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Abstract

We integrate analytically the total cross section of the small-angle Bhabha scat-

tering over the complete multiple photon phase space. Some inclusive distributions

are also obtained. The di�erential distributions are taken from the Monte Carlo

event generator BHLUMI and correspond to the second-order matrix element with

Yennie-Frautschi-Suura (YFS) exponentiation. In the integration we control terms

up to leading third-order and sub-leading second-order, in the leading-logarithmic

approximation. The analytical results provide a vital cross-check of the correctness

of the BHLUMI program. The analytical and Monte Carlo results agree to within

1:7 � 10�4. On the other hand, the calculation gives us unique insight into the

relation between exclusive YFS exponentiation and naive inclusive exponentiation.
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1 Introduction

The Bhabha scattering process e+e� ! e+e� at LEP energies consists in fact of two

distinct processes (especially at the Z peak): one is the Small-Angle Bhabha (SABH)

process below about 6� in scattering angle, which is dominated by the gamma t-channel

exchange and another one, the Large-Angle Bhabha (LABH) process above 6�, which

gets important contributions from various s-channel (annihilation) exchanges. The SABH

process is employed almost exclusively to determine the luminosity in the e+e� colliders,

using dedicated luminometer sub-detectors. The LABH provides input data for precision

electroweak tests of the Standard Model (SM), in particular the electron partial width

�e of the Z boson. In this work we shall concentrate on the SABH process at LEP. Atp
s = MZ, in the 1�{3� angular range it gives about four times more events than Z decays.

It is therefore ideally suited for precise measurements of the luminosity from the point of

view of the statistical error. Even more important; it is dominated by \known physics",

that is by t-channel exchange of a photon; it is therefore calculable from \�rst principles",

i.e. from the Lagrangian of the Quantum Electrodynamics (QED) with methods of the

standard Quantum Field Theory such as Feynman diagrams, etc. This work presents

a major contribution to the problem of a reliable theoretical calculation of the SABH

process with a precision of 0.1% or better. Let us now review briey the main aspects of

our work.

1.1 Theoretical error in the luminosity

At present, the luminosity measurement at LEP using the SABH process has a very

small statistical and experimental systematic error, typically 0:07-0:11% [1] for the single

LEP experiments and 0:05% for combined LEP results [2{4]. The uncertainty of the

theoretical calculation of the SABH process has to be combined with this error. It is

called the \theoretical error" (the theory uncertainty) of the luminosity. Last year, it was

reduced to 0:16% [5] and is now at the level of 0:11% [6, 7]: in spite of the progress, it

is still a dominant component of the total luminosity error. This error enters into that

of the total cross section measured at LEP. The experimental precision of the so-called

invisible width of Z (number of neutrinos) is strongly dependent on the precision of the

luminosity measurement. The other quantities used for tests of the SM are also a�ected.

An example of the inuence of the luminosity error on the LEP measurable used in the

test of the SM is illustrated in Table 20 of Ref. [6]; see also Ref. [7].
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Obviously it would be worth while to lower the theoretical uncertainty in the calcu-

lation of the SABH cross section below the combined experimental precision of the LEP

experiments, which is already at the level of 0.05%. From the beginning of the LEP

operation both experimental and theoretical components in the error of the luminosity

went from the level of 2% to 0.1%. Why was it always di�cult to reduce the theoretical

error even further? The main obstacles were the need for non-trivial calculations of the

higher-order contributions and the complicated Event Selection (ES) in the actual mea-

surement. Due to the complicated ES, the phase-space boundaries in the calculation of

the SABH cross section are too complicated for any analytical calculation: the calculation

has to be numerical, most desirably in the form of Monte Carlo event generator (MCEG).

How does one improve the precision of the theoretical calculation of the SABH cross sec-

tion? Of course, one has to add higher-order terms in the perturbative expansion. On the

other hand, the theoretical calculation would be completely useless if in the calculation

of the SABH cross section we did not control its \technical precision", corresponding to

all possible numerical uncertainties. The control over the technical precision is probably

the most di�cult and labour-consuming part of the whole enterprise. The present paper

is addressing both questions { we demonstrate new methods of determining the technical

precision of the theoretical calculation of the SABH cross section and we add certain

numerically important higher-order contributions in the perturbative expansion. For an

up-to-date review on the precise calculations of the luminosity cross section we refer the

reader to Ref. [8].

1.2 The BHLUMI Monte Carlo event generator

In the last �ve years the LEP collaborations have used the BHLUMI MCEG in order to

calculate the SABH cross section for any type of experimental ES. The program, originally

written in 1988 [9], was published for the �rst time in 1992 [10], at that time with the

�rst-order exponentiated QED matrix element, O(�1)exp (exponentiation according to

the Yennie-Frautschi-Suura theory). BHLUMI provides multiple soft and hard photons

in the complete phase-space in all versions. The Monte Carlo multi photon integration

over the multi photon phase-space was slightly improved over the years, but its basic

Monte Carlo algorithm has remained essentially unchanged since the �rst version. Gradual

improvements concern mainly the matrix element; this was recently upgraded by adding

the missing second order in the leading-logarithmic (LL) approximation [11]. The new

matrix element is fully described and discussed in this work. The aim of the analytical

integrations over the phase-space presented here is to cross-check if the new matrix element

has indeed the correct second-order LL behaviour and whether it is correctly implemented

in the version 4.04 of the BHLUMI MC program [11]. The BHLUMI package also includes

the LL sub-generator LUMLOG, featuring a strictly collinear emission of photons in

the initial and �nal states. The third-order LL analytical results of the present work

are also implemented in the newest LUMLOG. More and more cross-checks are built

up in order to better determine BHLUMI's technical precision, see [5, 12]. This paper

contributes substantially to all above-mentioned cross-checks { in fact these are based on
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the calculations presented here.

The aim of this work is to consolidate these earlier calculations and to present the

complete results in a single, self-contained paper.

1.3 Importance of the various QED corrections

�min = 30 mrad �min = 60 mrad

LEP1 LEP2 LEP1 LEP2

O(�L) �
�

4L 137 152 150 165

O(�) 21
2
�
�

2:3 2:3 2:3 2:3

O(�2L2) 1
2

�
�
�
4L
�2

9:4 11 11 14

O(�2L) �
�

�
�
�

4L
�

0:31 0:35 0:35 0:38

O(�3L3) 1
3!

�
�
�
4L
�3

0:42 0:58 0:57 0:74

Table 1: The canonical coe�cients in units of 10�3 indicating the generic magnitude of various
leading and sub-leading contributions up to third order. The big-log L = ln(jtj=m2

e)�1 is calculated
for �min = 30 mrad and �min = 60 mrad and for two values of the centre-of-mass energy: at LEP1
(
p
s = MZ), where the corresponding values of jtj = (s=4)�2min are 1.86 and 7.53 GeV2, and at a

LEP2 energy (
p
s = 200 GeV), where the corresponding value of jtj are 9 and 36 GeV2, respectively.

The electron mass is very small and the LL approximation in terms of the big logarithm

L = ln(jtj=m2
e) � 1 is a very useful tool. In Table 1 we show numerical values of the

\canonical coe�cients" for various LL and sub-leading QED radiative corrections. As

we see from the table, for a precision of order 0.5% it is enough to include the entire

�rst-order O(�) and the second order leading-log O(�2L2), while at the present precision,

of order 0.05%{0.10%, it is necessary to have control over O(�2L) and O(�3L3). The

contributions of O(�2), O(�3L2) and O(�4L4), not shown in the table, are de�nitely

below the level of interest of 10�4. In the present version of BHLUMI 4.04 or Ref. [11] we

have complete control over O(�3L3) photonic (bremsstrahlung) contributions (thanks to

results of this work) while O(�2L) is still incomplete.

For the purpose of the present paper we shall denote the entire �rst-orderO(�) plus the

second order leading-logO(�2L2) as the second order pragmatic approximation, O(�2)prag
in short. Adding O(�2L) and O(�3L3) brings us to the third-order pragmatic approxima-

tion, O(�3)prag.

The present work provides all of the ingredients for a de�nite answer about the impor-

tance of an O(�3L3) contribution of the pure bremsstrahlung type, i.e. of the so-called

photonic type. The Monte Carlo tool (the LUMLOG event generator) for calculating

O(�3L3) corrections for arbitrary ES is included in the version 4.04 of the BHLUMI

package [11]. Numerical results obtained using analytical formulas from this work (imple-

mented in LUMLOG) were already shown in Ref. [12], and the question of the importance
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of the photonic O(�3L3) corrections seems to be closed. In the matrix element presented

in this work and used in BHLUMI, the O(�2L) contributions are still incomplete. The

�rst attempt at its direct numerical evaluation for realistic ES was presented in Ref. [13]

and this work is still in progress.

1.4 Why analytical integration?

The main content of this work is the analytical integration of the matrix element, exactly

the same as in the last version of BHLUMI, over the phase-space, keeping in the calculation

the exact soft photon behaviour and all terms up to O(�3L3) and O(�2L). The �rst

immediate question is: Since the matrix element has only correct terms1 up to O(�2L2),

why bother to trace exactly all terms of O(�3L3) and O(�2L)? There are basically two

important reasons: (a) our principal aim is to get in the future version of BHLUMI all

these terms completed; (b) we have to keep in mind that ultimately we have to have control

over the technical precision of BHLUMI down to 10�4. The comparison of the analytical

and Monte Carlo phase-space integrations down to the 10�4 precision level is not possible

without accounting for terms of O(�3L3) and O(�2L), even if they are (perturbatively)

incomplete! The actual status of terms of O(�3L3) is even more interesting than described

above: the analytical calculation presented in this work can be used to show that the

incompleteness of the O(�3L3) is numerically at the level of 2 � 10�4 [12] and therefore

it is not even worth upgrading the BHLUMI matrix element to full O(�3L3). A similar

conclusion for O(�2L) is not yet reached2.

In spite of its importance and usefulness we want to stress that the analytical integra-

tion is not a substitute for the Monte Carlo. As we shall see, it will be limited to one or

two examples of the rather unrealistic ESs.

We would like also to give justice to the authors of a classical paper Yennie, Frautschi

and Suura [14], as an early precursor of the analytical approach presented here. These

authors also integrate analytically over the real single photon phase-space using the LL

approximation and taking into account \spectator" soft photons. This is very much in

the spirit of the present work. The important di�erence is that we keep track of two more

orders in the LL approximation and we keep account also of NLL terms up to second

order. Much as they did, we regard the analytical integration within LL+NLL as a pure

technical method3 of dealing with the phase-space integration. In 1961 the analytical

approximate calculation over the multi photon phase-space was the only available method

{ it was unthinkable at the time that such integrals could be evaluated exactly using

numerical methods! (The precision requirements were anyway at that time at the level of

1The terms beyond O(�2L2) in the BHLUMI matrix element are present. The terms of O(�2L) are
based on an ansatz and of O(�3L3) are generated by exponentiation.

2It is not yet clear if we shall be able to argue that the missing O(�2L) contribution is negligible for a
wide class of ESs, because it seems to depend more strongly on the type of the ESs than does the missing
O(�3L3).

3Quite often, casual readers of Ref. [14] get the wrong impression that the YFS exponentiation is
limited to the LL approximation because this approximation was used there for the integration over the
phase-space.
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a few per cent only.) Nowadays, we are in a much more comfortable situation { we can

evaluate such integrals without any approximation using Monte Carlo methods4, and the

analytical calculation is only an additional useful tool to test the Monte Carlo program.

1.5 Exclusive YFS exponentiation

The analytical integration presented here sheds light also on the question of the relation

between \exclusive YFS exponentiation" and so-called \inclusive naive exponentiation".

In the exclusive YFS exponentiation formulated in Ref. [14] and later implemented in

several Monte Carlo event generators [9,16,17] the summation of infrared singularities to

in�nite order is done at the level of the di�erential distributions, before the phase-space

integration, including an arbitrary number of hard photons all over the entire phase-space,

without any arti�cial distinction between hard and soft photons. This leads to compli-

cated phase-space integrals, which in 1961 could be dealt with only using an approximate

analytical approach. Nowadays we can evaluate these phase-space integrals using MC

methods and even provide in this way a MC event generator.

In many works, the analytical partial results from Ref. [14] were used to devise an ad

hoc method, which we refer to as the \naive inclusive exponentiation". In this method one

takes a �nite-order (typicallyO(�1)) inclusive (partially integrated) distribution, typically

one-dimensional, for instance the total energy lost due to photon emission, and combines

it by means of extrapolation with the analytical result similar, or identical, to results in

Ref. [14] for the same distribution, but with an in�nite number of photons being soft, see

Ref. [18] for more discussion.

The interesting question always was: can this obviously ad hoc method, without any

systematic generalization to higher-orders, be put on more solid ground? The answer

is Yes, provided that we do not take fragments of the results in Ref. [14], but rather

the relevant YFS multi photon integral as it stands and calculate the relevant inclusive

distribution analytically. It is not a simple task but, as we shall see in this work (and

some examples were already given in Ref. [14]), it is possible, provided we integrate

over the phase-space using a numerically reasonable approximation. Not surprisingly,

the resulting inclusive distribution obtained by the integration over the exclusive YFS

fully di�erential distributions often looks quite similar to the result of the typical \naive

inclusive exponentiation". The advantage of our method is, however, that the procedure is

unique, well understood, with a de�nite meaning at every perturbative order. In one word,

the naive inclusive exponentiation gets replaced by the analytical phase-space integration.

The analytical calculation of this paper represents a perfect example of such an approach.

1.6 Outline

In the following Section 2 we shall describe in full detail the new matrix element used

in BHLUMI, which will be integrated analytically over the phase-space. In Section 3 we

demonstrate the basics of our analytical integration technique using the simple case of

4The �rst example of such a calculation was presented in Ref. [15].
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the contribution from the so-called ��0 as an example. In Sections 4 and 5 we calculate

further components due to the so-called ��1 and ��2; the total result is presented in Section

6. Cross checks of the LL part are done in Section 7 and another variant of the calculation

for calorimetric ES is discussed briey in section 8. Appendix A proves the correctness of

certain basic approximations.

2 Di�erential distributions

In this section we de�ne completely and exactly the di�erential multi photon distributions

used in BHLUMI 4.04 and used later in this work as a starting point for the analytical

integrations over the phase-space. There are two types (A) and (B) of such a matrix

element, which coincide within O(�2)prag. For the �rst time they were de�ned explicitly

in Ref. [5]. Choice (A) is the natural extension to second order of the matrix element

implemented in the BHLUMI 2.02 version of Ref. [10]. The new choice (B), which is a

starting point for this work, looks at �rst sight more complicated, but it turns out to be

integrable analytically more easily, especially beyond O(�2)prag. The numerical di�erence

between cross sections obtained with the matrix elements (A) and (B) at the level of

O(�2)exp is very small, below 0.01%. It is quite sizeable at the O(�1)exp, up to 0.3%. The

relevant MC numerical result will be shown at the end of the paper.

2.1 Second order { no exponentiation

The second-order integrated cross section for the process e�(p1) + e+(q1) ! e�(p2) +

e+(q2) + nkj + n0(kl) reads in terms of the Lorenz phase-space integration over the

di�erential distribution as follows:

�(r) =
X

0�n+n0�r

1

n!

1

n0!

Z
d3p1

p01

Z
d3q1

q01

nY
j=1

Z
kj =2
U

d3kj

k0j

n0Y
l=1

Z
k0

l
=2
L

d3k0l

k00l

�(4)
�
p1 � p2 + q1 � q2 �

nX
j=1

kj �
n0X
l=1

k0l

�
D

(r)

[n;n0]
(k1:::kn; k01:::k

0
n0);

(1)

where 
U;L are 3-dimensional regions around the infrared soft singularity excluded from

the phase-space. Usually, this is done by requiring the photon energy to be above some

value Emax in a certain reference frame5. Virtual contributions and real soft photon

contributions below Emax (regularized typically with photon mass �) are combined and

are included in the corresponding D
(r)

[n;n0]
.

Let us show explicitly the all O(�r) r = 0; 1; 2 distributions D
(r)B

[n;n0] for the new type

(B) of matrix element. At the end of this section we also show the older choice D
(r)A

[n;n0],

5The reference frame might be di�erent for upper and lower lines { provided the upper/lower line
interference is neglected.
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which in the O(�) coincides with the matrix element implemented in the BHLUMI 2.x

version of Ref. [10]. The older choice (A) is simpler, but its serious disadvantage is that it

cannot be integrated analytically beyond O(�2)prag using methods presented in this work.

