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We define fermionic collective coordinates for type-IIB Dirichlet instantons and discuss

some effects of the associated fermionic zero modes within the dilute gas framework. We

show that the standard rules for clustering of zero modes in the dilute limit, and the

fermion-exchange interactions follow from world-sheet Ward identities. Fermion exchange

is strongly attractive at string-scale distances, which makes the short-distance Hagedorn

singularity between instantons and anti-instantons even stronger.
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1. Introduction

The Dirichlet-brane construction of Ramond–Ramond solitons [1], [2] allows a rather

explicit characterization of the weak coupling quantization of such objects. The collective

dynamics of a p-brane consists of a world-volume interacting theory of open strings propa-

gating in p+ 1 dimensions, and the description of the interactions with the bulk dynamics

is equally explicit in terms of the standard coupling between open and closed strings. A

special role is played by the Dirichlet instanton of the type-IIB theory, the case p = −1

localized in all space-time directions. The “world-volume” is a point, and the collective

dynamics is given by a finite-dimensional integral over the multi-instanton moduli space,

the integrand being determined by a “zero-dimensional” open string theory. Besides the

simpler collective dynamics, D-instantons exhibit a number of special properties, as com-

pared to the rest of the D-branes. It is well known that perturbative string amplitudes

in the instanton background are power-behaved at high energy [3], thus introducing “field

theoretical” features in string theory. The kind of logarithmic divergences responsible for

the world-volume dynamics in the higher branes (via a Fischler–Susskind mechanism), are

cancelled in this case by the instanton gas combinatorics, which also ensures the standard

clustering properties [4], [5].

The analogue of the static interaction potential for higher branes is the interaction

action of D-instantons. The leading-order contribution in string perturbation theory is the

cylinder diagram with two Dirichlet boundaries. In terms of massless background fields

[6] it corresponds to the purely classical overlapping interaction of the long-distance tails

of the instanton fields, as in [7]. In the closed-string channel it can be interpreted as an

off-shell propagator between Dirichlet boundary states

Γ(x, y) ∼
∑
s

Cs

〈
Bx, s

∣∣∣∣ 1

∆s
PGSO

∣∣∣∣B′y, s〉 , (1.1)

where Cs are appropriate phases for the coherent sum of spin structures in the GSO-

projected closed-string channel, and ∆s = α′

2 p
2 + N + N − as − ās is the world-sheet

Hamiltonian for type II strings. This static interaction vanishes for two instantons or

two anti-instantons as a result of an unbroken supersymmetry in the open string channel

(where we have a one-loop vacuum diagram of open strings with fixed endpoints, see [8]

for explicit expressions of (1.1)). In the closed-string channel, this is just the well known

“zero-force” property of BPS saturated configurations [9], [8], [2]. At the massless level, the
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cancellation results from the balance between the Coulomb interactions Γ(x, y) ∼ |x−y|−8,

due to the attractive NS–NS dilaton exchange, and the repulsive R–R “axion” exchange.

On the other hand, the R–R scalar exchange becomes attractive between instantons and

anti-instantons, a configuration that breaks all the supersymmetries:

Γ+−(x− y) = −(2π)4

∫ ∞
0

ds

s5
e−

(x−y)2

2α′s

∞∏
m=1

(
1 + q2m

1− q2m

)8

, (1.2)

where q = e−s is the modular parameter of the cylindrical world-sheet. At short distances,

this instanton/anti-instanton (I–A) interaction suffers from a Hagedorn singularity: each

massive closed string contributing to (1.2) is suppressed by a factor e−M|x−y|, and we

can estimate the propagator as
∑
M ρD(M)e−M|x−y|, where ρD(M) is the level density of

closed string states coupling to the D-instanton. This quantity grows exponentially with

half the rate of the total density of states ρD(M) ∼ e
βHag

2 M , which results in an instability

at half the Hagedorn distance [10], [8]. Since (1.2) diverges at the ultraviolet endpoint

s ∼ 0, it is convenient to perform a modular transformation t = 2π2/s to the open-string

channel, which is also useful to define the absolute normalization of the amplitude:

Γ+−(x− y) =− 2 ·
1

4

∫ ∞
0

dt

t

[
TrNS

(
1 + (−1)F

)
e−t∆NS − TrR

(
1 + (−1)F

)
e−t∆R

]
=−

∫ ∞
0

dt

t
e
−t

(
(x−y)2

4π2α′
− 1

2

)
∞∏
m=1

(
1−wm−1/2

1− wm

)8

(1.3)

where w = e−t and the overall factor of two is due to the oriented character of the type-IIB

strings [2]. In what is by now a well understood rule [11], the open-string channel is the

appropriate one to discuss short-distance dynamics of D-branes. Indeed, the massless states

producing the t ∼ ∞ singularities in (1.3) are associated to a vanishing Dirichlet open-

string world-sheet Hamiltonian in the Neveu-Schwarz sector ∆NS = (x−y)
4π2α′

+N− 1
2 = 0, as a

result of the balance between the Casimir and stretching energy of the Dirichlet open string.

