

Cours/Lecture Series

1983–1984 ACADEMIC TRAINING PROGRAMME

SPEAKER	: R. S. PEASE / Culham Laboratory
TITLE	: Fusion reactors
DATES	: June 4, 5, 6, 7, 8, 1984
TIME	: 11.00 hours to 12.00 hours
PLACE	: Auditorium

ABSTRACT

- 1. The basic possibilities.
- 2. High temperature matter.
- 3. Magnetic confinement principles.
- 4. Survey of current confinement experiments.
- 5. Fusion reactor engineering.

Secretariat: Tel. 2844.

242125

Distr. Interne + Externe

SIE/H/345

COPIES OF TRANSPARENCIES

TABLE 1

Fusion Reactions

Solar Reactions

...*

H + H → D + e⁺ + v + 0.9 MeV D + H → ${}^{3}H_{e}$ + γ + 5.5 MeV

Possible for Practical Terrestial Thermonuclear Fusion

$D + D \rightarrow {}^{3}H_{e} + n + 3.1 \text{ MeV}$	σmax	(barns) 0.08
$D + D \rightarrow {}^{3}H + p + 3.75 \text{ MeV}$		0.09
$D + T \rightarrow {}^{4}H_{e} + n + 17.6 \text{ MeV}$		5.0
$\mathbf{T} + \mathbf{T} \rightarrow {}^{4}\mathbf{H}_{\mathbf{e}} + 2\mathbf{n} + 11.3$		0.1
D $+^{3}H_{e} \rightarrow ^{4}H_{e} + p + 18.3 \text{ MeV}$		0.8
$D + {}^{6}L_{1} \rightarrow {}^{4}H_{e} + {}^{4}H_{e} + 22.4 \text{ MeV}$		0.026
$p + "B \rightarrow 3 H_e + 8.7 MeV$		0.8
$p + {}^{6}L_{i} \rightarrow {}^{4}H_{e} + {}^{3}H_{e} + 3.7 \text{ MeV}$		0.25

Tritium Breeding

 $n + {}^{6}L_{i} \rightarrow {}^{4}H_{e} + T + 4.8 \text{ MeV}$ $n + {}^{7}L_{i} \rightarrow {}^{4}H_{e} + T + n - 2.5 \text{ MeV}$

Neutron Multiplicator

 $n + {}^{9}Be \rightarrow 2H_{e} + 2n + e - 1.85 \text{ MeV}$

(Crocker et al CLM-P240, 1970)

O N Jarvis, Eur.Appl.Res.Rept. - Nucl.Sci.Technol. Vol.3, No.1 and 2, pp127-352, 1981.

Present total energy utilization $\simeq 0.2 \text{ Q/y}$ Present total energy utilization $\simeq 0.2 \text{ Q/y}$ Estimated total energy requirement $\simeq 1 \text{ Q/ye}$ in 21st century $\simeq 1 \text{ Q/ye}$ Deuterium in the oceans $\equiv 3 \times 10^1$ Known land-based lithium reserves $\equiv 1,000 \text{ Q}$	KEMENTS SERVES ear ar o Q (approximately 50% in
Lithium reserves in Meldon Dyke, $\simeq 10^5$ ton Devon A. Los $\mathbf{A} = 10^{24} \mathbf{J}$	in Africa) in Africa) mes (approximate British energy requirement for 1,000 years) is at Li, the weage

$$M_{\text{Pace T con Cross - saction}} = \frac{\Lambda^2}{4\pi} \times = \frac{\Lambda^2}{4\pi} \times = \frac{\Lambda^2}{4\pi} \times = \frac{\Lambda^2}{4\pi} + 4\mu e \sqrt{2\pi \ln 2} + 4\mu e \sqrt{2\pi \ln 2} \times = \frac{\Lambda^2}{7} + \sqrt{2} = \frac{\Lambda^2}{7} + \sqrt{$$

-.