Let us start de�ning various components of the di�erential distribution with expres-

sions for the functions D
(r)B

[0;0]
; r = 0; 1; 2 in the O(�r)prag; see Sect. 1.3 for the de�nition

of the O(�r)prag approximations. It is given simply by

D
(r)B

[0;0]
=

4��2

tptq
b0 (1 + v(r));

b0 =
1

2
(1 + (1� �)2); � =

jtj
s
;

v(0) = 0; v(1) = 2 ln � +
3

2
 � �

�
;

v(2) = 2 ln � +
1

2
2 ln2 � + (1 + 2 ln �)

�
3

2
 � �

�

�
+

9

8
2 � 3

2

�

�
;

(2)

where

 = 2
�

�

 
ln

1

�
� 1

!
; � =

m2
e

jtj ; t = (p1 � p2 �
X

ki)
2: (3)

The case of r = 0 with v(0) = 0 represents the Born approximation, v(1) represents the

exact O(�1) from the Feynman rules (up-down interference excluded), while 92=8 in v(2)

stands for the LL approximation in the O(�2). At this point we should de�ne the infrared

domains 
U;L and the infrared cut parameter �. Let us postpone their de�nition to the

moment when we de�ne D
(r)B

[1;0] . Let us only remark now that the virtual corrections in

Eq. (2) are given for the 
U;L, which are exactly the same as in the actual Monte Carlo

phase-space algorithm { the cut on the photon energy is done in the Breit (rest) frame

of the p1 + p2 or q1 + q2; the minimum energy of the real photon in such a frame is

� �1
2

p
2p1p2.

Let us now de�ne the O(�)prag and O(�2)prag single real photon emission distributions

D
(r)

[1;0]
(k1) and D

(r)

[0;1]
(k1); r = 1; 2. In the following we explicitly show expressions for the

upper line emission part D
(r)

[1;0]
(k1). The lower line distribution D

(r)

[0;1]
(k1) is de�ned in a

completely analogous way. The �rst-order distribution (r = 1) has no virtual corrections

(tree level) and the second-order distribution (r = 2) includes the one-loop virtual photon

correction, which is calculated in the LL approximation6. The case of the type (B) matrix

6This is done by convolving twice the non-singlet Altarelli-Parisi kernel with itself, see Ref. [19] for
many examples of such a procedure.
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element reads as follows

D
(r)B

[1;0] (k1) =
4��2

tptq
~Sp(~�1; ~�1)

�
1 + v

(r)

[1;0](~�1; ~�1)

�
H(~�1; ~�1;  p);

v
(1)

[1;0]
= 0;

v
(2)

[1;0] = (p + q) ln � +
3

2
 � �

�
� 3

4
 ln(1� ~�1)� 1

4
 ln(1� ~�1)

+ (p � )

�
1

4
� ln(1� ~�1)

�
;

v1 = ~�1 + ~�1 � ~�1
~�1;

(4)

H(~�1; ~�1;  p) = (1 + ��p(~�1; ~�1))
1

4

�
1 +

�
1� �

1� ~�1

�2

+R(~�1; ~�1;  p)
2 + (R(~�1; ~�1;  p)� (1� ~�1)�)

2

�
;

R(~�1; ~�1;  p) = (1� ~�1)(1� ~�1)

+ 2 cos p

q
~�1

~�1(1� ~�1)(1� ~�1) + ~�1
~�1;

(5)

��p(~�1; ~�1) = �p
1

~�1
~�1

(~�2
1 + ~�21)2

(1 + (1� ~�1)2(1� ~�1)2)
;

p = 2
�

�

 
ln

1

�p
� 1

!
; q = 2

�

�

 
ln

1

�q
� 1

!
;

�p = m2
e=jtpj; �q = m2

e=jtqj; tp = (p1 � p2)
2; tq = (q1 � q2)

2;

where

~Sp(k1) =
�

4�2

 
2p1p2

(kp1)(kp2)
� m2

(k1p1)2
� m2

(k1p2)2

!
(6)

is the standard Yennie-Frautschi-Suura soft factor. Note that H = (s2+u2+s21+u21)=(4s
2)

in the notation of Ref. [10]. The last term in v
(2)

[1;0]
proportional to (p � ) is pure sub-

leading and it is added \ad hoc" in order to simplify the exponentiated version of the

matrix element, see below.

Since the above distributions are given in terms of the normalized Sudakov variables

~�i ~�i of paper [9], let us therefore recall their de�nition. Below we de�ne them in the

more general case of n photons emitted from the upper line. In the t-channel Breit (rest)

9



frame QRSp, where p01 = p02 = Ep, ~p1 + ~p2 = 0 and Qp = p2� p1 = (0; 0; 0; 2Ep), we de�ne

k0i = (�i + �i)Ep; k3i = (��i + �i)Ep;

k1i = kT cos�i; k2i = kT sin�i; kT = 2Ep

p
�i�i;

�i = ~�iKp; �i = ~�iKp;

Kp =
�

1�
nX
j=1

~�j

��1
= p1

�
p2 +

nX
j=1

kj
�
=p1p2;

(7)

The angle  p (present implicitly in the formulas of Ref. [9]) is de�ned in another frame

QMSp, where Q = (0; 0; 0; jtj) and p1 = (E1; 0; 0;�jp1j). It is an angle between two

planes, one spanned with ~Q and ~p2 and another spanned with ~Q and ~q1.

From the perturbative calculation point of view let us remark that in Eq. (4) the only

one-loopO(�2) virtual correction v
(2)

[1;0]
comes from the LL ansatz { the rest originates from

the tree-level O(�1) Feynman diagrams. Two approximations were employed: rejection

of the up-down interference and of some mass terms giving rise to O(m2
e=jtj)� 10�7

contributions in the integrated cross section. Let us also stress that in the v
(2)

[1;0] a term

proportional to ln � is totally constrained by the YFS soft limit derived in Ref. [14].

We obtain the logarithmic terms in v
(2)

[1;0] from a double convolution of the non-singlet

Altarelli-Parisi splitting function and the non-logarithmic term is chosen arbitrarily (such

that, later, the expression for ��1 is simpler).

Now, having de�ned all kinematics, we are able to de�ne the infrared domains

f
U : max(~�i; ~�i) < �g; f
L : max(~�0j;
~� 0j) < �g; (8)

which enter in many places throughout our calculation. Needless to say, nothing depends

on the actual choice of 
U;L and we always witness perfect cancellations of the infrared

real and virtual corrections.

The distribution describing double photon emission from the upper line is pure O(�2)

and it is based on the LL ansatz. The main ingredient in the ansatz is the double

convolution of the non-singlet splitting kernel for the longitudinal momenta. Both photons

feature non-collinear transverse momentum distributions. It is very important that we

require the distribution to have the correct soft limit in the case when both photons are

soft and in the case when one of them is soft and the other one is hard. This is ful�lled

by taking the product of the O(�) single photon distribution for the harder photon and

the soft factor times the splitting kernel for the softer one. The advantage of the LL

ansatz (as compared to exact expressions known in the literature) is that it is quick in

the computer evaluation and its LL content is manifest. There is obviously freedom in

the choice of the above LL ansatz (up to non-infrared O(�2L) terms). It was exploited in

such a way that the analytical integration (which is our main goal) over the phase-space

in the later stage is feasible and as simple as possible. The complete ansatz for the type

10



(B) distribution reads as follows:

D
(2)B

[2;0] (~�1; ~�1; �1; ~�2; ~�2; �2) =
4��2

tptq"
~Sp(~�1; ~�1) ~Sp(~�2; ~�2)�((~�1 � ~�1)(~�2 � ~�2))�
�(v1 � v2)

1

2

�
H(~�1; ~�1;  p)�(v�2) +H(~��1;

~��1 ;  p)�(v2)
�

+ �(v2 � v1)
1

2

�
H(~�2; ~�2;  p)�(v�1) +H(~��2;

~��2 ;  p)�(v1)
��

+ ~Sp(~�1; ~�1) ~Sp(~�2; ~�2)�(~�1 � ~�1)�(�~�2 + ~�2)�
�(v1 � v2)H(~��1;

~��1 ;  p)�(v2) + �(v2 � v1)H(~�2; ~�2;  p)�(v�1)

�
+ ~Sp(~�1; ~�1) ~Sp(~�2; ~�2)�(�~�1 + ~�1)�(~�2 � ~�2)�
�(v1 � v2)H(~�1; ~�1;  p)�(v�2) + �(v2 � v1)H(~��2;

~��2 ;  p)�(v1)

�#
;

(9)

where �(x) = 1
2
(1 + (1 � x)2) and, because of the \cascade" character of the double

emission, we use \starred" variables, de�ned by:

v�1 = v1=(1� v2); v�2 = v2=(1� v1);

~��1 = ~�1=(1� v2); ~��2 = ~�1=(1� v1);

~��1 = ~�1=(1� v2); ~��2 = ~�1=(1� v1):

(10)

We can easily check that we reproduce the proper soft photon limit in the case (1) when

both photons are soft, i.e. v1; v2 ! 0 and (2) when one photon is hard and one is soft,

for instance v1 ! 0 and v2 =const. The �rst requirement is quite natural and is ful�lled

trivially because in the soft limit vi ! 0 both H(~�i; ~�i;  p) ! 1 and �(vi) ! 1, i = 1; 2.

The second requirement is ful�lled thanks to the ordering of the energies. Do we reproduce

the proper collinear (leading-log) limit when both photons are hard and collinear? If the

�rst photon is hard and collinear, v1 is �nite and we have either ~�1 ! 0 or ~�1 ! 0 (not

both). For two hard collinear photons, we encounter two situations: (a) both photons

are collinear with the same fermion (initial electron or �nal electron), (b) each photon

is collinear with a di�erent fermion, i.e. one is associated with the initial-state (beam)

electron and the other with the �nal-state electron. We can easily check that for our

ansatz both in the case of the collinear limit (a):

b2UU � 1

2
[�(v1)�(v�2) + �(v2)�(v�1)]; (11)

and in the anticollinear case (b):

b2UU � �(v�1)�(v2) (12)

11



we recover expressions expected from the convolution of the LL kernels. Let us note that

the following property H(~�i; ~�i;  p) ! �(vi) was instrumental in obtaining the above

proper collinear limits.

Finally, let us turn to the LL ansatz for the double photon emission distribution for

the simultaneous emission of one photon from the upper line and one photon from the

lower line. We require that the same LL and soft limits are ful�lled. The type (B) ansatz

reads as:

D
(2)A

[1;1]
(~�1; ~�1; �1; ~�01;

~� 01; �1) =
4��2

tptq"
�(v1 � v01)

~S(~�1; ~�1) ~S(~�01;
~� 01)H(~�1; ~�1;  p)�(v01)

+ �(v01 � v1) ~S(~�1; ~�1) ~S(~�01;
~� 01)H(~�01;

~� 01;  p)�(v1)

#
:

(13)

It is simpler than the previous ansatz because the two photons are now attached to

di�erent fermion lines and we do not need to use \starred" variables.

The LL expression for the case of double emission from the lower line D
(2)B

[0;2] is con-

structed in complete analogy to D
(2)B

[2;0] .

We shall now present choice (A) for the O(�r), r = 0; 1; 2, distributions D
(r)A

[n;n0]. The

D
(r)A

[0;0] ; r = 0; 1; 2; in the O(�r)prag reads

D
(r)A

[0;0]
=

4��2

tptq
G(p1; p2; q1; q2) (1 + v(r));

G(a; b; c; d) � (ab)2 + (cd)2 + (ad)2 + (bc)2

4(ab)2
;

(14)

where the virtual corrections are the same as in Eq. (2). We note that in the case of

n + n0 = 0 under discussion the identity b0 = G(p1; p2; q1; q2) holds. The single photon

distributions, D
(r)

[1;0]
(k1); r = 1; 2, are de�ned as follows

D
(r)B

[1;0]
(k1) =

4��2

tptq
~Sp(k1)

�
1 + v

(r)

[1;0]
(~�1; ~�1)

�
� (1 + ��p(~�1; ~�1)) G(p1; p2; q1; q2);

(15)

where v
(r)

[1;0]
are the same as in Eq. (4) and, for the one photon case under discussion, the

identity H(~�1; ~�1;  p) = G(p1; p2; q1; q2) holds. As we see, up to O(�) the two choices (A)

and (B) are identical (no exponentiation!). The double bremsstrahlung distribution for

two photons on the upper line reads as follows (second-order LL ansatz with correct soft
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limits):

D
(2)A

[2;0]
(k1; k2) =

~Sp(k1) ~Sp(k2)�((~�1 � ~�1)(~�2 � ~�2))�
�(v1 � v2)

1

2

�
G(p1; p2 � k2; q1; q2)�(v�2)

+G(p1 � k2; p2; q1; q2)�(v2)
�

+ �(v2 � v1)
1

2

�
G(p1; p2 � k1; q1; q2)�(v�1)

+G(p1 � k1; p2; q1; q2)�(v1)
��

(16)

+ ~Sp(k1) ~Sp(k2)�(~�1 � ~�1)�(�~�2 + ~�2)�
�(v1 � v2)G(p1; p2 � k2; q1; q2)�(v2)

+ �(v2 � v1)G(p1 � k1; p2; q1; q2)�(v�1)

�
+ ~Sp(k1) ~Sp(k2)�(�~�1 + ~�1)�(~�2 � ~�2)�

�(v1 � v2)G(p1 � k2; p2; q1; q2)�(v�2)

+ �(v2 � v1)G(p1; p2 � k1; q1; q2)�(v1)

�
;

where v�i are de�ned as previously. Finally we de�ne

D
(2)A

[1;1] (k1; k
0
1) =

4��2

tptq
~Sp(k1) ~S(k01)G(p1; p2; q1; q2): (17)

The above function, although remarkably simple, has all soft limits and the O(�2L2) limit

correct!

2.2 Exponentiated second order

The complete master formula for the O(�r), r = 0; 1; 2; exponentiated total cross-section

for the process e�(p1) + e+(q1) ! e�(p2) + e+(q2) +nkj +n0(kl), as implemented in the
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BHLUMI 4.xx Monte Carlo program, reads

�(r) =

1X
n=0

1X
n0=0

1

n!

1

n0!

Z
d3p1

p01

Z
d3q1

q01
eY (
U ;p1;p2)eY (
L;q1;q2)

nY
j=1

Z
kj =2
U

d3kj

k0j

~S(p1; p2; kj)

n0Y
l=1

Z
kj =2
U

d3k0l

k00l

~S(q1; q2; k
0
l)

�(4)
�
p1 � p2 + q1 � q2 �

nX
j=1

kj �
n0X
l=1

k0l

�(
��
(r)
0 (Q; p1; p2; q1; q2)

+

nX
j=1

��
(r)

1U (Q; p1; p2; q1; q2; kj)= ~S(p1; p2; kj)

+

n0X
l=1

��
(r)

1L (Q; p1; p2; q1; q2; k
0
l)=

~S(q1; q2; k
0
l)

+
X

n�j>k�1

��
(r)
2UU(Q; p1; p2; q1; q2; kj; kk)= ~S(p1; p2; kj) ~S(p1; p2; kk)

+
X

n0�l>m�1

��
(r)

2LL(Q; p1; p2; q1; q2; k
0
l; k

0
m)= ~S(q1; q2; k

0
l)

~S(q1; q2; k
0
m)

+

nX
j=1

n0X
l=1

��
(r)

2UL(Q; p1; p2; q1; q2; kj; k
0
l)=

~S(p1; p2; kj) ~S(q1; q2; k
0
l)

)
:

(18)

Let us also write the above expression in equivalent but more compact notation

�(r) =

1X
n=0

1X
n0=0

1

n!

1

n0!

Z
d3p1

p01

Z
d3q1

q01

nY
j=1

Z
kj =2
U

d3kj

k0j

~Sp(kj)

n0Y
l=1

Z
k0

l
=2
L

d3k0l

k00l

~Sq(k
0
l)

�(4)
�
p1 � p2 + q1 � q2 �

nX
j=1

kj �
n0X
l=1

k0l

�
eYp(
U )+Yq(
L)

(
��
(r)
0 +

nX
j=1

��
(r)

1U (kj)

~Sp(kj)
+

n0X
l=1

��
(r)

1L (k0l)

~Sq(k
0
l)

+
X

n�j>k�1

��
(r)

2UU(kj; kk)

~Sp(kj) ~Sp(kk)

+
X

n0�l>m�1

��
(r)

2LL(kl; km)

~Sq(k
0
l)

~Sq(k0m)
+

nX
j=1

n0X
l=1

��
(r)

2UL(kj; k
0
l)

~Sp(kj) ~Sq(k
0
l)

)
:

(19)

Let us explain all ingredients in the above expression.
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The YFS form factor for one fermion line is generally de�ned as follows:

Y (
U ; p1; p2) = 2� ~B(
; p1; p2) + 2�<B(p1; p2)

= � �

4�2

Z
k2
U

d3k

k0

�
p1

kp1
� p2

kp2

�2

+ 2�<
Z
d4k

k2
i

(2�)3

�
2p1 � k

2kp1 � k2
� 2p2 � k

2kp2 � k2

�2

:

(20)

It is completely determined by the de�nition of the infrared domains 
U;L. For our

\rectangular" de�nition of 
U , see Eq. (8), the upper-line YFS form factor reads as

follows

Yp(
U) = p ln � + �Y FS;

�Y FS = �p ln

�
1�

nX
i=1

~�i

�
+

1

4
p +

�

�

�
� 1

2

�
;

p = 2
�

�

 
ln

1

�p
� 1

!
;

(21)

and the lower-line form factor is completely analogous. Let us note that in the latter

analytical calculations we shall switch to a \triangular" de�nition ~�i + ~�i < � of the

infrared domain 
, for which

�Y FS = �p ln

�
1�

nX
i=1

~�i

�
+

1

4
p +

�

�

�
� 1

2
� �2

6

�
; (22)

see also discussion in Ref. [10].

