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Abstract

Neutral currents induced matter oscillations of electroweak-active (anti-)neutrinos to sterile

neutrinos can explain the observed motion of pulsars. In contrast to a recently proposed

explanation of the pulsar birth velocities based on the νµ,τ ↔ νe oscillations, the heaviest

neutrino (either active or sterile) would have to have mass of order several keV.
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Neutrino physics continues to be at the forefront of research in particle physics and as-

trophysics. There are many clues but the neutrino mass matrix is still unknown and even

the number of neutrino species is still undetermined [1, 2]. Although the number of light

electroweak active neutrinos is known from LEP, there are reasons to believe that massive

sterile neutrinos may exist and mix with the electroweak active neutrinos. First, a variety of

experimental [1, 2, 3] and astrophysical [4] data can only be explained simultaneously if there

are more than three neutrino species. Second, a standard model singlet fermion can naturally

appear as a modulino in models with broken supersymmetry.

It was recently pointed out [4] that the proper motions of pulsars can be explained if

adiabatic neutrino oscillations take place inside a cooling neutron star created in a supernova

explosion. The star’s magnetic field affects the location of the resonance in an up-down

asymmetric manner and causes the neutrinos of a certain flavour to be emitted from different

depths in different directions. Since the temperature inside a cooling neutron star depends

on the depth, the momentum distribution of the outgoing neutrinos will not be spherically

symmetric. This can give the pulsar a sufficient recoil velocity in good agreement with data

[4].

If the pulsar motions are related to neutrino oscillations, they can be used as a source of

information about neutrino masses and provide for new astrophysical “laboratory” to com-

plement the high-energy experiments. It is, therefore, important to examine variations of the

scenario proposed in Ref. [4] and their ramifications for neutrino physics. In this letter we

concentrate on the effects sterile neutrinos can have on the motion of pulsars and estimate

the magnitude of the pulsar birth velocity due to sterile-to-active neutrino oscillations. The

main difference on the theoretical side between this effect and that discussed in Ref. [4] is

that neutral currents play a crucial role in the oscillations of sterile neutrinos.

As neutrinos pass through matter, they experience an effective potential

V (νs) = 0 (1)

V (νe) = −V (ν̄e) = V0 (3 Ye − 1 + 4 Yνe
) (2)

V (νµ,τ ) = −V (ν̄µ,τ ) = V0 (Ye − 1 + 2 Yνe
) + c

Z

L

~k · ~B

k
(3)
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where Ye (Yνe
) is the ratio of the number density of electrons (neutrinos) to that of neutrons,

~B is the magnetic field, ~k is the neutrino momentum, V0 = 10 eV (ρ/1014g cm−3) and

c
Z

L
=

eG
F√
2

(

3Ne

π4

)1/3

(4)

The magnetic field dependent term in equation (3) arises from a one-loop finite-density contri-

bution [5] to the self-energy of a neutrino propagating in a magnetized medium1. An excellent

review of the neutrino “refraction” in magnetized medium is found in Ref. [1].

Only electrons contribute to the one-loop neutrino self-energy diagram with a charged

current and an external photon source (magnetic field). There are contributions from both

electrons and protons to the the diagram with a neutral current and an external photon source.

In a neutral plasma in equilibrium, the neutral current diagrams with electrons and protons

cancel the charged current contribution [5]; therefore, there is no (~k · ~B) term in equation (2).

In the case of νµ and ντ , the charged current diagram is absent and the effective potential (3)

is magnetic field dependent.

The condition for resonant oscillation νi ↔ νj is

m2

i

2k
cos 2θij + V (νi) =

m2

j

2k
cos 2θij + V (νj) (5)

where νi,j can be either a neutrino or an anti-neutrino.

We consider a hierarchical mass matrix for neutrinos with m(ντ ) ≫ m(νµ) ≫ m(νe). Most

of the time after the onset of the supernova explosion, the right-hand sides of equations (2)

and (3) are negative because the deleptonization of nuclear matter during the first second

causes the ratio Ye to drop from 0.4 to about 0.1; as the cooling of the neutron star proceeds,

Ye further decreases to 0.04. Yνe
∼ 0.07 is also small.

The sign of the mass difference determines whether or not the resonant oscillations of a

certain type can occur. If the sterile neutrino is heavier than other species, the oscillations of

the type νs ↔ ν̄i can take place. If, on the other hand, νs is lighter than, e. g., ντ , oscillations

1 We emphasize the difference between these chirality-preserving oscillations and the spin and flavor pre-
cession of neutrinos in magnetic field studied, e. g., in Refs. [6, 7], which can occur if the neutrino magnetic
moment is sufficiently large. Such oscillations can also have an effect on the pulsar motions if the magnetic
field is inhomogeneous [7].
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νs ↔ ντ are possible inside the neutron star.

The neutron star will receive a kick if the following two conditions [4] are satisfied: (1) the

adiabatic oscillation νi ↔ νj occurs at a point inside the i-neutrinosphere but outside the

j-neutrinosphere; and (2) the difference [V (νi) − V (νj)] contains a piece that depends on the

relative orientation of the magnetic field ~B and the momentum of the outgoing neutrinos,

~k. If the first condition is satisfied, the effective neutrinosphere of νj will coincide with the

surface formed by the points of resonance. The second condition ensures that this surface

(a “resonance-sphere”) will be deformed by the magnetic field in such a way that it will be

further from the center of the star when (~k · ~B) > 0, and nearer when (~k · ~B) < 0. The

average momentum carried away by the neutrinos depends on the temperature of the region

from which they exit. The deeper inside the star, the higher is the temperature. Therefore,

neutrinos coming out in different directions will carry momenta which depend on the relative

orientation of ~k and ~B. This causes the asymmetry in momentum distribution. An 1%

asymmetry is sufficient to generate birth velocities of pulsars consistent with observation [4].