-

$$\sigma = \sigma, \beta^2 / \epsilon \cdot \epsilon_{np} \left(-\beta / \epsilon \right),$$

•

•

Where
For D-D
$$\begin{cases}
G_1 = 0.14 \text{ barn and} \\
\beta = 1449 (24)^{1/2}. \\
E is kineter energy in eV
\end{cases}$$
For D-T
$$\begin{cases}
G_1 = 11 \text{ barns and} \\
\beta = 14064 (24)^{1/2}. \\
W.P. Allis 1966
\end{cases}$$

E ni lab. france. stationary T

Thermonuclear Reactions
A/
$$\sigma_{se} \simeq 10^{12} Z_1^2 Z_2^2 / E^2$$
, borns
E in eV
 \gg Reaction (ross-sections
for $E \approx 10^5 eV$

$$B/dN = L_{f} m_{n} m_{2} \sigma(E) E_{mp} (-E/bT) E_{dE} (MpT)^{3/2}$$
.

reactions per unit volume per sor.
With collision Energy E uni E+d

$$C/$$
 After integration, simplified
formulae
 $N = C M, M_2 (b/T'/3) e^{-b/T'/3}$
 $H - H$, $C = 0.64 \times 10^{-46} cm^2/s$
 $H - H$, $C = 0.64 \times 10^{-46} cm^2/s$
 $D - D$ $C = 75 \times 10^{-22} cm^2/s$
 $b = 188 (cv)^{1/3}$

lev

Variation of R with T for various values of mt for $D \cdot D$ reaction.

IPP. 491

Product of density and energy containment time as a function of temperature for the D-D and D-T fusion reactions. Ignilion.

TABLE

Fuel Cycle	Hax Q	nt for Q = 2 (cm ⁻³ sec)	Comments
D-T	-	$10^{13} - 10^{14}$	Tritium breeding required
D-D	₽0_	6 × 10 ¹⁴	No breeding
cat D-D	-	~2 × 10 ¹⁴	No breeding
D - ³ He	-	6 × 10 ¹⁴	Availability of ^J He? Not clean cycle since there are meutrons from D-D reaction
p - 5 ¹¹	0.95	-	Q teo small
p - ⁶ Li	0.1		Q too small
cat p - ⁶ Li	3	5 × 10 ¹⁵	Q still small
³ He - ³ He	0.6	-	Q too small
p - ⁹ Be	< 1	-	Q too small

1

1

INERTIAL CONFINEMENT Conf. Time 2 ~ 5.7.10 5. Sulstitute in Lawson 3mn > 102 mm cm⁻² Nuclear yild is ~ 1% of ron Q at Lawrson Viald of 1/3m2 1.2. for small, manage able very large yield, ~ e.g. 10⁴ » Liquit ~ 5×10 cm-3

Magnetie Confinement

Vp = j×B In plane slab geonetry $\begin{bmatrix} -2 \end{bmatrix}' = \begin{bmatrix} B^2 / 8\pi \end{bmatrix}$ $|0|||0^2||8\pi \equiv \beta$ B²/87 ~ 1 almospha w have B= 5 h gause. B 5 5% for Reaction.

t (

ſ

Ion temperature and neutron emission in Tokomak T-3. Top: intensity of neutron emission as a function of time.

Bottom: variation of ion temperature with time.

- Curve 1 from the spectrum of the charge exchange atoms.
- Curves 2 and 3 from the intensity of the neutron emission.