Let us start de�ning various components of the di�erential distribution with the ex-

pressions for ��
(r)
0 functions, r = 0; 1; 2; in O(�r)prag, respectively. These functions in the

YFS scheme are generally de�ned as

��
(r)
0 =

n
D

(r)

[0;0]
exp(�Yp(
U)� Yq(
L)

o �����
O(�r)

;

��
(r)

1U (ki) =
n
D

(r)

[1;0](ki) exp(�Yp(
U )� Yq(
L)
o �����

O(�r)

� ~Sp(ki) ��
(r�1)
0 ;

��
(2)

2UU(ki; kj) = D
(2)

[2;0](ki; kj)� ��
(1)

1U (ki) ~Sp(kj)

� ��
(1)

1U (kj) ~Sp(ki)� ��
(0)
0

~Sp(ki) ~Sp(kj);

��
(2)

2UL(ki; k
0
j) = D

(2)

[1;1](ki; k
0
j)� ��

(1)

1U (ki) ~Sq(k
0
j)

� ��
(1)

1L (k0j)
~Sp(ki)� ��

(0)
0

~Sp(ki) ~Sq(k
0
j):

(23)
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We have to stress a very important feature of the above de�nitions. The raw distributions

D
(r)

[n;n0]
are originally de�ned in the corresponding N -body phase-space, N = 2 + n +

n0 = 0; 1; 2, while ��(r) have to be de�ned in the presence of any number L = 1; 2; :::1
of additional real photons, i.e. in the (N + L)-particle phase-space. This requires an

interpolation of the original formulas for D
(r)

[n;n0] to higher-dimensional phase-space. This

interpolation is of course to some extent arbitrary and it is a well-known feature of the

YFS scheme already discussed in the original paper [14]. For instance D
(r)B

[0;0] is de�ned

originally in the 2-body phase-space. In Eqs. (23) this function is used beyond the 2-body

phase-space. This case is simple because D
(r)B

[0;0] depends only on t and s and its extension

to the N -photon case is trivial. The case of D
(r)B

[1;0] (ki) is already less trivial. In this case

the interpolation to multiple-photon phase-space is done with the simple substitution

k1 ! ki, i.e. (~�1; ~�1) ! (~�i; ~�i) in Eq. (4). The same method using the mapping of the

Sudakov variables is employed for D
(r)B

[1;1]
(ki; kj) and the two other double bremsstrahlung

distributions. Generally, for the type (A) expressions, the interpolation is done through

Mandelstam variables and Sudakov variables, while for the type (B) the interpolation is

done using almost exclusively Sudakov variables.

For the purpose of the analytical phase-space integrations over the type (B) di�erential

distributions, we write in the following the explicit expressions for the ��'s. In this case we

express all distributions and the phase-space integral in terms of the Sudakov variables.

In particular the \soft bremsstrahlung integration element" is parametrized as followsZ
kj =2
U

d3ki

k0i

~Sp(ki) =

Z
d�i

Z
d~�id~�i �(~�i + ~�i � ~�i ~�i ��) Sp(~�1; ~�i)

=

Z
d!i �(~�i + ~�i � ~�i ~�i ��);

Sp(~�1; ~�i) =
�

2�2
~�i ~�i

(~�i + �p ~�i)2( ~�i + �p~�i)2
; �p =

m2
e

jtpj
:

(24)

The new soft factor Sp(~�1; ~�i) di�ers only by normalization from the standard YFS soft

factor

~S(p1; p2; k) = Sp(~�1; ~�i) K
2
p=(p1p2); (25)

see Eq. (7) for the de�nition of Kp.

Let us begin with the O(�r)prag expression for ��
(r)B
0 ; r = 0; 1; 2:

��
(r)B
0 =

4��2

tptq
b0 (1 + �(r));

�(0) = 0; �(1) =  �(2) =  +
1

2
2:

(26)

Note that this choice is di�erent from (simpler than) the corresponding one in Ref. [10].
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Next, we also write explicit expressions for the upper line emission function ��
(r)B

1U ; r = 1; 2.

��
(r)B

1U (~�i; ~�i) =
4��2

tptq

K2
p

(p1p2)
b
(r)

1U (~�i; ~�i; �i);

b
(1)

1U (~�i; ~�i; �i) = Sp(~�i; ~�i)H(~�i; ~�i;  p)� b0Sp(~�i; ~�i);

b
(2)

1U (~�i; ~�i; �i) = Sp(~�i; ~�i)

�
1 + �(~�i; ~�i)

�
H(~�i; ~�i;  p)

� b0Sp(~�i; ~�i)

�
1 + �(0; 0)

�
;

�(~�i; ~�i) = 1 +
1

4
ln

(1� ~�i)
2

(1� vi)
:

(27)

The lower-line function ��
(r)
1L is de�ned in a completely analogous way. The explicit ex-

pressions for the O(�2) double photon emission ��2 distribution

��
(2)B

2UU (~�i; ~�i; �i; ~�j; ~�j; �j) =
4��2

tptq

K4
p

(p1p2)2
b2UU(~�i; ~�i; �i; ~�j; ~�j; �j); (28)

��
(2)B

2UL (~�i; ~�i; �i; ~�j0; ~�j0; �j0) =
4��2

tptq

K2
pK

2
q

(p1p2)
b2UL(~�i; ~�i; �i; ~�j0; ~�j0; �j0) (29)

are easily deduced from their de�nitions.

Let us �nally comment on the exponentiation of the type (B) matrix element. As in

case (A) we substitute the corresponding D
(r)A

[n;n0] into Eqs. (23) and the only non-trivial

matter to be discussed is the (o�-shell) extrapolation of the distributions D
(r)A

[n;n0] into the

multi-photon phase-space. The extrapolation is here even simpler than in case (B) be-

cause instead of the function H(~�1; ~�1;  p) we employ the simpler function G(p1; p2; q1; q2),

which contains momenta only of fermions, and is therefore, by construction, \blind" to

any individual spectator photon. The usual substitutions k1 ! ki (1-photon case) and

(k1; k2) ! (ki; kj) or (k1; k
0
1) ! (ki; k

0
j) (2-photon case) are obvious in the realization of

the extrapolation.

3 Semi-analytical integration

Analytical integration over the multi photon phase-space for the true experimental ES,

i.e. set of cuts, is practically impossible7. What we may try to achieve is to perform an

analytical calculation for the ES as close as possible to the true experimental ES. The

primary aim of this work is to obtain analytically the total cross section for the matrix

element of the BHLUMI multi photon MCEG with a precision of at least 0.03%. This

exercise is, �rst of all, a zero-level test of the correctness of the implementation of the

7See Refs. [20, 21] for an example of semi-analytical integration over the phase-space for another
unrealistic ES.
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O(�2)prag matrix element in BHLUMI. The exercise has great importance, even if it is

done for unrealistic ESs, provided that the high precision below 0.03% is really achieved.

In the above spirit the type of ES was chosen in such a way that the analytical calculation

is maximally simple. Of course, gaining experience from this step we are now in a much

better position to repeat a similar high-precision semi-analytical (SAN) calculation for a

more realistic ES in the future.

Having the above in mind, we have de�ned here an \academic event selection", called

for short an \academic ES" or AES, for which the task of analytical integration over

the phase-space is feasible and the result is not overwhelmingly complicated. We de�ne

the cuts of our AES as follows: jtminj < jtj < jtmaxj and V < Vmax, where the variable

V represents some kind of measure of the total energy carried away by all emitted real

photons. The requirement of 0 < V < 1 represents the condition of completeness of the

phase-space and the particular case 0 � V � � represents the condition that all photons

be soft. The V -variable we actually use is de�ned as

V = 1� ZpZq; (30)

Zp =
(p1p2) jtj�

(p1p2) +
P
j

(p1kj)
�2 ; Zq =

(q1q2) jtj�
(q1q2) +

P
l

(q1k
0
l)
�2 : (31)

With the above de�nition of the phase-space window, it is quite straightforward to

integrate the O(�2)prag matrix element, keeping all terms within the O(�2)prag approx-

imation. This we found insu�cient to establish a technical precision at the 0.03% level

because some terms beyond O(�2)prag | especially for partially incomplete results | are

of that size. See Sect. 1.3 for the de�nition of the O(�r)prag approximations and for a

discussion of the numerical importance of the various perturbative corrections.

We have therefore decided to integrate analytically up to terms8 of the O(�3)prag. In

the O(�3)prag approximation we include by de�nition all terms from O(�2)prag plus terms

of O(�3L3) and O(�2L). In other words, terms of O(�2L), due to our LL ansatz, and

terms of O(�3L3), due to exponentiation, are integrated analytically over the entire phase-

space (within our AES) exactly! The �rst results of the analytical integration (without

any details of the calculation) were presented in Ref. [5].

In the following we shall integrate analytically contributions from ��0, ��1 and ��2. These

three calculations di�er substantially. For ��0 the main di�culty will be in the very

precise integration over \spectator photons", because ��0 contributes most of the total cross

sections. At the other extreme, for the ��2 contributions, the integration over \spectator

photons" is either absent or can be done easily in the LL approximation. However,

the integration over the \active photon" variables, which sits directly in the ��2, is very

complicated and is the main source of di�culty. The case of ��1 is intermediate and

the most complicated, because both integrations, over \spectator photons" and \active

photon", are di�cult and interrelated. We start with the ��0 case because results of

8This is to our knowledge the only example of analytical integration over the full phase-space up to
three photons.
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integrations over \spectator photons" will be useful for the rest of the calculation. It is

also well suited for an introduction of the notation and basic calculation methods.

3.1 Preliminaries

Here we calculate the contribution to the total cross section from the ��0 part. For �xed

Q2 = t let us consider the corresponding distribution

d�
(r)
��0

djtj dV =
4��2

jtj2 �
(r)
��0

(t; V ) =
4��2

jtj2
Z
dv dv0

Z
d p

1X
n=1

1

n!

nY
i=1

Z
d!i �(~�i + ~�i � ~�i ~�i ��) ep ln�+�Y FS

�(1�Zp)�

�
v �

nX
i=1

(~�i + ~�i � ~�i ~�i)

�
�(�Kp

)

Z
d q

1X
n=10

1

n0!

nY
j=1

Z
d!0j �(~�0i + ~� 0i � ~�0i

~� 0i ��) eq ln�+�0

Y FS

�(1�Zq)�

�
v0 �

nX
i=1

(~�0i + ~� 0i � ~�0i
~� 0i)

�
�(�Kq

)

��
(r)
0 �(V � v � v0 + vv0))

=
4��2

jtj2 b0 (1 + �(r))

Z
dvdv0�(V � v � v0 + vv0)) B0(v) B0(v

0);

(32)

where

B0(v) =

Z
d p

1X
n=1

1

n!

nY
i=1

Z
d!i �(~�i + ~�i � ~�i ~�i ��) ep ln�+�Y FS

�(1�Zp)

nX
i=1

�

�
v �

nX
i=1

(~�i + ~�i � ~�i ~�i)

�
�(�Kp

)

(33)

corresponds to the emission of photons from a single line and will be calculated in this

section.

Let us note that the constraint �(�Kp
) reects the requirement that in the QRSp frame

where p1 = (Ep; 0; 0;�jpj) and p2 = (Ep; 0; 0; jpj), the total three-momentum of all photons

~K =
nP
i=1

~ki is in the x{z plane, i.e. Ky = 0. (In the actual Monte Carlo algorithm, this

is realized easily with the help of the rotation around the z-axis, which makes Ky = 0.)

Note that in the single photon case ~k is in the x{z plane while  p is simply its azimuthal

angle around the t-channel momentum transfer Q. This kind of parametrization of the

single photon was employed in the early work reported in Ref. [22], which later led to

Monte Carlo of Ref. [23]; it was also quite essential in the analytical O(�) calculation of
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the luminosity cross section in Ref. [24]. The multi photon generalization was given for

the �rst time in BHLUMI 1.x [9].

Furthermore, for any semi-analytical calculation it is crucial that we also know exactly

and explicitly the (upper) phase-space limits. Here they are given with the following

condition9

Zp =

�
1�

nX
i=1

~�i

��
1�

nX
i=1

~�i

�
� 1

4
~K2 > 0; (34)

where ~K =
Pn

i=1
~ki and the dimension-less ~ki are de�ned as in Ref. [9]. The above

expression is totally equivalent (no approximations) to that of eq. (31). Note also that

the following identity holds

�p =
m2

e

jtpj
=

Zp�
1�

nP
i=1

~�i

�2

m2
e

jtj : (35)

We shall use the completely analogous parametrization in terms of variables ~�0i and ~� 0i for

the lower line.

3.2 Collinearization

In the �rst step in our analytical calculation we introduce a series of O(�3)prag approxi-

mations, which leads to collinearization of the integral (33), i.e. in the resulting integrals

we shall be able to factorize initial- and �nal-state photons and sum up in�nite sums over

photon multiplicity. A very similar collinearization procedure will also be applied in the

calculation of the ��1 contribution in the next section.

We start with approximating the function Zp, which monitors the upper limit of the

phase-space, as follows

Zp ! �Zp = 1�
nX
i=1

(~�i + ~�i � ~�i ~�i) = 1�
nX
i=1

vi: (36)

The above approximation leads of course to

V = 1�
�

1�
X
j

(~�j + ~�j � ~�j ~�j)
� �

1�
X
l

(~�0l + ~� 0l � ~�0l
~� 0l)
�
: (37)

The above two approximations are valid not only in O(�2)prag but also within the LL and

next-to-LL approximations to any order!

The above ansatz is crucial for all further O(�3)prag approximations. It is valid for

one non-collinear photon and an arbitrary number of collinear photons (as can be checked

9The same condition has already been implemented in the BHLUMI Monte Carlo [9].
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with explicit kinematic considerations) { it is therefore valid not only in O(�3)prag but

in LL+NLL to in�nite order. Let us now reorganize the integral as follows (no further

approximations). We separate photons in the sum into two categories: (i) photons with

~�i > ~�i, which will be referred to as initial-state photons and (ii) photons with ~�i < ~�i
called �nal-state photons. Using the identity

d!i = �(~�i � ~�i)d!i + �( ~�i � ~�i)d!i = d!Ii + d!Fi (38)

we obtain the following expression

B0(t; v) =

Z
dvIdvFdv1 �(v � vI � vF )

Z
d p �(1� vI � vF )�

e
1

2
p ln�

1X
n=0

1

n!

nY
i=1

Z
vi>�

d!Ii �(vI �
nX
i=0

vi)

�

�
e
1

2
p ln�

1X
n0=0

1

n0!

n0Y
j=1

Z
vj>�

d!Fj �(vF �
n0X
i=0

vj)

�
e�Y FS �(�Kp

):

(39)

Our aim is to integrate and sum contributions from the initial- and �nal-state photons in

square brackets, in the �rst place. This is non-trivial because all parts of the integral are

interconnected through the variable

�p =
1� v�

1� ~�I � ~�F

�2

m2
e

jtj ;
~�I =

nX
i=1

~�Ii ;
~�F =

n0X
j=1

~�Fj ; (40)

which is present in all parts of integrand. We achieve the separation of the multi photon

integration/summation by means of the following crucial approximation

�p ! ��p =
1� v

(1� vF )2
m2

e

jtj : (41)

As is shown in the dedicated Appendix A (Sect. 10) we are allowed, within O(�3)prag, to

do the above approximation in all bremsstrahlung distributions d!i ! d�!i and in part of

the form factor e
1

2
p ln� ! e

1

2
�p ln�. The rest of the form factor requires, however, more

discussion. Much as in Appendix A, we may prove that for

�Y FS(p; ~�I + ~�F ) = �p ln
�
1� ~�I � ~�F

�
+

1

4
p +

�

�

�
� 1

2
� �2

6

�
(42)

we are allowed, within O(�3)prag, to approximate10

�Y FS(p; ~�I + ~�F ) �! �Y FS(�p; ~�I + ~�F ): (43)

10We have checked with a special dedicated MC run that the relative error introduced by the above
approximations is below 10�5!
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With all the discussed approximations we obtain the following expression:

B0(t; v) =

Z 1

0

dvIdvF �(v � vI � vF )

Z
d p�

e
1

2
�p ln�

1X
n=0

1

n!

nY
i=1

Z
vi>�

d�!Ii �(vI �
nX
i=0

vi)

�

�
e
1

2
�p ln�

1X
n0=0

1

n0!

n0Y
j=1

Z
vj>�

d�!Fj �(vF �
n0X
i=0

vj)

�

�(�Kp
) e

��Y FS(�p;~�I+~�F ):

(44)

In the above we have introduced the self-explanatory notation

�p = 2
�

�

�
ln

(1� vF )2

1� v

jtj
m2

e

� 1

�
=  + 2

�

�
ln

(1� vF )2

1� v
: (45)

At this stage the only contribution that prevents us from separate integration and

summations over multiple initial and �nal photons is the �Y FS form factor. Let us discuss

this point in a bit more detail. We would like to replace ~�I ! 0 and ~�F ! vF as we

did previously in �p. We cannot do it, however, because the di�erence exp(�Y FS(�p; ~�I +
~�F )) � exp(�Y FS(�p; vF )) may give a non-zero O(�) contribution. In fact only the �rst

term in the expansion

e�Y FS(�p;
~�I+~�F ) � e�Y FS(�p;vF )

= �p

�
� ln(1� ~�I + ~�F ) + ln(1� vF )

�
+O(�2p)

(46)

matters. Furthermore, this term may yield a non-zero O(�) contribution only in the

single-photon case. This single-photon contribution to B0 reads

B
sing
0 (t; v) =

Z 1

0

dvIdvF �(v � vI � vF )

Z
d p�

�(vF )

Z
d�!I1 �(vI � v1) (� ln(1� ~�1))

+ �(vI)

Z
d�!F1 �(vF � v1) (ln(1� v1)� ln(1� ~�1))

�
�(�Kp

):

(47)

Luckily, the two terms in the above formula (from initial- and �nal-state emissions) cancel

after integration over d�!1, so in principle we may drop out this contribution. (It has to be

kept, however, for the future applications in which one will distinguish between the initial

and �nal bremsstrahlung, so we shall calculate it later in this section.) In the resulting
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expression we may �nally pull the form factor completely out of the multi photon integrals

B0(t; v) =

Z 1

0

dvIdvF �(v � vI � vF )

Z
d p

e
��Y FS(�p;vF )�
e
1

2
�p ln�

1X
n=0

1

n!

nY
i=1

Z
vi>�

d�!Ii �(vI �
nX
i=0

vi)

�

�
e
1

2
�p ln�

1X
n0=0

1

n0!

n0Y
j=1

Z
vj>�

d�!Fj �(vF �
n0X
i=0

vj)

�
�(�Kp

):

(48)

The integration
R
d p can be done at the expense of �(�Kp

), which is not completely

straightforward; for more details see the next section on ��1 calculation. The integral

B0(t; v) =

Z 1

0

dvIdvF �(v � vI � vF )

e
��Y FS(�p;vF ) f1

�
1

2
�p; vI

�
f1

�
1

2
�p; vF

� (49)

clearly factorizes into a convolution of the two functionally identical expressions

f1

�
1

2
�p; x

�
= e

1

2
�p ln�

1X
n=0

1

n!

nY
i=1

Z
vi>�

d�!Ii �(x�
nX
i=0

vi): (50)

Note that the convolution is not completely trivial because p still depends on vF .