From (1.3) it follows that the dominant singularity occurs at half the Hagedorn distance

of the type-IIB theory βHag = π
√

8α′, and it is logarithmically attractive: Γ(x, y) ∼

log(|x− y| − βHag/2).

An analogous singularity exists for higher p-branes, for which some derivative of the

static force diverges [12]. These singularities indicate that I–A configurations are not

appropriate varibles at string-length distances. Indeed, on general grounds, I–A configu-

rations annihilate one another and cannot be distinguished from perturbative fluctuations
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in the coincidence limit, and their treatment is always very ambiguous at short distances.

It is nevertheless surprising that a stringy instability poses a clear-cut limit to the I–A

parametrization.

In the present paper we consider some effects on the I–A interaction due to super-

symmetric zero modes or, equivalently, supersymmetric collective coordinates. Our main

observation is that many familiar aspects of supersymmetric instanton calculus are recov-

ered here from string world-sheet Ward identities.

Given the marginal character of the local I–A Hagedorn singularity (logarithmic), it is

very interesting to check the effects of fermion zero modes at short distances. If the induced

interactions turn out to be repulsive, they could perhaps cure the instability. In the course

of this letter we will argue in favour of the opposite situation, namely the fermion-induced

interactions are strongly attractive at short distances.

2. Collective Coordinates

In general, there is a fermionic collective coordinate for each fermionic symmetry

broken by the classical solution. In the Dirichlet construction, we have to consider the

space-time supersymmetries broken by the open-string boundary conditions. For explicit

calculations involving the supersymmetry charges, it is convenient to use the light-cone

Green–Schwarz formalism. In the notation and conventions of [8], the bosonic (anti-) D-

instanton boundary state is a solution of the constraints (αin − α
i
−n)|I±, p〉 = 0, (San ±

iS
a

−n)|I±, p〉 = 0 and may be written as the coherent state

|I±, p〉 = exp
∞∑
n=1

(
αi−nα

i
−n

n
∓ iSa−nS

a

−n

)
|0±, p〉, (2.1)

where Sa are Green–Schwarz fermions, transforming in the 8s of SO(8), the transverse

rotation group. The ground states in (2.1) are the standard massless scalars of the type-IIB

string |0±, p〉 = 1
4

(
|p〉|i〉|i〉 ∓ i|p〉|ȧ〉|ȧ〉

)
satisfying1 〈0±, p| = (|0∓, p〉)†, 〈0+, p|0+, p

′〉 = 0,

〈0+, p|0−, p′〉 = δ10(p+ p′).

There are 32 supersymmetry charges in the type-IIB string. From the left-moving

sector we have 16 charges with SO(8) quantum numbers 8s⊕8c, with the 8s charges given

1 As usual, the indices i, a, ȧ run in the 8v,8s and 8c of SO(8) respectively.
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by Qa =
√

2p+Sa0 , while those in the 8c are non-linearly realized in the light-cone gauge,

Qȧ =
√

2
α′p+ γiȧa

∑+∞
−∞ S

a
−nα

i
n, with the same structure repeated in the right-moving sec-

tor. The combinations Q± = 1√
2
(Q ± iQ) satisfy the algebra {Q+, Q−} =

√
2γµp

µ =

−i
√

2 γ · ∂, after defining suitable 16×16 gamma matrices. The important property of the

charges Q± is that they annihilate the instanton and anti-instanton: Q±|I±, p〉 = 0. Thus,

the state |I±〉 only breaks the Q∓ supersymmetries, and we have 16 fermionic collective

coordinates in addition to the standard ten bosonic coordinates for the position (unlike

Yang–Mills instantons, these R–R gravitational instantons are “point-like”, in the sense

that no size parameter arises as a result of the lack of scale invariance).

These collective coordinates are introduced in the operator formalism by the insertion

of operators:

eixP eiθ
±Q∓ |I±, x = 0〉 (2.2)

for each instanton or anti-instanton boundary state of type (2.1) at fixed position. The

measure for integration over the instanton moduli space must be invariant under the un-

broken supertranslations x→ x+ θγθ and is thus determined to be

dµ± = J± dx± d16θ±, (2.3)

with J a convenient Jacobian, which can be obtained from the analysis of the low-energy

solutions (see [13]). On general grounds, since the only bosonic zero modes are translations

we know the scaling with the string coupling λ as J ∼ (
√
Sc`)

10 ∼ λ−5, and the propor-

tionality constant fixes the normalizations and gives the right dimensions to d10x0 d
16θ.

The action of Q∓ on |I±〉 spans two 216-dimensional supersymmetry representations.

In particular, the standard fermionic zero modes correspond to the action of one charge

Qα∓|I
±, x〉, which has projections (wave functions) along any of the fermionic string states.