Magnetic confinement results from these experiments are also plotted Plasma conditions achieved in Inertial Confinement experiments, using pulsed lasers. (from Maniscalco (1980)) $[\bar{1}]$ Figure 4

lon temperature T_i (K)

INCHES	
DAL PI	
TOROI	
Z	
ACHIEVED	
PARAMETERS	
I ASMA	
<u>م</u>	

tainment	Time		(S)	10-4	$\times 10^{-3}$	$\times 10^{-2}$	10^{-1}	3	10	> 100	
son Sust	neter	re)	-3 S)	15	,16 3	17 2	10 ¹⁷	1019	10 ¹⁹)20	
Law	re Paran	(m)	_ m_	10	10	10	5 ×	3 ×	89 ×	10	
Ion	Temperatu	(T_i)	<u>(</u> K)	105	106	106	5×10^{6}	8×10^{7}	8×10^{7}	10 ⁸	
Confinement	Time	(au_e)	(S)	10-5	10^{-4}	2×10^{-3}	10 ⁻²	10^{-1}	1.5×10^{-1}	3× 10⁻¹ 10°	
				1955	1960	1965	1970	1980	1983	Needed for a	reactor

33.180S

FIG. 1. Resonant production of $dt\mu$ molecules.

FIG. 2. Muon catalysis in a mixture of deuterium and tritium.

 Image: Mon counter (1)

 Muon counter (1)

 Neutron

 Neutron

 detector

 (1 of 3)

 Electron

 Side view

 FIG. 3. Layout of the experiment.

in deuterium-tritium mixtures.
l e l
y B
catal
NOL
Ĕ
of
neters
ran
Paı
Ϊ.
E
NB]
TA

	λ_{df} (s ⁻¹)	λ_{dtl}	و ب <mark>ع</mark> ت	ен Э	λa He (s-f)	λ _t te (8 ⁻¹)	le:	
Theory	2 × 10 ^{8 b}	~ 10 ⁸ c	0.86% d 0.91% e	~1'	$1.5 \times 10^8 g$	5.6×10^{8} g	~ 10 ² c	
Previous experiment ^a Dresent	$(2.9\pm0.4)\times10^{8}$	> 10 ⁸	•	÷	:	:	• • •	
experiment	$(2.8\pm0.3)\times10^{8}$	see Fig. 5	(0.77±0.08) ⊈	1±1	$(2\pm1)\times10^8$	(7 ± 2) × 10 ⁸	90 ± 10	
^a Ref. 7. ^h Ref. 8. ^c Ref. 5. ^d Ref. 11.			* Ref. 12, ⁶ Ref. 14, ⁸ Ref. 13,					
S. Ē	Jones	e t	لر ک	كويسا	Res. Lel	ادر	1757	1.21

しっか-4はんそう

TARGET-ILLUMINATION CHAMBER uses aspheric lenses and ellipsoidal mirrors to illuminate most of a pellet's surface with two beams + Kitt. (Bruehan d el 1915) 7S.407

73,133

((]

e con an

シャ ちょこう

PLASMA PHYSICS : Cook's Tour. Spilger 1962

Composition
Electric Neutrality
Why we believe theoreticion:
(Debye heargth)
Plasma in B
(i) MHD / Alfern
(ii) Two Fluid
Masma Production
Alfecting

Ionization : Coronal Equilibrium Assumes + (V2) Max well in Radiation not absorbed. Then electron mjiest conization revous (Radiative) recontination Electron Impact Ion". $\sigma(\epsilon) \sim 4\pi a_0^2 \frac{E_R}{E V_T} \left(1 - \frac{V_T}{E} \right)$ Rate = Srmenr Sr~ 10-8 r Te"2 X.v 2 X/hT Recombination Radiation $T \sim he \left(\frac{e^2}{max^2}\right)^2$ 2 × 10-22 cm 2 Rate = el me m +1 $\alpha = 2 \times 10^{-11} 2^2 T^{-1/2} \phi(\frac{hv_0}{hT})$ $\frac{m_{T+1}}{m_T} \simeq \frac{S}{c} \sim 10^3 \frac{T}{7} \frac{e^{-\chi/n_T}}{cb}$ Degree is less them Saha

Degree of Ionigation:
Thermal Equilibrium - Saha Eggs.