For the sake of completeness let us also give an explicit expression for the initial-state

contribution in B
sing
0

B
sing
0I (v) = �

Z
d�!I1 �(v � ~�1 � ~�1 + ~�1

~�1)  ln(1� ~�1)

= 
�

�

1

v

�
1

8
ln2(1� v) + Li2(1� v) + Li2(1)� 2Li2

�p
1� v

��
:

(51)

3.3 Single hemisphere multi photon integral

In the following we shall calculate the multi photon integral f1. We immediately �nd that

the integration over the photon angles leads toZ
vi>�

d�!Ii =
1

2

Z
vi>�

d�!i =
1

2

Z
vi>�

dvi

vi

�
�p � �

�
ln(1� vi)

�
; (52)
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and hence

f1

�
1

2
�p; x

�
= e

1

2
�p ln�

1X
n=0

1

n!

nY
i=1Z

vi>�

dvi

vi

�
�p � �

�
ln(1� vi)

�
�

 
x�

nX
i=0

vi

!
:

(53)

The function f1 at the x! 0 soft limit coincides with the well-known soft photon integral

f0(g; x) = eg ln�
1X
n=0

gn

n!

nY
i=1

Z
vi>�

dvi

vi
�(x�

nX
i=0

vi) = F (g)gxg�1; (54)

where

F (g) =
e�Cg

�(1 + g)
(55)

and C is the Euler constant. We did not attempt to obtain a close expression for f1
distribution because it is rather easily expandable in powers of � and in fact, in the

O(�3)prag, we need only the �rst term beyond Eq. (55). More precisely we replace

nY
i=1

�
�p � �

�
ln(1� vi)

� ! �np � �n�1p

�

�

nX
i=1

ln(1� vi); (56)

and we evaluate two multi photon integrals using Eq. (55):

f1

�
1

2
�p; x

�
= f

�
1

2
�p; x

�

� 1

2

�

�
F

�
1

2
�p

�Z x
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ln(1� y)

y

1

2
�p(x� y)

1

2
�p�1:

(57)

Expanding the second integral in powers of �p we �nd

f1

�
1

2
�p; x

�
= F

�
1

2
�p

�
x

1

2
�p�1

�
1

2
�p � 1

2

�

�
ln(1� x)� 1

8

�

�
�p ln2(1� x)

�
:

(58)

The above formula was checked with the help of the dedicated one-dimensional Monte

Carlo program. We have checked numerically the transition from Eq. (53) to (58) and

we have found agreement better than 3 � 10�5. It should be noted that we have also

calculated analytically the explicit O(�4)prag expression for the f1 function (we do not

include the relevant results here).
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3.4 Convolution integral

Our integral

B0(t; v) =

vZ
0

dvFe
��Y FS(�p(vF );vF ) f1

�
1

2
�p(vF ); v � vF

�
f1

�
1

2
�p(vF ); vF

�
(59)

is singular (but integrable) at the end points vF = 1 and vF = v. For example its integrand

behaves like � v
1

2
�p(0)�1

F at vF ! 0 and the integration
R
dvF contributes 1=�p(0). Because

of that we cannot expand it simply up to O(�3)prag terms and integrate term by term.

The proper way of proceeding is to isolate two singular contributions and integrate them

separately. The non-singular remnant is truncated to O(�3)prag and integrated term by

term11. Of course, there is a freedom in the choice of the two singular components and

we shall choose them to be maximally simple. We de�ne the �rst singular contribution

as follows

B0A(t; v) =

vZ
0

dvF e
��Y FS(�p(0);0)

f1

�
1

2
�p(0); v

�
f0

�
1

2
�p(0); vF

� �
v � vF

v

� 1

2
�p(0)

;

(60)

where the additional factor ((v � vF )=v)p at the end of the formula is chosen in such a

way that it does not a�ect the residue, i.e. ((v � vF )=v)p = 1 at vF ! 0. It is intro-

duced to facilitate the transition from F 2(�p(0)=2) to F (�p(0)) and later to the standard

normalization factor F (). The second singular contribution we choose in the analogous

way

B0B(t; v) =

vZ
0

dvF e
��Y FS(�p(v);vF )

f0

�
1

2
�p(v); v � vF

�
f1

�
1

2
�p(v); v

��vF
v

� 1

2
�p(v)

:

(61)

The non-singular integral (expandable to O(�3)prag prior to integration) reads, of course,

as follows

B0R(t; v) = B0(t; v)�B0A(t; v)�B0B(t; v): (62)

11The actual calculation was done by hand and also using the program form1 for algebraic manipula-
tions [25].
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Let us introduce a short-hand notation, which will be useful also in the following sections:

�Y FS() =
1

4
 +

�

�

�
� 1

2
� �2

6

�
; (63)

0 =  � 2
�

�
ln(1� v) = �p(0); (64)

00(v) =  + 2
�

�
ln(1� v) = �p(v): (65)

The two singular integrals read
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(66)

and the non-singular is found, as usual up to O(�3)prag, to be:

B0R(t; v) = e�Y FS() F ()v�1
�
�1

8
3 +

3

4

�

�


�
ln2(1� v); (67)

so that the total result is

B0(t; v) = F () v�1 e�Y FS()

(
 � �

�
ln(1� v)

� 1

2
2 ln(1� v) +

1

8
3 ln2(1� v)� �

�
 ln2(1� v)

)
:

(68)

3.5 Combining upper and lower line

Combining upper and lower line is done using exactly the same methods as combining

initial- and �nal-state contribution for the upper fermion line described in the previous

section.
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The two-line contribution from ��
(r)
0 reads, in three consecutive orders r = 1; 2; 3; as

follows

�
(r)
��0

(t; V ) = b0 (1 + �(r))

Z
dvdv0�(V � v � v0 + vv0)) B0(v) B0(v

0)

= b0 F (2)V 2�1 e2�Y FS() (1 + �(r))

(
2 � 2

�

�
ln(1� V )

� 22 ln(1� V ) +
3

4
3 ln2(1� V )� 

�

�
ln2(1� V )

)
:

(69)

3.6 Numerical results on ��0
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Figure 1: The comparison of the Monte Carlo and semi-analytical results for the lowest-order ��0.

In �g. 1 we compare our semi-analytical result of Eq. (69) with the numerical Monte Carlo

result of BHLUMI. We plot the quantity

R( ��
(0)
0 ; t; Vmax) =

VmaxR
0

d�
(0)

��0

djtj dV
dV

d�Born
djtj

=

VmaxZ
0

�
(r)
��0

(t; V ) dV (70)

as a function of the cut on the total photon energy Vmax, for the �xed transfer t =

�4:612982 GeV2. We plot and examine the di�erence of the MC and the SAN results.

The actual MC and SAN result are also plotted { they have to be multiplied by a factor

10�3 in order to be seen in the plot. In the semi-analytical result the integration over V is
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performed numerically (using the standard Gauss integration method). As we clearly see

in the plot, the MC and SAN results agree to better then 1:5� 10�4! The same level of

agreement was reached for ��
(1)
0 and ��

(2)
0 . In spite of the simplicity of Eq. (69), the above

result is very important { it is a cornerstone in establishing the overall normalization of

the BHLUMI Monte Carlo at the level of 1� 10�4, simply because ��0 represents 95% of

the total cross section.

4 Contribution from ��1

In the following we consider the emission from the upper line only, i.e. we concentrate on

terms proportional to ��
(r)

1U ; r = 1; 2. The total contribution from the lower line to total

cross section is the same. For �xed Q2 = t, let us consider the corresponding distribution

d�
(r)
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djtj dV =
4��2
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�
v0 �

nX
i=1

(~�0i + ~� 0i � ~�0i
~� 0i)

�
�(�Kq

)

�(V � v � v0 + vv0)

=
4��2

jtj2
Z
dvdv0�(V � v � v0 + vv0)B

(r)
1 (v) B0(v

0);

(71)

where we know the function B0(v
0) from the ��0 calculation and the new function

B
(r)
1 (v) =

Z
d p

1X
n=1

1

n!

nY
i=1

Z
d!i �(~�i + ~�i � ~�i ~�i ��) ep ln�+�Y FS

�(1�Zp)

nX
i=1

b
(r)

1U (~�i; ~�i)

Sp(~�1; ~�i)
�

�
v �

nX
i=1

(~�i + ~�i � ~�i ~�i)

�
�(�Kp

)

(72)

is to be calculate in this section.

4.1 Collinearization

In the �rst step in our analytical calculation we introduce a series of O(�3)prag approxima-

tions, which lead to collinearization of the integral (71), i.e. summation/integration over
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an in�nite series of photons. We start, as in the ~�0 case, by approximating the function

Zp, which monitors the upper limit of the phase-space, as follows

Zp ! �Zp = 1�
nX
i=1

(~�i + ~�i � ~�i ~�i) = 1�
nX
i=1

vi: (73)

Let us now reorganize the integral as follows (no further approximations). First we sepa-

rate the photons in the sum into two categories: these that enter into b
(r)

1U and those that

do not. Each of the above categories is split into two categories, which will be tagged with

the index K = I; F : (i) photons with ~�i > ~�i, which will be referred to as initial-state

photons (K = I) and (ii) photons with ~�i < ~�i, called �nal-state photons (K = F ). Using

the identity

d!i = �(~�i � ~�i)d!i + �( ~�i � ~�i)d!i = d!Ii + d!Fi (74)

we come to the following expression

B
(r)
1 (t; v) = B

(r)
1I (t; v) +B

(r)
1F (t; v)

B
(r)

1K(t; v) =

Z
dvIdvFdv1 �(v � vI � vF � v1)Z
d p �(1� vI � vF � v1)Z
d!K1 �(v1 � ~�1 � ~�1 + ~�1

~�1) b
(r)

1U (~�1; ~�1)=Sp(~�1; ~�1)�
e
1

2
p ln�

1X
n=0

1

n!

nY
i=1

Z
vi>�

d!Ii �(vI �
nX
i=0

vi)

�

�
e
1

2
p ln�

1X
n0=0

1

n0!

n0Y
j=1

Z
vj>�

d!Fj �(vF �
n0X
i=0

vj)

�
e�Y FS �(�Kp

):

(75)

The next step in the collinearization is similar to what is done in the case of ��0 (using

the theorem proved in Appendix A) by means of the crucial O(�3)prag approximation:

�p =
1� v�

1� ~�1 � ~�I � ~�F

�2

m2
e

jtj �!
��Kp =

1� v�
1� v1K � vF

�2

m2
e

jtj ; (76)

where v1I � 0 and v1F = v1, in all bremsstrahlung distributions d�!K1 and d�!Ki and also in

part of the form factor e
1

2
p ln�. In the remaining part of the form factor within O(�3)prag

we are able to substitute

�Y FS(p; ~�I + ~�F + ~�1) �! �Y FS(�Kp ;
~�I + ~�F + ~�1); K = I; F: (77)
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Here we have implicitly introduced the following self-explanatory de�nition:

�Kp = 2
�

�

�
ln

(1� vF � v1K)2

1� v

jtj
m2

e

� 1

�
=  + 2

�

�
ln

(1� vF � v1K)2

1� v
: (78)

With the above approximations we arrive at the following expression:

B
(r)

1K(t; v) =

Z 1

0

dvIdvFdv1�(v � vI � vF � v1)

Z
d pZ

d�!K1 �(v1 � ~�1 � ~�1 + ~�1
~�1)

b
(r)

1U (~�1; ~�1)

Sp(~�1; ~�1)�
e
1

2
�Kp ln�

1X
n=0

1

n!

nY
i=1

Z
vi>�

d�!Ii �(vI �
nX
i=0

vi)

�

�
e
1

2
�Kp ln�

1X
n0=0

1

n0!

n0Y
j=1

Z
vj>�

d�!Fj �(vF �
n0X
i=0

vj)

�

e
��Y FS(�p;~�I+~�F+~�1)�(�Kp

):

(79)

As we see, the only thing that now prevents us from integrating and summing over the

in�nite series of photon contributions is the form factor dependence on ~�I + ~�F + ~�1.

Similarly to the ��0 case, we expand

e�Y FS(�
K
p ;~�I+~�F+~�1) = e�Y FS(�

K
p ;v1;K+vF )

�
1 + �Kp [ln(1� vF � v1K)

� ln(1� ~�I � ~�F � ~�1)] +O((�Kp )2)

� (80)

and we are able to perform the integration and summation over the in�nite series of

photon contributions for the �rst term in the above expansion, while for the second

term the summation is irrelevant because the only O(�) contribution of interest comes

from the single-photon con�guration. Consequently, after performing the multi photon

integrations/summations we obtain

B
(r)

1K(t; v) =

Z
dvIdvFdv1�(v � vI � vF � v1)Z
d p

2�

Z
d�!1K�(v1 � ~�1 � ~�1 + ~�1

~�1)

b
(r)

1U(~�1; ~�1)

Sp(~�1; ~�1)
e
��Y FS(�

K
p ;vF+v1) f1

�
1

2
�Kp ; vI

�
f1

�
1

2
�Kp ; vF

�

+

Z
d�!1K

Z
d p

2�
�(v � ~�1 � ~�1 + ~�1

~�1)
b
(r�1)
1U (~�1; ~�1)

Sp(~�1; ~�1)

[ln(1� v1K)� ln(1� ~�1)]:

(81)
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Note that the elimination of �(�Kp
) gives rise to the 1=2� factor12. Concentrating on the

more general second-order case the corresponding integral is brought to the following nice

form, which is the starting point for further work

B
(2)

1K(t; v) =

Z
dvIdvFdv1�(v � vI � vF � v1)Z

d p

2�

Z
d�!1K �(v1 � ~�1 � ~�1 + ~�1

~�1)

�
b0�(v1)

�
1 + �(0)

�

+ b0�(v1)

�
�(v1K)� �(0)

�
+

�
1 + �(v1K)

�
h(~�1; ~�1;  p)

�

e
��Y FS(�

K
p ;vF+v1K ) f1

�
1

2
�Kp ; vI

�
f1

�
1

2
�Kp ; vF

�

+

Z
d�!1K

Z
d p

2�
�(v � ~�1 � ~�1 + ~�1

~�1)

�
b0�(v1)

+ h(~�1; ~�1;  p)

�
[ln(1� v1K)� ln(1� ~�1)]:

(82)

In the above formula we have isolated the leading-logarithmic contribution, using the

following decomposition into leading-log and sub-leading parts (prior to integration over

the phase-space):

H(~�1; ~�1;  p) = b0�(v1) + h(~�1; ~�1;  p) = b0 + b0 �(v1) + h(~�1; ~�1;  p); (83)

where

�(x) � 1

2
(1 + (1� x)2); �(x) � �(x)� 1 = x

�
�1 +

x

2

�
: (84)

Let us still reorder our integral, perform some relatively trivial azimuthal angle integra-

tions and do the integration over  p and d�1 in d!1. Neglecting unimportant terms of

O(��) and O(m2
e=t) we �nd13Z

d p

2�

Z
d�!1 �(v1 � ~�1 � ~�1 + ~�1

~�1) h(~�1; ~�1;  p)

=
�

�

Z
d~�1d~�1�(v1 � ~�1 � ~�1 + ~�1

~�1)g(~�1; ~�1);

(85)

where

g(~�1; ~�1) =
v21
2

�
��p

y21
+

��p

z21

�
+ 2(v1 � 1) +

1

2
~�1

~�1 � �
�(v1)

1� v1

1

z1
;

yi = ~�i + ~�i��
K
p ; zi = ~�i + ~�i��

K
p :

(86)

12The formal proof goes as follows: one may add integration (2�)�1
R
d� � 1 over dummy � angle,

then rotate all photons with �. All of the integrand is invariant under such rotation except �(�Kp
), which

transforms into �(�Kp
� �). This now can be removed at the expense of

R
d�.