Since the sterile neutrinos have a zero-radius neutrinosphere, νs ↔ ν̄µ,τ oscillations can be

the cause of the pulsar motions if m(νs) > m(νµ,τ ). If, on the other hand, m(νs) < m(νµ,τ ),

νs ↔ νµ,τ oscillations can play the same role. We emphasize that oscillations between a sterile

neutrino and an electron (anti-) neutrino are irrelevant for the recoil velocity of a pulsar. We

will come back to this point below when we discuss the constraints from the supernova 1987A.

In the case of active neutrino oscillations, the magnitude of the “kick” was found [4] to be

∆k

k
=

e

3π2

(

µe

T

dT

dNe

)

B, (6)

The following changes occur for the active to sterile neutrino oscillations: Ne ≡ YeNn is

replaced by Nn/2, and there is an overall factor of 2 because, for a hierarchical mass matrix,

the oscillations of both νµ and ντ occur at nearby points, both subject to the asymmetry

in the magnetic field. Therefore, for the neutral current induced oscillations, the size of the

asymmetry in momentum distribution is

∆k

k
=

4e

3π2

(

µe

T

dT

dNn

)

B, (7)
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To calculate the derivative in (7), we use the relation between the density and the tem-

perature of a non-relativistic Fermi gas:

Nn =
2(mnT )3/2

√
2π2

∫

√
zdz

ez−µn/T + 1
(8)

where mn and µn are the neutron mass and chemical potential. The derivative (dT/dNn) can

be computed from (8). Finally,

∆k

k
=

4e
√

2

π2

µeµ
1/2

n

m
3/2

n T 2

B. (9)

It is instructive to compare the magnitude of this asymmetry to that produced by the

active neutrino oscillations [4]. The latter agreed well with the observed velocities of pulsars

for B ∼ 1014 G. The right-hand side of equation (6) is different from equation (9) by the factor

X = 4
√

2µnµe/m
3/2

n , which is maximized when the oscillations take place in the dense interior

of the star where the density is of order 1014 g cm−3. This corresponds to Nn ∼ (100 MeV)3 ≈

(4/3
√

2π2)(µnmn)3/2. Therefore, X ≤ 0.15. If the sterile neutrino oscillatiosn are to explain

the observed birth velocities of pulsars, the magnetic field inside the star must be at least a

factor of 6 greater than that needed for the active neutrino oscillations to produce the required

asymmetry, or of order B ∼ 1015G.

We conclude, therefore, that the active ↔ sterile neutrino oscillations, biased by the mag-

netic field, can result in the kick velocities of order ∼ 500 km/s if the resonant conversion

takes place at densities of order ∼ 1014 g/cm3, one neutrino has a mass in the keV range,

and the magnetic field is B ∼ 1015G. This requires the mass of one of the neutrinos to be in

the 3 keV to 10 keV range. This value of B is, as was stated earlier, an order of magnitude

larger than the B field needed in (6), but is still an order of magnitude smaller than the B

field needed to begin to explain the kick by other weak interactions [7, 8]. Of course, it is not

obvious that such large magnetic fields are possible inside a neutron star.

The mixing angle can be very small, because the adiabaticity condition is satisfied if

losc ≈
(

1

2π

∆m2

2k
sin 2θ

)−1

≈
10−2 cm

sin 2θ
(10)
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is smaller than the typical scale of the density variations. Thus the oscillations remain adia-

batic as long as sin2 2θ > 10−8.

Since the sterile neutrino oscillations are assumed to occur inside the ν̄e-sphere, the flux

of electron anti-neutrinos observed by IMB and Kamiokande [9] is not affected as long as the

sterile neutrinos don’t overcool the star. In the mass range of interest, ∆m ∼ 3−10 keV, there

is an upper limit [10] on the mixing angle of the sterile neutrino and the electron neutrino,

sin2 2θe,s > 10−6. For larger mixing angles, too big of a fraction of the energy is carried off by

the sterile neutrinos, and the flux of electron neutrinos diminishes, in contradiction with the

observation of ν̄e events following SN1987A by IMB and Kamiokande [9].

Some comments are in order. The above estimate of the asymmetry in the momentum of

the outgoing neutrinos is reliable when only a small fraction of the total energy is emitted as

sterile neutrinos. In the case of active neutrino oscillations [4], only 1/6 of all neutrino types

exhibit the asymmetry, while the temperature distribution is determined by the emission of

all six. The effect of the change in the position of the resonance on the overall temperature

distribution is then small (next order in 1/6 treated as a small perturbation on the isotropic

flux) and, to first approximation, can be neglected. In the case of active to sterile neutrino

oscillations, it is typically 1/3 of the total neutrino flux that is asymmetric. This is because,

for the hierarchical mass matrix with m(νs) ≫ m(νe,µ,τ ), the νs ↔ ν̄τ oscillations will take

place at approximately the same density as the νs ↔ ν̄µ oscillations. However, it is still

reasonable to use the same approximation as before.

Another possible caveat should be mentioned. The temperature and density change rapidly

in the vicinity of the neutrinospheres, where the cooling takes place. Therefore, in calculating

the momentum anisotropy in Ref. [4], one could safely neglect the change in the luminous

area when the position of the resonance changed slightly. In general, the total momentum is

proportional to T 4 × (area), but as long as the temperature varies faster than 1/R2, the area

factor can be considered constant. Sterile neutrino oscillations may occur, however, deeper

inside the neutron star, where the change in temperature is not so rapid, and the changes in

the luminous area can modify the above estimate.
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