$$n_{\tau}$$
 of τ -tomes ionigad alons
 $m_{\tau_{21}}$ of (τ_{21}) -toms ...
Then
 $m_{\tau_{21}} = n_{\tau} \left[\frac{V_{max}}{w_{T}} \right] \cdot \frac{2}{m_{T}} \cdot \left(\frac{2\pi}{m_{T}} \frac{1}{m_{T}} \right)^{2/2} \cdot X$
 $E_{mp} (-\frac{2\pi}{m_{T}} \frac{1}{m_{T}} \frac{1}{m_{$

•

Ionization and recombination coefficients for hydrogen-like ion the limit of low electron density. (From Bates et al., 1962a.)

4

JET UV SPECTRUM

Radiated power loss for various impurity concentrations The curve labelled R_{DT} is the power produced by the D-T reaction assuming the loss of all the neutrons.

M. Dhink 1981 : Flarme Plays. N. .. clear Fusion (Academsi Pras

PLASMA

Electrical Nautrality

Zz; n; e <u>m</u>e

n = number dessity; l = value of electronse charge in l.s.v. (usually!).

Scale - Length of neutrality: Plane slab with n: = 0, ne = cont. Poissen says

P.E. = $2V = 2\pi n^2 m^2$

Toke P.E. $2^{1/2} h T$ $2c = \left(\frac{hT}{4\pi m_{e}c^{2}}\right)^{1/2} = \lambda_{e}$ $= Deby \cdot hongh$ $Ad = 6.9 \left(T/m_{e}\right)^{1/2}$, $T = 6^{1/2}$

2-11

(3=0)Waves in Plasma 1/ Sound waves $V_{s}^{2} = \gamma h(T_{2} + T_{i})/m_{i}$ J=1 (150 themal opprove) 2/ Damping : strongly Damped when T, Z. Ta lacanse V, : V3 for all N 3/ Elactrin Plasma Oscillations wre = 45 m2 2 / m2 Full Dispersion aquation $V_{P2}^{2} = \frac{\lambda^{2}\omega^{2}r_{2}}{4\pi^{2}} + 3b\sqrt{m_{R}}$ For $\lambda \stackrel{a}{=} \lambda_d$, $V_{Pa}^2 \sim h Ta/m$ wa maner ... > < rà U-Budy >> ya 4/ Lasor Scattering 7 hi Mg 26

(Londen 1946 Fiz Zh 10 2 Landon Damping f(V,) = Velocity Distouhenton of a In hong itudinal wave, electrons see a travelling wave elector fild E" ~ n . ht 24 <0 when V2 = VPh JV0 For maxwell The damping . Damping decrement = f $\gamma \sim \frac{\omega_{PA}}{(h\lambda_{d})^{3}} \exp\left(-\frac{1}{2(h\lambda_{d})^{2}}-\frac{3}{2}\right)$ stops when 2f = 0collisions ultimulay chissipalis . Echos. Macroscopic Currents driven in special waves (honor Algeria)

8M.999

Collisions
"Encountars" Spitzer 1962
"Encountars" Spitzer 1962
Effective cross section: Servened Coulomb

$$\frac{dV_n}{V_n} = -\frac{dx}{L}$$
; $L = \frac{1}{n.\sigma_{ei}}$
 $\sigma_{ei} \approx 4\pi \frac{z_i^a a^a}{2e^a} La(ha(ha))$
where $p_0 = \frac{3bT_0}{2e^2}$ is -20
Saa Spitzer 1952, Braginshild (1966)
and Chapmun a combing (1939)
Resultivity $q = 6.5 \pm 10^3 \frac{z_i hah}{2} / T^{3/2}$
This of Obmercon
iBut es free < Nhote/m :
Runaus alastrons (see Drain
1959)
loa = Electron Equilibria
 $\frac{dT_i}{2} = \frac{T_2 - T_2}{T_{eig}}$, Itan $T_i = 17AZ^2 T_2$