13We have checked numerically with the help of a dedicated MC run that the approximations in the
above equation introduce only 10�6 of relative error.
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With the help of the above identity we obtain

B
(2)

1K(t; v) = B
(2)

1Km(t; v) +B
(2)

1Ksingl(t; v1);

B
(2)

1Km(t; v) =

Z
dvIdvFdv1�(v � vI � vF � v1)
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Z
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1 + �(0)

�
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�
�(v1K)� �(0)
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+

�
1 + �(v1K)

�
g(~�1; ~�1)

�

e
��Y FS(�

K
p ;vF+v1K ) f1

�
1

2
�Kp ; vI

�
f1

�
1

2
�Kp ; vF

�
;

B
(2)

1Ksingl(t; v1) =
�

�


Z
1K

"
~�1

~�1

y21z
2
1

b0�(v1) + g(~�1; ~�1)

#
ln

1� v1K

1� ~�1
;

(87)

where we use the following short-hand notationZ
1I

�
Z

~�1>~�1

d~�1d~�1�(v1 � ~�1 � ~�1 + ~�1
~�1);

Z
1F

�
Z

~�1<~�1

d~�1d~�1�(v1 � ~�1 � ~�1 + ~�1
~�1):

(88)

We are now ready to integrate over the direction of the �rst photon. Let us start with

the single-photon sub-leading integral in B
(2)

1Ksing(t; v1). As in the ��0 case we �nd that it

does not contribute to the total result because contributions from the initial K = I and

�nal K = F state do cancel due to B
(2)

1Ising(t; v) = �B(2)

1Fsing(t; v). This is generally true

for any integral of the form

AK(v1) =

Z
1K

f(~�1; ~�1) ln
1� v1K

1� ~�1
; (89)

where f(~�1; ~�1) is symmetric. Note that here the non-symmetric O(�) part in g(~�1; ~�1)

can be neglected. Nevertheless we calculate this contribution explicitly, for the purpose

of some important future tests, see Section 8:

B
(2)

1Ksingl(t; v) = 
�

�

n
� 1 + v=2 +

p
1� v

+ ln2(1� v)[3=8� (5=16)v + 1=(8v)]

+ (1=v)[Li2(1) + Li2(1� v)� 2Li2(
p

(1� v))]
o
:

(90)
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In the main leading logarithmic integral

B
(2)

1Km(t; v) =

Z
dvIdvFdv1�(v � vI � vF � v1)
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�
(91)

we need the following elementary integrals

�
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�

Z
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�
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�

�
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�

�

Z
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=
�

�

1

2

�
�3 +

5

2
v

�
ln(1� v1);+� 

�6 + 5v

8(1� v1)
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(92)

The integration over the photon direction with the help of the above formulas leads to

the following results with a 2-fold convolution

B
(2)
1 (t; v) = B

(2)

1Im(t; v) +B
(2)

1Fm(t; v);

B
(2)

1Im(t; v) =
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dvIdvFdv1�(v � vI � vF � v1) e
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F
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1

2
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�
:

(93)
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4.2 Last integrations

In the following we shall evaluate two double-convolution integrals starting with B
(2)

1Fm,

which is a little bit easier. Generally, we shall use the same \pole decomposition" proce-

dure as in the ��0 calculation and it will be used twice in the process of integration. We

have some freedom in the order of integration, which we will exploit to facilitate the inte-

gration. In the case of B
(2)

1Fm it is easier to perform �rst the sub-convolution in variables

vF and v1 keeping u = vF + v1 constant because u enters in a natural way into

�Fp (vF + v1) =  + 2
�

�
ln

(1� vF � v1)
2

1� v
= 00(v) + 4

�

�
ln

1� vF � v1

1� v
: (94)

Let us recall also the de�nition of the form factor

�Y FS(�Fp (vF + v1); vF + v1) = ��Fp (vF + v1) ln
�
1� vF � v1

�
+

1

4
�Fp (vF + v1) +

�

�

�
� 1

2
� �2

6

�
;

(95)

see the notation in Eqs. (63{65). Summarizing, the non-trivial dependence of f1 on

vF + v1 = v � vI through �Fp dictates the following economical order of integration

B
(2)

1Fm(t; v) =

Z v

0

dvIdu�(v � vI � u)

e
��Y FS(�

F
p (u);u) f1

�
1

2
�Fp (u); vI

�
R

(2)

F (�Fp (u); u);

(96)

where

R
(2)

F (�Fp ; u) =

Z
dvFdv1�(u� vF � v1) f1

�
1

2
�Fp ; vF
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1
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n
�Fp �

�

�
ln(1� v1)

o�
b0�(v1)(1 + ) + b0�(v1)

1

4
ln(1� v1)

�

+
�

�
gFa (v1)

�
1 + 

�
1 +

1

4
ln(1� v1)

��#
:

(97)

The inner convolution is done with the usual techniques, see the case of ~�0, and the result

reads as follows:

R
(2)

F (F ; u) = F

�
1

2
�Fp

�
u

1

2
�Fp

�
�Fp (�1=2 + (1=4)u) +

�

�
ln(1� u)(�1 + u) + (�Fp )2(�(1=8)u)
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+ �Fp (�(1=2) + (1=4)u)

+ �Fp ln(1� u)(�(1=4) + (1=8)u+ 1=(4u))

+ 3 ln(1� u)(1=16� (1=16)u) + 3Li2(u)(�1=8 + (1=16)u)

+ 3 ln(1� u)2(�1=16 + (1=32)u+ 1=(16u))

+ 
�

�
(3=8)u+ 

�

�
ln(1� u)(�5=8 + (5=8)u)

+ 
�

�
ln(1� u)2(�3=4 + (3=4)u� 1=(4u))

+ 
�

�
Li2(u)(�3=4 + (5=8)u)

�
;

(98)

where we have replaced �Fp !  wherever possible. The second integration yields us the

total second-order result

B
(2)

1Fm(t; v) =
1

2
b0 F (00) v

00

exp(�Y FS(00)� 00 ln(1� v))�
00(�1 + v=2) +
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2
(�v=2)

+ 00(�1 + v=2) + 00 ln(1� v)(�1=2 + v=4 + 1=(2v))

+ 3 ln(1� v)(�v=4) + 3 ln2(1� v)(1=(4v))

+ 
�
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(7v=2) + 

�

�
ln(1� v)(3=2 + v=2)

+ 
�

�
ln2(1� v)(�4 + 3v � 1=(2v)) + 

�

�
Li2(v)(�7 + 9v=2)

�
:

(99)

In the latter discussion we shall also use the corresponding results for the �rst-order matrix

element. It reads as follows

B
(1)

1Fm(t; v) =
1

2
b0 F (00) v

00

exp(�Y FS(00)� 00 ln(1� v))�
00(�1 + v=2) +

�

�
ln(1� v)(�2 + 2v) + 00
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+ 3(v=4) + 3 ln(1� v)(�1=4) + 3 ln2(1� v)(1=4� v=8)

+ 3Li2(v)(1=2� v=4) + 
�
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+ 
�

�
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�
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ln2(1� v)(�3 + 2v)

+ 
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�
Li2(v)(�7 + 9v=2)

�
:

(100)

In the remaining initial-state contribution, the order of convolutions is dictated again

by the vF dependence in

�Ip(vF ) =  + 2
�

�
ln

(1� vF )2

1� v
= 0(v) + 4

�

�
ln(1� vF ); (101)
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which suggests that we convolute �rst v1 with vI and next u = v1 + vI with vF as follows

B
(2)

1Im(t; v) =

Z v

0

dvFdu�(v � vF � u) e
��Y FS(�
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(102)

where
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(103)

The result of the inner convolution reads
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I (�Ip ; u) = F
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�Ip(�1=2 + (1=4)u) +
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ln(1� u)(�1 + u) + (�Ip)2(�(1=8)u)
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+ 3(�(1=8)u) + 3 ln(1� u)(�1=16 + (1=16)u)

+ 3Li2(u)(1=8� (1=16)u)
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�
ln(1� u)(�5=8 + (5=8)u)
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�
;

(104)

where we have replaced �Ip !  wherever it was possible. The second integration/convolution

leads to the following results for the corresponding O(�2;1)prag matrix elements

B
(2)

1Im(t; v) =
1

2
b0 F (0) v

0

e�Y FS(
0)�

0(�1 + v=2) +
�

�
ln(1� v)(�2 + 2v) + 0

2
(�1=2v)

+ 0(�1 + v=2) + 0 ln(1� v)(1=2� v=4� 1=(2v))
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+ 3(�v=2) + 3 ln(1� v)(�1=2 + v=2)

+ 3 ln2(1� v)(1=4� v=8� 1=(4v)) + 
�
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(7v=2)

+ 
�
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ln(1� v)(3=2� 3v=2) + 
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ln2(1� v)(1=(2v))

+ 
�

�
Li2(v)(1 + v=2)� ��(1� v � �)

�(v)

1� v

�
;

(105)

B
(1)

1Im(t; v) =
1

2
b0 F (0) v

0

e�Y FS(
0)

�
0(�1 + v=2) +

�

�
ln(1� v)(�2 + 2v) + 0

2
(�v=2)

+ 3(v=4) + 3 ln(1� v)(�1=4 + v=4)

+ 3[Li2(v)(�1=2 + v=4v)

+ 
�

�
(7v=2) + 

�

�
ln(1� v)(7=2� 7v=2)

+ 
�

�
ln2(1� v)(�1 + v)

+ 
�

�
Li2(v)(1 + v=2)� ��(1� v � �)

�(v)

1� v

�
:

(106)

In the above expressions we still kept the 0 and 00 resulting directly from the inte-

grations. In the �nal expression for the B1-function we expand them

B
(2)
1 (v) = b0 F () v e�Y FS()(

(�1 + v=2) +
�

�
ln(1� v)(�2 + 2v) + 2(�1)

+ 2 ln(1� v)(1=2� v=4) + 3(�v=4) + 3 ln(1� v)(1=4 + v=8)

+ 3 ln2(1� v)(1=8� v=16� 1=(4v)) + 
�

�
(7v=2)

+ 
�

�
ln(1� v)(3=2� v=2) + 

�

�
ln2(1� v)=v

+ 
�

�
Li2(v)(�3 + 5v=2) + ��(1� v � �)�(v)=(1� v)(�1=2)

)
;

(107)
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B
(1)
1 (v) = b0 F () v e�Y FS()(

(�1 + v=2) +
�

�
ln(1� v)(�2 + 2v) + 2(�v=2)

+ 2 ln(1� v)(1=2� v=4) + 3(v=4)

+ 3 ln(1� v)(�1=4 + 3v=8) + 3 ln2(1� v)(�1=8 + v=16)

+ 
�

�
(7v=2) + 

�

�
ln(1� v)(7=2� 5v=2)

+ 
�

�
ln2(1� v)(1� v=2) + 

�

�
Li2(v)(�3 + 5v=2)

+ ��(1� v � �)�(v)=(1� v)(�1=2)

)
:

(108)

The above result represents the ��1 contribution in the total absence of the photon

emission from the lower line. In the presence of the photon emission from the lower line

(at the ��0 level) we have to perform the convolution of the above results with the function

B0 from the lower line

�
(r)

1U(t; V ) =

Z
dvdv0�(V � v � v0 + vv0)B

(r)
1 (v) B0(v

0); (109)

see also Eq. (71). The corresponding second- and �rst-order results read (remember that

virtual corrections are here as for emission from two fermion lines!)

�
(2)

1U (t; V ) = b0 F
2()V 2 e2�Y FS()(

(�1 + V=2) +
�

�
ln(1� V )(�2 + 2V )

+ 2(�1� V=2) + 2 ln(1� V )(3=2� 3V=4)

+ 3(V=4) + 3 ln(1� V )(3=4 + 7=8V )

+ 3 ln2(1� V )(�3=8 + 3V=16� 1=(4V )) + 3Li2(V )(1� V=2)

+
�

�
(6V ) +

�

�
 ln(1� V )(4� 5V=2)

+
�

�
 ln(1� V )2(1=2� 3V=4 + 1=V ) +

�

�
Li2(V )(�6 + 5V )

� 1=2��(1� v � �)�(V )=(1� V )

)
;

(110)
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�
(1)

1U (t; V ) = b0 F
2()V 2 e2�Y FS()(

(�1 + V=2) +
�

�
ln(1� V )(�2 + 2V ) + 2(�V )

+ 2 ln(1� V )(3=2� 3V=4) + 3(5V=4)

+ 3 ln(1� V )(�3=4 + 13V=8) + 3 ln2(1� V )(�5=8 + 5V=16)

+ 3Li2(V )(1� V=2) +
�

�
(6V )

+
�

�
 ln(1� V )(6� 9V=2) +

�

�
 ln2(1� V )(3=2� 5V=4)

+
�

�
Li2(V )(�6 + 5V )� 1=2��(1� v � �)�(V )=(1� V )

)
:

(111)

The total ~�1 contribution is the sum of the above with an analogous contribution from

the lower line. It is simply twice the upper line result.

4.3 Numerical results on ��1
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��
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�2
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R(t; V
max
)

Vmax

Figure 2: The comparison of the Monte Carlo and semi-analytical results for the second-order ��1.

In �g. 2 we compare our semi-analytical result of Eq. (110) with the numerical result of

BHLUMI. We plot the quantity R( ��
(2)
1 ; t; Vmax) de�ned in a way analogous to the de�nition

of ��0 in Eq. (70), as a function of the cut of the total photon energy Vmax, for the same

�xed value of the transfer t. As before, we plot the di�erence between the MC and semi-

analytical results, showing in addition ��1 itself, multiplied by a factor 10�2. Again, the
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MC and SAN results agree to better than 1 � 10�4 (for the contribution from one line)

in units of the Born cross section. This result marks an important step towards a similar

agreement for the second order total cross section, because ��1 is relatively complicated

and, at the same time, numerically sizeable.

5 Contribution from ��2

5.1 Upper line emission ��2UU

In the following we shall calculate the contributions to the di�erential distribution from

the simultaneous emission of two real photons from one electron (upper) line as de�ned

by Eq. (29). Again we shall split photons into those that enter directly into ��2UU and

the other \spectator" photons that do not, as in the case of ��0;1. Here, summation over

spectator multiple photons is generally done more easily because ��2UU is already O(�2)

from the start, so that additional smearing due to spectator photons will be su�cient to

discuss in the leading-log approximation (keeping however the correct soft limit as usual!).

Introducing d!i = d!Ii + d!Fi we obtain for \non-spectator" photons

d!1d!2 b2UU (~�1; ~�1; �1; ~�2; ~�2; �2) =

(d!I1d!
I
2 + d!F1 d!

F
2 )�

�(v1 � v2)
1

2
fH(~�1; ~�1;  p)�(v�2) +H(~��1;

~��1 ;  p)�(v2)g

+ �(v2 � v1)
1

2
fH(~�2; ~�2;  p)�(v�1) +H(~��2;

~��2 ;  p)�(v1)g

� (H(~�1; ~�1;  p)� b0)� (H(~�2; ~�2;  q)� b0)� b0

�

+ d!I1d!
F
2

�
�(v1 � v2) H(~��1;

~��1 ;  p)�(v2)

+ �(v2 � v1) H(~�2; ~�2;  p)�(v�1)

� (H(~�1; ~�1;  p)� b0)� (H(~�2; ~�2;  q)� b0)� b0

�

+ d!F1 d!
I
2

�
�(v2 � v1) H(~��1;

~��1 ;  p)�(v2)

+ �(v1 � v2) H(~�2; ~�2;  p)�(v�1)

� (H(~�1; ~�1;  p)� b0)� (H(~�2; ~�2;  q)� b0)� b0

�
:

(112)

When both photons are in the initial-state or both in the �nal-state, using the usual

decomposition H(~�; ~�;  ) = b0�(v) + h(~�; ~�;  ) into leading-log and sub-leading parts,
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the above expression can be split into leading and non-leading parts:

d!K1 d!
K
2 b2UU(~�1; ~�1; �1; ~�2; ~�2; �2) = d!K1 d!

