A1gorithms," tn Proc. Intl. Conf. on Mat

13. J. Annevellnk, "A Hierarchical Design System for VLSI Implementation of Signal

(Aug. 1978).
Functional Style and its Algebra of Programs," Comm. of the ACM 21 (8) pp. 613-641

12. J. Backus. "Can Programming be Liberated from the Von Meumann Style? A

Electrical Engineering - Technlon, Haifa (1985).
11. J. Katzenelson, The Bthanced C Programming Language · Reference Manual, Dept. of

13 pp. 551-576 J. Wiley, (1983).
10. J. Katzenelson, "Introduction to Enhanwd C (EC)." Software Praaice and Experience

P.H. Winston, Artijicial Intelligence, Addison-Wwley, Reading Mass (1984).

clwlogy of Computer Vision, McGraw-Hill (1975).
M. Minsky, "A framework for representing knowledge — Chapter 6," in The

Addison-Wesley Pub. Co., Reading, Mass. (1983).
7. A. Goldberg and D. Robson, SMALLTALK-80 - The language and its Implementation,

J.H. ter Bekke, Database Design (in Dutch), Stenfert Kroese, Leiden (1983).

Systems, Ph.D. Thesis, Univ. of So. California, Los Angeles (August 1984).
abase AP. Lyngbaek, Information Modeling and Sharing in Highly Autono

Transactions on Database Systems 6(1) pp. 140-173 (March 1981).
4. D.W. Shipman, "The Functional Data Model and the Data Language DAPLEX," ACM

1983)
R.H. Katz, "Manag1ng the Chip Design Database," Computer, pp. 26-36 IEEE, (

d'Inte11.tgenoe Artlfndelle, (1962).
Scattering and Transfer," J.Math.Phys. XL1 pp. l-41 Marseille-Lumlny: Groupe

2. P. Roussel and R. Redheff er, "On the relation of Transmission Line Theory to

Programmer’s Manual, MIT Prss, Cambridge, Mass ().
1. J. McCarthy, P. Abrahams, D. Edwards, T. Hart, and M. Levin, LISP 1.5

References

6. Bibliography

tools, so that the system becomes truly portable as well.
The object oriented dehnition style allows additionally for transparancy of the data to the
designer’s freedom to dehne new 1ow—1eve1 datatypes (they are precompiled in the system).
of an object oriented datamanagcr. E&cic¤cy is obtained by somewhat ratraining the



Integrated Circuit Conference, pp. 102-110 (May 1986). OCR Output
25. D.D. Gajskl, N.D. Dutt, and B.M. Pangrle, "Sihoon Compilation (Tutoria1)," Custom

Electrical Eng., Delft Univ. off Teatm., Delft. the Netherlands (1986).
Based on Abstract Datatypes, Techn. Rept. Network Theory Section, Dept. of

24. J. Annevelink and P. Dewilde, Object Oriented Data Management for VIS] Design

ed Areas an 0 tbns 4(1)(Ja¤. 1986).
Concurrent Solver for N-Coupled Least—Squares Fitting Problems." IEZE Journal on

23. K. Jatnandunstng and E.F.A. Depretteme, "Daigrx and VLSI Implementation of a

Method," in Proc. ICCAD, , Santa Clara (1984).
22. P. Dewllde and A.C. de Graaf , "APPLY: an Applicative Network Description

the Netherlands (1983).
21. R.T. Boute, System Semantic and Circuit Theory, Dept. of Computer Science, Nijmegen,

Generalization./’ ACM Trans. on Database Syst. 2(2) pp. 105-133 (June 1977).
J.M. Smith and D.C.P. Smith, "Database Abstraction: Aggregation and20.

18th Design Automation Conference Proceedings, , Nashville, Tennssee (June 1981).
19. U. Lauther, "An O(N log N) Algorithm For Boolean Mask Operations," in ACM L

13