-

Ta~ 50-1000 Ratio of measured to theoretical plasma resistivity as a function, of the ratio of electron drift to thermal velocity. (c-sellender from

Plasma in Magnetic Fields 2.11
Portides move in helioss

$$\omega = \omega_{ee}, \omega_{ei}$$
 and
 $10 - 200 6 \theta_{2}$ 10 - 100 MM2
Single Fluid
 $\omega < \omega_{ei}$
 $P \frac{dv}{dt} = j \times B - \nabla P$
 $P = \pi_{e}\pi_{ei}; p = \pi_{e}[T_{e} + T_{i}]$ (Z=1)
 $V = \frac{1}{2}[u_{ei}d V_{elocity}]$
 $E + V \times B = \frac{1}{2}[T_{e} + T_{i}]$ (Z=1)
 $V = \frac{1}{2}[u_{ei}d V_{elocity}]$
 $E = -\frac{2}{25}$
 $\therefore \frac{2}{25}a$ (and $V \times B$
 T_{estima} i Frozen by lower of force
Alforn 1998

Wannes.
$$\omega < \omega_{ci}$$

 $V_a^2 = H^2/4\pi\pi\omega_i$
Torscond, Transsons Alfred woulds
 $V, E \perp B$, $h \parallel B$
Compressionist Alfrid Wannes
 $V^2 = (p + M^2/B\pi\pi\omega_i)$
For $\omega \rightarrow \omega_{ci}$ (yeldfrom damping
Store, 1960
Diffusion
 $V_1 = -\eta \nabla p / B^2$
 l' For one spaces of ion, cross field
diffusion depends only on ion-
station collisions
 $2/ \sim 5bain$ diffusion effect"
 $\chi \beta$
.: Slow

ions and neutral atoms; $n_i = 10^{21} \text{ m}^{-3}$; $n_0 = 1.5 \times 10^{20} \text{ m}^{-3}$. ---, Experimental, $n_i = 10^{21} \text{ m}^{-3}$; $n_0 = 8 \times 10^{20} \text{ m}^{-3}$. (From D. F. Jephcott & P. M. Stocker 1962 J. Fluid Mech. 13, 587.) Measured phase velocity of shear Alfven waves. ---, Theoretical, taking into account collisions between

<u>Plasmas in Magnetic Filds (ii)</u> $\omega_{e} < \omega < \omega_{e}$ Two Flund Model. Electrons still have halicos lows 'ugnore' B Appleton - Hantier Dispersion equation (conosphere) Whister Daves. $E_{\perp}B$, $V_{e} = E \times B \rightarrow j = en U$ $B^{2} = C$. "Halecon. Wows $R.I = p^2 = 1 - \omega_{Ra}^2 / \omega^2$ 1 1 wes cool = | + 2 2 > 1 20000 basis of LH V. dispersiel, Observed 1914 à current druis. Storey 1952

Drift Wares in gradient of Density Two Fluid model, but w/ we;

Comparison of experimental (circles and triangles) with theoretical dispersion relations (full lines) for drift waves in helium arc plasma. B.E.Keen.(1970)

$$\omega = \omega^{\omega} = \frac{hTc}{eB} k_3 \frac{1}{\pi} \frac{dn}{dbc}$$
, $B = B_2$
Ser Corden 1931

Care Shine

2.24.

2.25

MAGNETIC EONFINEMENT (INTRODUCTION)

31

- · Simple Essemple
- · Particle Motion à Confinement
- · Configurations used
- · Rules for Statulity
- Self-Stabilization of Torondal
 discharges

MALIVETIC CONFINEMENT

Simple Systems Plane Slab Vp=J×B + B/87 = const Modelled in Q - pinch B = Bz = Bz(r) only Single Turn Coil Quartz Tule キーケ Tuck, Quin et al 1958 Bodin et el 1968 8-metic long, ~~ 7 cms Bz rices in 2-3 ps. 10-20 hg. Ne ~ 1016 Principal Result -T. ~T. ~ 200 .V Crossfuld Diffusion agrees classical Very= y Dp./ B2 (or D = ηβ/81) Componed with Bohm Pillusion DBohn 16 Hich

Density profiles and diffusion measured and calculated in the 8-metre theta-pinch.