K
2

(
b0K�

KK(v1; v2)

+ �(v1 � v2)

�
h(~�1; ~�1;  p)�(v�2)

2
+
h(~��1;

~��1 ;  p)�(v2)

2

� h(~�1; ~�1;  p)� h(~�2; ~�2;  q)

�

+ �(v2 � v1)

�
h(~�2; ~�2;  p)�(v�1)

2
+
h(~��2;

~��2 ;  p)�(v1)

2

� h(~�2; ~�2;  p)� h(~�1; ~�1;  q)

�)
;

(113)

where K = I; F . In the remaining case of one photon in the initial and one in the �nal

state, we obtain, for instance:

d!I1d!
F
2 b2UU(~�1; ~�1; �1; ~�2; ~�2; �2) = d!I1d!

F
2

(
b0K�

IF (v1; v2)

+ �(v1 � v2)

�
h(~��1;

~��1 ;  p)�(v2)� h(~�1; ~�1;  p)� h(~�2; ~�2;  q)

�

+ �(v2 � v1)

�
�(v�1)h(~�2; ~�2;  p)� h(~�2; ~�2;  p)� h(~�1; ~�1;  q)

�)
;

(114)

and the expression for d!F1 d!
I
2 b2UU is quite similar. In the above formulas we have

introduced the following short-hand notation for the leading logarithmic part

K�
KL(v1; v2) � v1; v2 k

�
KL(v1; v2); K; L = I; F;

k�II(v1; v2) = k�FF (v1; v2) =
1

2
[k�IF (v1; v2) + k�IF (v2; v1)];

k�IF (v1; v2) = k�FI(v2; v1) = �

�
v1

1� v2

�
�(v2)� �(v1)� �(v2) + 1

=
1

2
� 1

2

1

1� v2
+

1

4

v1

1� v2
+

1

4

v1

(1� v2)2
:

(115)
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The integrated contribution including the spectator multiple photons now reads:

d�2UU

djtj dV =
4��2

jtj2 ���2UU (t; V ) =
4��2

jtj2
Z
dv dv0

Z
d p

1X
n=1

1

n!

nY
i=2

Z
d!i �(~�i + ~�i � ~�i ~�i ��) ep ln�+�Y FS

X
n�j>k�1

b2UU (~�j; ~�j; ~�k; ~�k)

~Sp(~�j; ~�j) ~Sp(~�k; ~�k)

�(1�Zp)�

�
v �

nX
i=1

(~�i + ~�i � ~�i ~�i)

�
�(�Kp

)

Z
d q

1X
n=10

1

n0!

nY
j=1

Z
d!0j �(~�0i + ~� 0i � ~�0i

~� 0i ��) eq ln�+�0

Y FS

�(1�Zq)�

�
v0 �

nX
i=1

(~�0i + ~� 0i � ~�0i
~� 0i)

�
�(�Kq

)

�(V � v � v0 � vv0)

=
4��2

jtj2
Z
dvdv0�(V � v � v0 � vv0))B0(t; v

0) B2(t; v);

(116)

we know B0(t; v
0) from the ��0 calculation and the new function B2(t; v), after substitution

d!i = d!Ii + d!Fi for all photons, can be expressed as follows

B2(t; v) = BII
2 (t; v) +BFF

2 (t; v) +BIF
2 (t; v) +BFI

2 (t; v);

BKL
2 (t; v) =

1

2!

Z
dv1 dv2 dvI dvF �(v � v1 � v2 � vI � vF )Z

d p

2�

Z
d!K1 �(v1 � ~�1 � ~�1 + ~�1

~�1)

Z
d!L2 �(v2 � ~�2 � ~�2 + ~�2

~�2)

b2UU(~�1; ~�1; �1; ~�2; ~�2; �2) f1

�
�p

2
; vI

�
f1

�
�p

2
; vF

�
e
��Y FS(�p;vF+~�1+~�2):

(117)

Note that in the current case the form factor and p depend on ~�1 + ~�2 in the following

way:

p(1� vF � ~�1 � ~�2) =  + 2
�

�
ln

(1� vF � ~�1 � ~�2)
2

1� v

�Y FS(p; vF + ~�1 + ~�2) = �p ln
�
1� vF � ~�1 � ~�2

�
+

1

4
p +

�

�

�
� 1

2
� �2

6

�
:

(118)

Our immediate aim is now to integrate over photon directions. The �rst step is again a
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\collinearization" procedure (as in ��0;1 cases) which allows us to replace

p(vF + ~�1 + ~�2) �! �p(vF + v1K + v2L);

�Y FS(p; vF + ~�1 + ~�2) �! �Y FS(�p; vF + ~�1 + ~�2);
(119)

where v1I = v2I = 0, v1F = v1; v2F = v2. Since we are dealing with the genuine O(�2)

contribution we are allowed to simplify even further

p(vF + ~�1 + ~�2) �! ;

�Y FS(p; vF + ~�1 + ~�2) �! �Y FS(; vF + v1K + v2L);
(120)

thus obtaining a nicer expression

BKL
2 (t; v) =

1

2

Z
dv1 dv2 dvI dvF �(v � v1 � v2 � vI � vF )Z

d p

2�

Z
d!K1 �(v1 � ~�1 � ~�1 + ~�1

~�1)

Z
d!L2 �(v2 � ~�2 � ~�2 + ~�2

~�2)

b2UU(~�1; ~�1; �1; ~�2; ~�2; �2) f1

�


2
; vI

�
f1

�


2
; vF

�
e�Y FS(;vF+v1K+v2L):

(121)

The integrations over photon directions will be done di�erently for the leading and sub-

leading contributions. We split BKL
2 accordingly into a leading part

BKL
2m (t; v) =

1

2

Z
dv1 dv2 dvI dvF �(v � v1 � v2 � vI � vF )Z

d p

2�

Z
d!K1 �(v1 � ~�1 � ~�1 + ~�1

~�1)

Z
d!L2 �(v2 � ~�2 � ~�2 + ~�2

~�2)

b0 K�
KL(v1; v2) f1

�


2
; vI

�
f1

�


2
; vF

�
e�Y FS(;vF+v1K+v2L)

(122)

and a sub-leading part

BKK
2s (t; v) =

1

2

Z
dv1 dv2 �(v � v1 � v2)

Z
d p

2�Z
d!K1 �(v1 � ~�1 � ~�1 + ~�1

~�1)

Z
d!K2 �(v2 � ~�2 � ~�2 + ~�2

~�2)

2�(v1 � v2)

�
1

2
h(~�1; ~�1;  p)�(v�2) +

1

2
h(~��1;

~��1 ;  p)�(v2)

� h(~�1; ~�1;  p)� h(~�2; ~�2;  q)

�
;

(123)
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BIF
2s (t; v) =

1

2

Z
dv1 dv2 �(v � v1 � v2)

Z
d p

2�Z
d!I1�(v1 � ~�1 � ~�1 + ~�1

~�1)

Z
d!F2 �(v2 � ~�2 � ~�2 + ~�2

~�2)(
�(v1 � v2)

�
h(~��1;

~��1 ;  p)�(v2)� h(~�1; ~�1;  p)� h(~�2; ~�2;  q)

�

+ �(v2 � v1)

�
�(v�1)h(~�2; ~�2;  p)� h(~�2; ~�2;  p)� h(~�1; ~�1;  q)

�)
;

(124)

where, due to the fact that it is of pure O(�), we have neglected the convolution with

the \spectator photons" completely. In BKK
2s we have also folded the two cases v1 > v2

and v1 < v2 into one.

5.1.1 Leading part of ��2UU

Let us now concentrate on the photon angular integrations for the leading part BKL
2m .

With the help of the integrals in Eq. (92) over photon momenta, we �nd

BKL
2m (t; v) = b0

1

2

Z
dv1 dv2 dvI dvF �(v � v1 � v2 � vI � vF )

1

2

1

v1

�
 � �

�
ln(1� v1)

�
1

2

1

v2

�
 � �

�
ln(1� v2)

�

K�
KL(v1; v2) exp

�
�Y FS(; vF + v1K + v2L)

�
f1

�


2
; vI

�
f1

�


2
; vF

�
:

(125)

The above leading-logarithmic contribution can be rewritten as

BKL
2m (t; v) = b0

1

8

Z
dv1 dv2 dvI dvF �(v � v1 � v2 � vI � vF )�

2 � 
�

�
ln(1� v1)� 

�

�
ln(1� v2)

�

k�KL(v1; v2) exp
�
�Y FS(; vF + v1K + v2L)

�
f0

�


2
; vI

�
f0

�


2
; vF

�
:

(126)

We have to consider all cases K;L = I; F separately, starting with the case of both \active

photons" in the initial state:

BII
2m(t; v) = b0

1

8

Z
du dvF �(v � xI � vF )

exp
�
�Y FS(; vF )

�
U(; xI)f0

�


2
; vF

�
;

(127)

44



where

U(; xI) =

Z
dv1 dv2 dvI �(xI � v1 � v2 � vI)f0

�


2
; vI

�
�
2 � 

�

�
ln(1� v1)� 

�

�
ln(1� v2)

�
k�II(v1; v2)

=

Z
dv12 dvI �(xI � v12 � vI)f0

�


2
; vI

��
2d�0(v12)� 2

�

�
d�2(v12)

�

=x
1

2


I

�
2d�0(xI) +

1

2
3 d�1(xI)� 2

�

�
d�2(xI)

�
:

(128)

In the above calculation we have used the following identities and integrals:

d�0(v) =

Z
dv1 dv2 �(v � v1 � v2) k

�
II(v1; v2) (129)

=
1

2
v +

1

2

�
1� v

2

�
ln(1� v);Z v

0

dx x�1 d�0(v � x) = vd�0(v) + d�1(v); (130)

d�1(v) =

Z v

0

dx
d�0(v � x)� d�0(v)

x

=� 3

4
v � 1

4
(1� v) ln(1� v) +

�
�1

2
+

1

4
v

�
Li2

� �v
1 + v

�
;

(131)

d�2II(v) =d�2FF (v) =

Z
dv1 dv2 �(v � v1 � v2) k

�
II(v1; v2) ln(1� v1)

=� 7

8
v +

2� v

8

�
Li2

�
1

2� v

�
� Li2

�
1� v

2� v

��

+

�
� 1 +

5

8
v +

1

4

1

2� v

�
ln(1� v)

+
2� v

16
ln2(1� v) +

2� v

8
ln(1� v) ln(2� v):

(132)

We omit indices K;L = I; F wherever the relevant function is independent of them.

In the second convolution, see Eq. (127), we may neglect the convolution altogether for

\saturated" terms of O(�) and O(3) setting simply xI ! v and similarly vF ! 0 in

the YFS form factor. The only non-trivial integral involves the term d0 in the U , and it

can be evaluated using the identity of Eq. (130). The �nal result reads

BII
2m(t; v) =

1

8
2b0e

�Y FS()vd�0(v)

+
1

8
3b0e

�Y FS()d�1(v)� 1

4

�

�
b0e

�Y FS()d�2II(v):

(133)
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The case of both \active photons" in the �nal state looks almost identical

BFF
2m (t; v) = b0

1

8

Z
du dvF �(v � vI � xF )

exp
�
�Y FS(; xF )

�
f0

�


2
; vI

�
U(; xF ):

(134)

The only important di�erence is in the YFS form factor, where we set vF ! v. This leads

to an additional term of O(3) in the �nal result

BFF
2m (t; v) = BII

2m(t; v)� 1

4

�

�
b0e

�Y FS() ln(1� v)d�0(v): (135)

The case when one of the \active photons" is in the �nal state and the other is in

the initial state is the most complicated, because we have to convolve k�IF (v1; v2) with f0;

using the following identitiesZ
dv2 dvI �(xI � vI � v2)k

�
IF (v1; v2) f0

�
; vI

�
� x


I k

�
IF (xI ; v2) + w0�

IF (xI ; v2);Z
dv1 dvF �(xF � v1 � vF )k�IF (v1; v2) f0

�
; vF

�
� x


F k

�
IF (v1; xF ) + w00�

IF (v1; xF );

w0�
IF (v1; v2) =

Z v1

0

dx
k�IF (v1 � x; v2)� k�IF (v1; v2)

x
;

w00�
IF (v1; v2) =

Z v2

0

dx
k�IF (v1; v2 � x)� k�IF (v1; v2)

x
;

w�
IF (v1; v2) = w0�

IF (v1; v2) + w00�
IF (v1; v2)

� 1

2

v1

1� v2
+ ln(1� v1)

�
�1

2

1

1� v2
+

1

4

v1

1� v2
+

1

4

v1

(1� v2)2

�
;

(136)

we obtain the following results:

BIF
2m(t; v) = b0

1

8

Z
dxI dxF �(v � xI � xF )

exp
�
�Y FS(; xF )

�
V (; xI ; xF );

V (; xI ; xF ) = 2 x
1

2


I x
1

2


F k�IF (xI ; xF ) + 2
1

2
3w�

IF (xI ; xF )

� 
�

�
ln(1� xI)k

�
IF (xI ; xF )� 

�

�
ln(1� xF )k�IF (xI ; xF ):

(137)

Again, we do not really need to integrate directly all of the integral in Eq. (137). It is
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enough to observe that Eq. (125) can be rewritten as

BKL
2m (t; v) =

1

8
b0e

�Y FS()

Z
dv1 dv2 dvI dvF �(v � v1 � v2 � vI � vF )

f1

�


2
; vI

�
f1

�


2
; vF

�
k�KL(v1; v2)

�
2 � 

�

�
ln(1� v1)

� 
�

�
ln(1� v2)� 3 ln(1� vF � v1K � v2L)

�
:

(138)

If we neglect the last term of O(3) from the YFS form factor then the integrand can be

symmetrized in variables v1 and v2, leading to the replacement k�KL(v1; v2) ! k�II(v1; v2);

consequently, the result is the same for all K;L = I; F and we have to calculate it only

for one case, for example (K;L) = (I; I). (In fact for (K;L) = (I; I) the contribution

from the YFS form factor is zero.) For cases other than (K;L) = (I; I) we use

BKL
2m (t; v) =BII

2m(t; v)� 1

8
3 b0e

�Y FS()

Z
dv1 dv2 �(v � v1 � v2)

k�KL(v1; v2) ln(1� v1K � v2L);

(139)

where we see explicitly the O(3) contribution from the YFS form factor, which has to

be recalculated for each (K;L) 6= (I; I). In the present case the result of the second

convolution integration reads

BIF
2m(t; v) = BII

2m(t; v)� 1

8
3b0e

�Y FS()d�2IF (v); (140)

where

d�2IF (v) =

Z
dv1 dv2 �(v � v1 � v2) k

�
IF (v1; v2) ln(1� v1)

=� 3

4
v +

�
� 1 +

1

2
v +

1

2

1

2� v

�
ln(1� v)

+
2� v

4

�
Li2

�
1

2� v

�
� Li2

�
1� v

2� v

�
+ ln(1� v) ln(2� v)

�
:

(141)

The total sum is

B2m(t; v) = BII
2m(t; v) +BFF

2m (t; v) + 2BIF
2m(t; v)

=
1

2
2b0e

�Y FS()vd�0(v) +
1

2
3b0e

�Y FS()d�1(v)

� 
�

�
b0e

�Y FS()d�2II(v)

� 1

8
3b0e

�Y FS() ln(1� v)d�0(v)� 1

4
3b0e

�Y FS()d�2IF (v):

(142)
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5.1.2 Sub-leading part of ��2UU

Let us now calculate the sub-leading part B2s, starting with the function BII
2s (t; v) =

BFF
2s (t; v). In order to integrate over the photon angles, we need to introduce, in addition

to integrals in Eq. (92), the new integral

�

�
g�Ia (v1; v2)

=

Z
~�1<~�1

d�!1 �(v1 � ~�1 � ~�1 + ~�1
~�1) h(~��1;

~��1 ;  p) =
�

�

Z
1I

g(~��1;
~��1)

= �1

2

6v1v2

(1� v2)4

+
1

2
ln(1� v1)

��3� v2 � v22 � v32
(1� v2)4

+ v1
5=2 + v2 � v22=2

(1� v2)4

�
:

(143)

With the help of the above we may now write

BII
2s (t; v) =BFF

2s (t; v) =
1

2

�

�
 b0 e

�Y FS()d�3(v); (144)

d�3(v) =

Z
dv1dv2 �(v � v1 � v2) �(v1 � v2) s(v1; v2) (145)

s(v1; v2) =
1

2
g1a(v1)

1

v2
�

�
v2

1� v1

�
+

1

2
g�Ia (v1; v2)

1

v2
�(v2) (146)

� 1

v2
g1a(v1)�

1

v1
g1a(v2):

Let us note that the integral de�ning d�3(v), although it may not be immediately obvious, is

�nite. It is so because in the limit v2 ! 0 we have �(v�2) ! �(v2) and h�a(v1; v2) ! ha(v1).

The apparent singularity 1=v1 is out of the integration domain due to ordering. This

integral is more complicated than others due to presence of the \shifted" variable v�2 and

the ordering v1 > v2. The function d�3(v) reads as follows

d�3(v) =

�
� 3 +

5

2
v

��
Li2

�
� v

1� v

�
� Li2
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+
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�
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3
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1

(2� v)2
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�

+ ln2(1� v)

�
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8
+

5

16
v

�
+ ln(1� v) ln(v)

�
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2
v

�
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2

�
ln(2� v)

�
3

4
� 11

8
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�
+ ln(1� v) ln
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2
v
���3 +

5

2
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�

+ ln(1� v)

�
7

8
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4
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4

1
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+

1

2

1

(2� v)2
� 1

4

1

(2� v)3

�

+
9

8
� 1

8
v � 13

8

1

2� v
+

1

4

1

(2� v)2
� 3

1

(2� v)3
:

(147)

The \spectator photons" contribute beyond O(�3)prag and therefore the convolution with

them may be kept or neglected. Below we show a variant of the BKK
2s with explicit

\spectator photons" for the latter purpose

BII
2s (t; v) =

1

2

�

�
 b0

Z
dxI dxF �(v � xI � xF )e�Y FS(;xF )d�3(xI)f0

�


2
; xF

�
;

BFF
2s (t; v) =

1

2

�

�
 b0

Z
dxI dxF �(v � xI � xF )e�Y FS(;xF )f0

�


2
; xI

�
d�3(xF ):

(148)

We now come to the two-hemisphere case, see Eq. (124), which reads as

BIF
2s (t; v) =

1

2

�

�
 b0 e

�Y FS()

Z
dxI dxF �(v � xI � xF )S(xI ; xF );

S(xI ; xF ) =�(xI � xF ) SI(xI ; xF ) + �(xF � xI) SF (xI ; xF );

SI(xI ; xF ) �g�Ia (xI ; xF )
�(xF )

xF
� g1a(xI)

1

xF
� g1a(xF )

1

xI
;

SF (xI ; xF ) ��(x�I)

xI
g1a(xF )� g1a(xF )

1

xI
� g1a(xI)

1

xF
:

(149)

Folding together two cases (xI > xF and xI < xF ) and using the relation between SK and

s(v1; v2) of Eq. (146)

SI(v1; v2) + SF (v2; v1) = 2s(v1; v2); (150)

we �nd

BIF
2s (t; v) = BII

2s (t; v) =
1

2

�

�
 b0 e

�Y FS()d�3(v): (151)

This completes the calculation of the sub-leading part B2s of ��2UU .

Combining the above partial results we obtain

B2(t; v) = b0 e
�Y FS() v

 
1

2
2 d�0(v) +

1

2
3 d�1(v)� 

�

�
d�2II(v)

� 1

8
3 ln(1� v) d�0(v)� 1

4
3 d�2IF (v) +

�

�
 d�3(v)

!
:

(152)
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The �nal result reads

B2(t; v) = b0 F ()v e�Y FS()(
2(v=4) + 2 ln(1� v)(1=4� v=8)

+ 3(�3v=16) + 3 ln(1� v)(1=8� 1v=16� (1=8)(2� v)�1)

+ 3 ln2(1� v)(�1=16 + 1v=32) + 3Li2(�v=(1� v))(�1=4 + v=8)
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)
:

(153)
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5.1.3 Total result for ��2UU

The total contribution to ��2 due to double emission from the upper line alone reads:

���2UU (t; V ) =
1

2
b0 F

2()V 2 e2�Y FS()(
2(V=4) + 2 ln(1� V )(1=4� V=8)
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+
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+
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(154)
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5.2 Numerical results on ��2UU

:25 :50 :75 1:00

�:0010

�:0005

:0000

:0005

:0010

��
(2)

2UU

MC

ANL

MC�ANL

R(t; V
max
)

Vmax

Figure 3: The comparison of the Monte Carlo and semi-analytical results for the second-order ��2,

both photons on one fermion line.

In �g. 3 we compare our semi-analytical result of Eq. (154) with the numerical result

of BHLUMI. We plot R( ��
(2)

2UU ; t; Vmax), the quantity de�ned in a way analogous to that

of Eq. (70) for ��0, as a function of the cut on the total photon energy Vmax, for the

same �xed value of the transfer t. We plot the MC and semi-analytical results and their

di�erence. As we see, although ��
(2)

2UU is analytically the most complicated of all beta's, it

is numerically very small. It is at most 2:5� 10�4 (contribution from one fermion line),

and the di�erence between MC and semi-analytical results is completely negligible, much

below 1� 10�4.

5.3 Upper and lower line emission ��2UL

The contribution from ��2UL is due to double real photon emission, one from the upper

line and one from the lower one. Generally, the calculation of the ��2UL contribution is

easier than that of the ��2UU , because up to terms beyond O(�2)prag, ��2UL is a product of

two O(�2)prag contributions of the ��1 type, i.e. b2UL � b
(1)

1Ub
(1)

1L , so that we may use the
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results of calculations that were already done for the ��1 case. More precisely we have

b2UL(~�1; ~�1; �1; ~�10 ; ~�10; �10)d!1d!
0
1 =

�(v1 � v01)d!1d!
0
1[H(~�1; ~�1;  p)�(v01)

� (H(~�1; ~�1;  p)� b0)� (H(~�01;
~� 01;  q)� b0)� b0]

+�(v01 � v1)d!1d!
0
1[H(~�01;

~� 01;  p)�(v1)

� (H(~�1; ~�1;  p)� b0)� (H(~�01;
~� 01;  q)� b0)� b0]:

(155)

Employing the usual decomposition H(~�; ~�;  ) = b0�(v)+h(~�; ~�;  ) the above expression

can be rewritten as

b2UL(~�1; ~�1; �1; ~�10 ; ~�10; �10)d!1d!
0
1 = d!1d!

0
1(

�(v1 � v01)[b0�(v1)�(v01) + h(~�1; ~�1;  p)�(v01)� h(~�01;
~� 01;  q)]

+ �(v01 � v1)[b0�(v1)�(v01) + h(~�01;
~� 01;  p)�(v1)� h(~�1; ~�1;  p)]

)
;

(156)

where �(x) = �(x)� 1 = x(�1 + 1
2
x).

The integrated contribution reads as follows:

d�2UL

djtj dV =
4��2

jtj2 ���2UL(t; V ) =
4��2

jtj2
Z
dv dv0

Z
d p
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+
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n0X
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(r)

2UL(~�j; ~�j; ~�0l;
~� 0l)

~Sp(~�j; ~�j) ~Sq(~�0l;
~� 0l)

)
:

�(1�Zp)�

�
v �

nX
i=1

(~�i + ~�i � ~�i ~�i)

�
�(�Kp

)

Z
d q

1X
n=10

1

n0!

nY
j=1

Z
d!0j �(~�0i + ~� 0i � ~�0i

~� 0i ��) eq ln�+�0

Y FS

�(1�Zq)�

�
v0 �

nX
i=1

(~�0i + ~� 0i � ~�0i
~� 0i)

�
�(�Kq

)

�(V � v � v0 + vv0):

(157)
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With the usual decomposition d!i = d!Ii +d!Fi , the total contribution splits as follows:

���2UL = �II��2UL + �FF��2UL + �IF��2UL + �FI��2UL

�KJ
��2UL

= b0

Z
dvdv0�(V � v � v0 + vv0)

Z
dvIdvF

Z
dv0Idv

0
FZ

d p

2�
d!K1 �(v � v1 � vI � vF )

Z
d q

2�
d!0

J
1 �(v

0 � v01 � v0I � v0F )�
�(v1 � v01)[�(v1)�(v01) + h(~�1; ~�1;  p)�(v01)� h(~�01;

~� 01;  q)]

+ �(v01 � v1)[�(v01)�(v1) + h(~�01;
~� 01;  q)�(v1)� h(~�1; ~�1;  p)]

�

f1

�


2
; vI

�
f1

�


2
; vF

�
e
��Y FS(�p;vF+v1K )

f1

�


2
; v0I

�
f1

�


2
; v0F

�
e
��Y FS(�q ;v

0

F
+v0

1J
);

(158)

where we have also done the maximum simpli�cations allowed inO(�3)prag similarly to the
��2UU case14. The above should be compared with the O(�2)prag expression, see Eq. (82),

from the ��1 calculation

B
(1)
1K(t; v) =

Z
dvIdvFdv1�(v � vI � vF � v1)Z

d p

2�

Z
d�!1K �(v1 � ~�1 � ~�1 + ~�1

~�1) b0

�
�(v1) + h(~�1; ~�1;  p)

�

e
��Y FS(;vF+v1K ) f1

�
1

2
; vI

�
f1

�
1

2
; vF

�
:

(159)

Neglecting purely non-logarithmic O(�2) contributions we may use the relation

[�(v1) + h(~�1; ~�1;  p)][�(v01) + h(~�01;
~� 01;  p)] =

�(v1)�(v01) + h(~�1; ~�1;  p) + h(~�01;
~� 01;  p)

(160)

in order to get a partial factorization:

�(v1 � v01)[�(v1)�(v01) + h(~�1; ~�1;  p)�(v01)� h(~�01;
~� 01;  q)]

+�(v01 � v1)[�(v01)�(v1) + h(~�01;
~� 01;  q)�(v1)� h(~�1; ~�1;  p)]

=[�(v1) + h(~�1; ~�1;  p)][�(v01) + h(~�01;
~� 01;  p)]

� �(v1 � v01)�(v1)h(~�01;
~� 01;  q)� �(v01 � v1)�(v01)h(~�1; ~�1;  q):

(161)

Regrouping terms as above and using the elementary integrals (92) for the photon angular

integrations we �nd

�KL
��2UL

= �0
KJ
��2UL

+ �00
KJ
��2UL

; (162)

14The b0 = �(�) could be moved out in front because we keep only O(�) contributions.
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�0
KJ
��2UL

=
1

4
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dvIdvF
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dv0Idv

0
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�
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�
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1
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�
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�
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�
+
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�
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(163)
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=
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�


2
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�
W (v1; v
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(164)

where, in

W (v1; v
0
1) = ��(v1 � v01)

�(v1)

v1
g1a(v

0
1)� �(v01 � v1)

�(v01)

v01
g1a(v1) (165)

we are able to neglect the � dependence of gKa (v), getting a truncated version

g1a(v) =
�

�

1

2
ln

�
�3 +

5

2
v

�
: (166)

In the leading-log part �0KJ
��2UL

the only dependence on K;L = I; F survives in the form

factors ��Y FS(; vF + v1K and ��Y FS(; v0F + v01L). The sub-leading part �00
KJ
��2UL

is com-

pletely symmetric in K;L = I; F and the integrations over the spectator photons can be

neglected.

The leading-log integral can be rewritten as

�0
KL
��2UL

=
1

4
b�10

Z
dvdv0�(V � v � v0 + vv0)B

(1)

1K(t; v)B
(1)

1L (t; v0); (167)

where the B
(1)

1K functions areO(�) versions of the similarO(�2) functions in the calculation

of ��1. Let us give them explicitly for the upper line in a form suitable for further exercises
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as described in Sect. 8:

B
(1)

1Im(t; v) =Z v

0

dvFdu�(v � vF � u) e
��Y FS(;vF ) f1

�
1

2
; vF

�
R

(1)

I (�Ip(vF ); u);

B
(1)

1Fm(t; v) =Z v

0

dvIdu�(v � vI � u) e
��Y FS(;u) f1

�
1

2
; vI

�
R

(1)

F (�Fp (u); u);

(168)

where

R
(1)

K (�Kp ; u) =

Z
dvIdv1�(u� vI � v1) f1

�
1

2
; vI

�
"

1

2

1

v1

n
�Kp �

�

�
ln(1� v1)

o
�(v1) +

�

�
g1a(v1)

#

=F

�
1

2


�
u

1

2


�
�Kp

�
�1

2
+

1

4
u

�
+
�

�
ln(1� u)(�1 + u)� 2

1

8
u

�
:

(169)

The resulting functions are given in Eqs. (100) and (108). In fact we need here only their

versions truncated to O(�2)prag.

The non-leading part can be brought to the following form

�00
KJ
��2UL

(t; V ) =
1

4

�

�
b0

Z
dvdv0�(V � v � v0 + vv0) W (v1; v

0
1)

=
1

4
b0 F ()V 2 e2�Y FS()�

�

�
ln(V ) ln(1� V )(6� 5V ) + 

�

�
ln(1� V )2(3=8� 5=16V )

+ 
�

�
ln(1� V ) ln[1� (1� V )1=2](�6 + 5V )

+ 
�

�
ln(1� V )(1� V )1=2(�3=2)

+ 
�

�
Li2(V )(6� 5V ) + 

�

�
Li2[1� (1� V )�1=2](6� 5V )

+ 
�

�
[�2� 1=2V + 2(1� V )1=2]

�
:

(170)

The total result is given as a sum of the above two and over all initial/�nal state con�g-

urations:

�KJ
��2UL

=
X

K;J=I;F

�0
KJ
��2UL

+ �00
KJ
��2UL

; (171)
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and it reads as

���2UL(t; V ) = b0 F ()V 2 e2�Y FS()(
2(V=2) + 2 ln(1� V )(�1=2 + V=4)

+ 
�

�
[�2� 5=2V + 2(1� V )1=2]

+ 
�

�
ln(1� V )[�2 + 2V � (3=2)(1� V )1=2]

+ 
�

�
ln(1� V )2(�5=8 + 11V=16) + 

�

�
ln(V ) ln(1� V )(6� 5V )

+ 
�

�
ln(1� V ) ln[1� (1� V )1=2](�6 + 5V )

+ 
�

�
Li2(V )(6� 5V )

+ 
�

�
Li2[1� (1� V )�1=2](6� 5V ) + 3(�V=2)

+ 3 ln(1� V )(1=2� 5V=4) + 3 ln(1� V )2(1=4� V=8)

+ 3Li2(V )(�1 + V=2)

)
:

(172)

5.4 Numerical results on ��2UL
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Figure 4: The comparison of the Monte Carlo and semi-analytical results for the second-order ��2,

both photons on one fermion line.
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In �g. 4 we compare our semi-analytical result of Eq. (172) with the numerical result

of BHLUMI. We plot the quantity R( ��
(2)

2UL; t; Vmax) de�ned in a way analogous to that

done in Eq. (70) for ��0, as a function of the cut of total photon energy Vmax, for the

same �xed value of the transfer t. As before, we plot the di�erence between the MC and

semi-analytical results, showing also ��
(2)

2UL itself, multiplied by factor 10�1 (it is of order

of half a per cent). As we see, the MC and semi-analytical results agree very well, i.e.

within 1� 10�4.
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6 Total result

Finally we add the contributions from all ��n; n = 0; 1; 2;

�
(2)
tot = �

(r)
��0

(t; V ) + 2�
(2)

1U (t; V ) + 2���2UU (t; V ) + ���2UL(t; V ); (173)

getting the total O(�2)prag result, which explicitly reads as follows:

�
(2)
tot = b0 F (2) e2�Y FS() 2V 2�1

(
1 +  +

1

2
2

)

+ b0 F (2) e2�Y FS() V 2

(
(�2 + V ) +

�

�
ln(1� V )(�4 + 4V � 2V �1)

+ 2(�2) + 2 ln(1� V )(3� 3V=2� 2V �1)

+ 3(�9V=8) + 3 ln(1� V )[2 + 1=8V � 2V �1 � (1=4)(2� V )�1]

+ 3 ln(1� V )2[�7=8 + 7V=16 + (1=2)V �1] + 3Li2(V )(2� V )

+ 3 ln(1� V ) ln(2� V )(�1=4 + V=8) + 3Li2((1� V )=(2� V ))(1=4� V=8)

+ 3Li2(1=(2� V ))(�1=4 + V=8)

+ 
�

�
[1=4 + 11V

� (13=4)(2� V )�1 + (1=2)(2� V )�2 � 6(2� V )�3 + 2(1� V )1=2]

+ 
�

�
ln(1� V )[39=4� 19V=4� 2V �1

� 2(2� V )�1 + (2� V )�2 � (1=2)(2� V )�3 � (3=2)(1� V )1=2]

+ 
�

�
ln(1� V=2)[�9=2 + 3V=4� 4(2� V )�1 + 2(2� V )�2 � 4(2� V )�3]

+ 
�

�
ln(1� V )2[27=8� 49V=16] + 

�

�
ln(1� V ) ln(2� V )(�1=2 + V=4)

+ 
�

�
ln(1� V ) ln(V )(12� 10V ) + 

�

�
ln(1� V ) ln(V=2)(�6 + 5V )

+ 
�

�
ln(1� V ) ln[1� (1� V )1=2](�6 + 5V )

+ 
�

�
ln(2� V ) ln(1� V=2)(3=2� 11V=4)

+ 
�

�
ln(1� V=2)2(3=4� 5V=8) + 

�

�
Li2(1=2)(�3=2 + 11V=4)

+ 
�

�
Li2[(1� V )=(2� V )](1=2� V=4) + 

�

�
Li2(1=(2� V ))(1� 5V=2)

+ 
�

�
Li2(�V=2=(1� V ))(6� 5V ) + 

�

�
Li2[1� (1� V )�1=2](6� 5V )

� ��(V )=(1� V )

)
:

(174)

We have also derived the analogous analytical formulas for the total cross section for the

matrix element without exponentiation and compared it with the corresponding BHLUMI
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result, also without exponentiation. Very good agreement between unexponentiated semi-

analytical and Monte Carlo results has been obtained (a little bit worse, however, than for

exponentiated ones). This variant of the calculation for the moment remains unpublished.