3.5 <u>Buidning contra drifts in B.</u> (See Spitzer Election Full E 1/ 1962] V1 = Ex8 / 1321 - Enal Same sign 2/ brainty og - on okin gan. fore. $V_d = mq_1 / (\pm e\beta)$ opparte sign e.g. on eline of force radius R, g= VilR Charge Separation conneul Favouralile or infavouralle curvalin for stability B = BZ only but grad B 3/ Vd = PH grad B × V1 site deilf B for rous et election opposite dec17 cume lines Radius R, s.g. Bg=ZI 41

 $V_{d} = (P_{H}|R)(V_{1}/2 + V_{u}/V_{1})$ 3/and 4/ NOT prot reduces Pulo <<! I Motion 11 B

 $-N = diamogneti moment = \frac{W_{\perp}}{13} = const$ to PH << R. Hance Magnetic minin Reflection Assembly of morning pontricks at Bo Then "loss come in velocity space Sindo = VBO(BMARC But with a potential difference between Bo and Bruge Sm² do = (1 - eg) Bolsman $W_0 = \frac{1}{2}mV^2$ or B_0 . > Electro states tropping -> Tandem Minior Maduie. (Also electrostatic enfuncent of lossies in other minor coses). Finally with isotropic velocity distribution at Bo, proportion of particles trajed N 23 13 13 max ----- Ramana. al an el a

- Two Enact constants

 $V^2 = const$ 1

21 eRAS+ mRV const 55 when = 0

B = CurlA : RAG = court definis line of force.

Then, because V6 connot vory by more this -VCV6 <+V,

 $\Delta = \text{distance of departure from}$ $\alpha \text{ line of force}$ $= \frac{mv}{2\sqrt{B^2R + B^2}} = \rho_{HO}$

Lield . TAMM (1951) - (Acca Nauk 1951)

LEVITRON

-

(b) Plasma confinement geometries - closed-line systems;

QUADRUPOLE

3.9

SIMPLE MAGNETIC MIRROR

MINIMUM B MAGNETIC MIRROR

CUSP-ENDED THETATRON

Fig.3 (a) Plasma confinement geometries - open-ended systems;

•
Instabilities

 $q = \frac{T}{R} = 2L \cdot \frac{1}{32\pi r} \left(\frac{d \ln R}{d \ln R} \right)$

3.10

3.11

3.12 Self-Stabilization (Relaxation) (J. B. Taylor 1974,6) Objective of an instability -> minimize [B/87, dv I deal constraint & A.B. dl = const for each line of force. Relaxed constraint (A.B dV = const Then, with conducting walls J Bo. 27rdr = Court configuration is Curl B = pB where p is a constant every where. Simple cylindericit solution Bé = BJe(NT) } Bessel Finel Eo = BoJ(NT) } Bessel Finel Provided discharge not too princhel Bessel Fineten Departures - e.g. finité pressure or j = 2B treated with linein theory. Finile B ideal MID stable for Tohomak and Revence Field Punch

3.13

77.1722

Confinement in stellarators: observed and calculated confinement times in the Proto-Cleo stellarator (Culham). Hydrogen plasma $T_{Ce} \sim 5 \text{ eV}$ $n_e \sim 10^{10} \text{cm}^{-3}$.

3.15

3.16

Experimental field distributions

Bodin at al

死. し.7_

 $\gamma_{2}, \cdot, \cdot_{3}$

Universal F-O Curve, showing Data from Four Machines.

J. B. Taylor 1975