6.1 Numerical results for total cross section
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Figure 5: The comparison of the Monte Carlo and semi-analytical results for the total cross section.

In �g. 5 we compare our semi-analytical result of Eq. (174) for the total cross section with

the numerical result of BHLUMI. We plot the following quantity

R(2)(t; Vmax) =

VmaxR
0

d�(2)

djtj dV
dV

d�Born
djtj

=

VmaxZ
0

�
(2)
tot(t; V ) dV (175)

as a function of the cut on the total photon energy Vmax, for the �xed transfer t =

�4:612982 GeV2. We plot the di�erence between the MC and semi-analytical results,

showing in addition R(2) itself, multiplied by factor 10�3. As we see in the plot, the MC

and semi-analytical results agree to better then 1:7�10�4! As seen from the previous plots

the dominant contribution to the di�erence comes from ��0, see �g. 1. The above is the

main numerical result for the academic event selection (AES). Although AES is far from

the typical experimental ES, this result together with the previous results for individual
��n is nevertheless quite precious and important because (a) it provides an important test

of the correct implementation of the matrix element in BHLUMI15, (b) for the \trivial"

15Thanks to the above numerical test we could identify and correct a few bugs in the early implemen-
tations of the matrix element of BHLUMI 4.x.
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matrix element ��
(0
0 it tests very precisely the numerical correctness (technical precision)

of the basic Monte Carlo algorithm of BHLUMI (independently of the matrix element).

The main advantage of the above test was that any discrepancy between the MC and

SAN that would have occurred at the early stage of its realization could be traced back to

some mistake either in semi-analytical integration or in the matrix element in BHLUMI16.

The main disadvantage is the lack of exibility in the choice of ES in the semi-analytical

part of the test.
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O(�(2))
O(�(1)) �10�1R(B�A)(t; V

max
)

Vmax

Figure 6: Di�erence between cross section types (B) and (A) of the matrix element. Monte Carlo

result only.

Finally, in �g. 6 we show the di�erence of the Monte Carlo total cross sections for two

types of matrix element, type (B) for which an analytical integration is available and type

(A) for which we have only the Monte Carlo result. As we see, the di�erence at O(�2)exp
is negligible, below 0.01%, while at O(�1)exp it is quite sizeable, up to 0.3%. We have

also checked (the relevant plot is not shown) that the di�erence of the total cross sections

O(�2)exp � O(�1)exp is much smaller for the matrix element type (A) than for (B).

7 Cross-check of the leading logs

Let us consider photon emission from one, for instance, the upper, electron line. The

O(2)prag leading-logarithmic formula for the distribution of the variable v = vI + vF

16This is almost impossible to do in the comparison of two di�erent MC programs.
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reads

B
(2)

LLog(v) =

1Z
0

dz1

1Z
0

dz2 �
�

1� v � z1z2

�
D

(2)

YFS

�
1

2
; z1

�
D

(2)

YFS

�
1

2
; z2

�

= D
(2)

YFS(; 1� v);

(176)

where

D
(2)

YFS(; z) =F () e
3

4
 (1� z)�1

�


�
1� 1

2
(1� z2)

�

+ 2
�
� 1

8
(1 + 3z2) ln(z)� 1

4
(1� z)2

�� (177)

is the O(2)prag non-singlet (valence) \exponentiated" structure function for �nding an

electron carrying the energy fraction z, within an electron, see for example Ref. [19]

and references therein. In the above, z1 equals the fraction of energy of the initial-state

electron after (collinear) emission of photons while z2 describes a similar phenomenon in

the �nal state. In order to see how to get the above formula, let us note that we start

with �
�
v � ~�I(z1; z2) � ~�F (z1; z2)

�
and, with a simple kinematic exercise, we �nd that

~�I(z1; z2) = z2(1�z1) and ~�F (z1; z2) = 1�z2. We have explicitly exploited the well-known

self-reproduction property of the non-singlet structure in the convolution

DNS(1 + 2; z) =

1Z
0

dz1

1Z
0

dz2 �(z � z1z2) DNS(1; z1)DNS(2; z2): (178)

The upper and lower line contributions get combined in exactly the same way, thanks

to our de�nition of the variable V

�
(2)

LLog =
4��2

jtj2 b0

Z
dvdv0�(V � v � v0 + vv0) B

(2)

LLog(v) B
(2)

LLog(v
0)

=
4��2

jtj2 b0 D
0(2)
YFS(2; 1� V );

=
4��2

jtj2 b0 F (2) e
1

2
 V 2

(
2V �1

�
1 +  +

1

2
2
�

+

"
(�2 + V ) + 2(�2) + 2 ln(1� V )(3� 3V=2� 2=V )

#)
:

(179)

As we see the leading logarithmic terms withinO(2) coincide with the analogous terms in

Eq. (174), as expected. Note that in the above formula we used a variant of the structure

function D0(2)
YFS(; z) in which we factorize o� the factor exp(=2) instead of exp(3=4).
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8 Calorimetric event selection

In the academic event selection (AES), see Sect. 3, used throughout the present paper,

the total energy of photons is restricted from above using the variable V , without any

regard as to whether the photons are emitted closer to initial-state fermions or �nal-state

fermions. In real LEP luminometers, photons close to �nal-state electrons (positrons) are

e�ectively combined with the electron into a \cluster", and only the total energy of the

cluster is restricted. This is called the calorimetric type of ES. In this case the energy of

the photon close to a �nal electron is e�ectively unrestricted, even if two �nal clusters are

required to carry most of the energy, while the energy of the photons close to beams can

be in such a case limited quite strongly.

In our analytical calculation we have integrated �rst over the transverse momenta

of photons, dividing the photon phase-space into initial-state and �nal-state parts, see

Eq. (38), and later the energy of the initial-state photons vI was combined with the

energy of the �nal-state photons vF , see for instance Eq. (49). In essence, this was a

purely technical calculational trick and in our �nal analytical results for AES there is no

real distinction whatsoever between initial state and �nal state.

Let us, however, stress that our calculation method, summarized briey in the above

paragraph, opens the way to the introduction of a certain type of \calorimetric academic

event selection", CAES, in which an integration over energy of the �nal state vF is per-

formed and vF does not enter into the overall photon energy cut. This is still not a very

realistic ES, so we may ask: is the comparison of semi-analytical results with BHLUMI for

CAES feasible, and is it interesting? The analytical integration over vF and v0F , keeping

for instance VI = vI + v0I + vIv
0
I �xed, is probably feasible but it is not yet done and it

is probably not worth being done. What can be done relatively easily is to implement

in the collinear MC of the LUMLOG type the analytical distribution d�=dvFdvIdv
0
Fdv

0
I

(which is a by-product of the calculations of the previous sections) and to integrate over

vF and v0F numerically.

The above implementation in LUMLOG was partly realized. Only the LL version

of d�=dvFdvIdv
0
Fdv

0
I is now implemented in BHLUMI 4.04, see Refs. [11, 12]. Why is it

that the LL version was realized �rst? It was done �rst because it was very important

to check that the second order LL content of d�=dvFdvIdv
0
Fdv

0
I is functionally identical

to the product of the four structure functions. This test is even stronger than that of

the previous Sect. 7. The other important and urgent application was the numerical

evaluation of the so-called missing third-order LL correction in BHLUMI, presented in

Ref. [12].

Would it be interesting to implement not only the LL version of the d�=dvFdvIdv
0
Fdv

0
I

in LUMLOG but its full form given below? Yes, because it would provide a unique example

of comparison between the BHLUMI MC and SAN calculation, at the level of 10�4 for

any kind of calorimetric ES. Generally, the calorimetric ES is substantially di�erent

from the non-calorimetric one and for certain errors in the matrix element numerical

e�ects may cancel between the initial- and �nal-state emission, while being non-zero for

calorimetric ES (remember that real luminometers are calorimetric!). The new test for
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CAES would provide another valuable test of the BHLUMI matrix element. In this section

we essentially provide the basis for such a test, hoping that it will be realized numerically

in the future.

8.1 Master formula { sub-leading included
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Figure 7: Leading logarithmic kinematics.

Looking into the simplest example of ��
(0)
0 in Eqs. (49) and (69), we see that this contribu-

tion was written at a certain stage of our calculation as an integral over the four-photon

longitudinal variables vI ; vF ; v
0
I ; v

0
F , each of them for photons from one of the initial/�nal

state fermions

� =

jtjmaxZ
jtjmin

djtj
VmaxZ
0

dV

Z
dvdv0 �(V � v � v0 + vv0)

Z
dvIdvF �(v � vI � vF )

Z
dv0Idv

0
F �(v

0 � v0I � v0F ) X;

(180)

where

X =
4��2

jtj2 b0 exp
�
��Y FS(�p; vF ) + ��Y FS(�q; v

0
F )
�

f1(�p=2; vI) f1(�p=2; vF ) f1(�q=2; v
0
I) f1(�q=2; v

0
F ):

(181)

Simple kinematical considerations lead to relations between vI ; vF ; v
0
I ; v

0
F and the standard

LL variables z1; z2; z3; z4,

vI = (1� z1)z3; vF = 1� z3; v0I = (1� z2)z4; v0F = 1� z4; (182)
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see also �g. 7. The phase-space integral transforms into

� =

jtjmaxZ
jtjmin

djtj
1Z

1�Vmax

dz

Z
dz1dz2dz3dz4 �(z � z1z2z3z4) X z1z4: (183)

The above integral is ready for implementation in the LUMLOG MC, see Refs. [11, 12]

for more details.

What is very important and non-trivial is that the contributions from the other ��n
can also be written in the form of Eq. (180). Close examination of the calculations from

the previous sections lead to the following formula for the integrand in Eq. (180):

X = exp
�
��Y FS(�p; vF ) + ��Y FS(�q; v

0
F )
�

f1(�p=2; vI) f1(�p=2; vF ) f1(�q=2; v
0
I) f1(�q=2; v

0
F )(

X[ ��0]() +
X

K=I;F

X[ ��
(2)

1K ](�p; vK)

f1(�p=2; vK)
+
X
L=I;F

X[ ��
(2)

1L ](�q; v
0
L)

f1(�q=2; v
0
L)

+
X

K;L=I;F

X[ ��
(2)

2UL](;K; L; vK; v
0
L)

f1(�p=2; vK) f1(�q=2; v
0
L)

+
X

K;L=I;F

X[ ��
(2)

2UU ](;K; L; vK; vL)

f1(�p=2; vK) f1(�p=2; vL)

+
X

K;L=I;F

X[ ��
(2)

2LL](;K; L; uK; v
0
L)

f1(�q=2; uK) f1(�q=2; v
0
L)

)
;

(184)

where

X[ ��0]() = b0

�
1 +  +

1

2
2
�
; (185)

X[ ��
(2)

1K](; v) = R
(2)

K (; v) +B
(2)

1Ksingl(; v); (186)

X[ ��
(2)

2UL](;K; L; vK; v
0
L) = R

(1)

K (; vK) R
(1)

L (; v0L) +
1

4

�

�
 W (vK; v

0
L);

(187)

X[ ��
(2)

2UU ](; I; I; vI; vF ) =

�
1

8
U(; vI) +

1

2

�

�
d�3(vI)

�
f1(�p=2; vF ); (188)

X[ ��
(2)

2UU ](; F; F; vI; vF ) = f1(�p=2; vI)

�
1

8
U(; vF ) +

1

2

�

�
d�3(vF )

�
; (189)

X[ ��
(2)

2UU ](; I; F; vI; vF ) =
1

8
V (; vI ; vF ) +

1

2

�

�
S(vI ; vF ): (190)

In the above collection Eq. (185) is derived from Eqs. (26,59,69), Eq. (186) is derived from

Eqs. (90,97,103), Eq. (187) is derived from Eqs. (164,167,168), Eqs. (188,188) are derived

from Eqs. (127,148) and �nally Eq. (190) is derived from Eqs. (137,149).
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The version of Eq. (184) truncated to leading logarithmic approximation is shown

explicitly in Refs. [11,12]. It is already implemented in LUMLOG MCEG within BHLUMI

4.04 [11]. The complete Eq. (184) is not yet implemented in LUMLOG.

9 Summary

The aim of this paper was to summarize the third-order analytical calculations of the

total cross section, which were (and will be) instrumental in the task of the high precision

calculation of the small-angle Bhabha process. We presented in detail the calculation

technique and the numerical comparisons with the Monte Carlo results; we also discussed

future extensions of the calculations. The presented analytical calculations are relevant to

the question of the technical precision of the calculation of the small-angle Bhabha (SABH)

process, because it has allowed us to test the matrix element implemented in BHLUMI

Monte Carlo term by term with the precision of 0.01%, and its basic MC integration

algorithm (for ��
(0)
0 ) with the same precision. They are also helpful to partially solve the

problem of the physical precision of the QED calculation of the SABH process because

we were able

� to cross-check the correctness of the O(�2L2) matrix element and phase-space inte-

gration to within 1:7� 10�4,

� to calculate the missing O(�3L3) in the BHLUMI cross section,

� to get analytical insight into the incomplete O(�2L) component in the BHLUMI

cross section,

� to gain direct analytical insight into the mechanism of \inclusive exponentiation"

in the �rst order and beyond.

The above wealth of information and the calculation technology will be very useful in the

next step, which consists in bringing the total theoretical precision of the SABH process

below the level of 0.1%. In particular we have in hand all methods to calculate analytically

the contribution of the missing O(�2L) component in the BHLUMI cross section. Most of

the presented results are restricted to the unrealistic academic event selection. We have

indicated, however, the path to calculation for more realistic calorimetric event selection.

The methods and results presented in this paper are major contribution to the future,

more precise calculation of the SABH luminosity cross section.
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10 Appendix A: Collinearization in O(�3)prag

In the following we shall prove that within O(�3)prag we are allowed to do a replacement

�p =
1� v�

1� ~�I � ~�Fj

�2

m2
e

jtj �! ��p =
1� v

(1� vF )2
m2

e

jtj (191)

in the real bremsstrahlung distributions d!i(�p). In our calculations this leads to a very

useful \collinearization" of our integrals at the early stages of the calculations. As a

preparatory step let us examine more closely the real bremsstrahlung distribution for one

photon d!i (on the upper fermion line)Z
d!i �(vi � ~�i � ~�i + ~�i ~�i) =

�

2�2

Z
d~�id~�id�i �(vi � ~�i � ~�i + ~�i ~�i)

~�i ~�i

(~�i + �p ~�i)2( ~�i + �p~�i)2
: (192)

In order to see more clearly its singularities we may (in the presence of �(vi�~�i� ~�i+ ~�i ~�i))

decompose it as follows

~�i ~�i

(~�i + �p ~�i)2( ~�i + �p~�i)2
=

1

v

 
1

~�i + �p ~�i
+

1

~�i + �p~�i
� �pv

(~�i + �p ~�i)2
� �pv

( ~�i + �p~�i)2
� 1

!
:

(193)

The �rst two terms directly lead to leading-logarithmic contributions, while the next

two so-called \mass terms" provided �nite non-log contributions coming from �-narrow

collinear regions (photon collinear with one of the fermions) | for instanceZ
d~�i

�pv

(~�i + �p ~�i)2
=

Z
d~�i�(~�i): (194)

In the above equation, the actual value of �p drops out, i.e. the only important thing is

that �p ! 0. Consequently in this kind of mass term we can do the substitution �p ! ��p
freely. On the other hand, for any of the leading-log poles in the photon angle, we have

1

~�i + �p ~�i
=

1

~�i + ��p ~�i
� (�p � ��p) ~�i

(~�i + �p ~�i)2
+O(�2p): (195)

The correction term � (�p � ��p) has two important features:

(i) it is non-logarithmic and strictly collinear for the i-th photon, similarly to the mass

term in Eq. (194) and
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(ii) it is proportional to ���p = �p � ��p which is equal to zero if all other photons k 6= i

are collinear (this is true by construction of ��p).

Let us denote by �� the variation due to the operation �p ! ��p and consider the general

case of emission of n photons17

��

 
nY
i

d!i

!
=

nX
k=1

��(d!k)
Y
i6=k

d!i +O(�2); (196)

where we have used property (i) to eliminate higher powers of ��, i.e. for instance
��(d!k) ��(d!i) � O(�2). The above remnant with a single power of �� is at most O(�).

In fact, it is even of O(�2), because according to (ii), ��d!k � ���p, which is zero if all

other photons k 6= i are collinear; this means that we lose at least one big collinear log

(i.e. we gain one pure non-log factor �) during integration over other photons directions.

To summarize our proof: we have shown that the e�ects of the �p ! ��p substitu-

tion in the di�erential and integrated distributions
Qn

i=1 d!i are beyond O(�3)prag. The

same substitution can be and has to be done simultaneously in the related form factor

exp
�
1
2
p(�p) ln �

�
because here p(�p) is directly related through an integration to d!(�p).

Although we have presented our proof for arbitrary numbers of photons it is really

essential and su�cient to consider the cases with one and two photons (also in the version

without exponentiation). We recommend dedicated readers to do this exercise.
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