Clearly, the integration over the fermionic collective coordinates is equivalent to including

the complete D-instanton supermultiplet in the path integral. Following the rules in [5],

[4], the partition function of the instanton gas is given by

Z =
∞∑

n+,n−=0

1

n+!n−!

n+∏
j=1

∫
dµ+

j

n−∏
k=1

∫
dµ−k e

−S(n+,n−) , (2.4)

where the action in the (n+, n−) instanton sector is

S(n+,n−) = Γ0 +
∑
j

Γj+
∑
k

Γk+
∑

(j1,j2)

Γ(j1,j2) +
∑

(k1,k2)

Γ(k1,k2) +
∑
(j,k)

Γ(j,k) +3 body; (2.5)
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here the index j refers to instantons and k to anti-instantons. We have an expansion

in irreducible many-body interaction terms, each of them given by the sum of connected

string diagrams with a number of boundaries attached to instantons, anti-instantons, or

both. Specifically:

Γ(j1,···;k1···) =
∞∑
g=0

∞∑
N+

1 ,···=0

∞∑
N−1 ,···=0

λ2g+
∑

N++
∑

N−−2

N+
1 ! · · ·N−1 ! · · ·

W (g,N+
j , N

−
k ). (2.6)

Here N± denote the number of boundaries attached to the same instanton or anti-

instanton, and λ stands for the string coupling constant. The first term Γ0 is the standard

perturbative sum of string diagrams in vacuo, and the bare instanton action is given by

Γ± = D
λ

, where D is the disk amplitude. Diagrams with genus zero correspond to classical

interactions between the instantons, the leading one coming from the cylinder diagram

(1.1). The expansion (2.6) and (2.4) provides a complete perturbative treatment of the

instanton interactions, including the purely classical ones, giving a stringy version of a

perturbative constrained instanton expansion [14]. The BPS character ensures that there

are no classical interactions between like-“ground-state” instantons, with boundary states

given by (2.1). In fact, a heuristic non-renormalization theorem can be argued for the

vanishing of the general string diagram with only (anti-) instanton insertions2. This is

essentially Martinec’s argument for the vanishing of the cosmological constant in pertur-

bative string theory, using the corresponding unbroken supersymmetry. In principle, there

are classical interactions between instanton states in the same supermultiplet, due to the

fact that instantons do interact with anti-instantons, and both boundary states are related

by the action of linearly realized supersymmetry charges: |0±, p〉 = 1
(2p+)4

∏8
a=1Q

a
±|0∓, p〉.

Therefore, the expansion in fermionic collective coordinates could effectively induce bosonic

I–A interactions, as in (1.1). However, we shall see in the following that these terms do

not survive the integration over fermionic collective coordinates.

In practice, the expressions (2.4) and (2.6) are only valid within a dilute-gas approxi-

mation, in spite of the systematic treatment of I–A interactions involved, and we are forced

to cut-off the integral over positions at relative separations of the order of the string scale.

The Hagedorn-like instability in the I–A sector is an obvious reason. However, even if

we do not consider anti-instantons, the above parametrization of collective coordinates is

2 In fact, one needs at least one loop of closed or open strings to complete the argument, so

that the disk amplitude is non-zero even in the supersymmetric case.
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wrong when several D-instantons approach one another. Below the string scale, we have

∼ N2 light modes instead of the N positions of a set of N D-instantons on top of each other

[15], and the collective dynamics corresponds to a certain U(N) supersymmetric matrix

model (recently, the case N = 2 was studied in [16]). A very interesting possibility along

these lines would be that the effective dynamics of an I–A pair, separated by the singular

distance βHag/2, is indeed described by some U(2) matrix model.

3. Ward Identity and Fermion Exchange

It is clear that the previous setting can be used to obtain world-sheet Ward identities

associated to the supersymmetries Q±. In order to generalize the discussion, it is conve-

nient to use an abstract operator formalism in which the perturbative string amplitude

with boundary states is represented as the overlap

W (g,N+
j , N

−
k ) =

∫
M
〈Σ(g,N+

j
,N−
k

)|Ψ〉, (3.1)

where we integrate over the moduli space of super-Riemann surfaces with punctures M.

The ket state has the structure |Ψ〉 = ⊗j |x
+
j , θ

+
j 〉 ⊗k |x

−
k , θ

−
k 〉 and the states |x±, θ±〉 =

eiθ
±Q∓ |x±〉 are one-punctured spheres, projected on the instanton boundary states located

at the point x±; and we now allow the indices j, k to label boundaries possibly located at

the same space-time instanton. We will concentrate here on the multi-instanton vacuum

amplitudes (2.6). However, it is clear that similar Ward identities could be derived for

instanton-corrected scattering amplitudes, by simply including some asymptotic scattering

states in the definition of the state |Ψ〉. See [17][18] for some results in this direction.

The basic property we need is the contour-deformation formula to pull an insertion of

a conserved current Q =
∮
J from one puncture to the others:

〈Σ|Q|ψ〉 ⊗i |χi〉 =
∑
i

〈Σ|ψ〉 ⊗ |χ1〉 ⊗ · · · ⊗ |(−Q)|χi〉 ⊗ · · · (3.2)

and the exponentiated version: 〈Σ|eQψ〉 ⊗i |χi〉 = 〈Σ|ψ〉 ⊗i e−Q|χi〉. These formal Ward

identities hold up to total derivatives in the perturbative moduli spaceM, which we tacitly

discard. In doing so, our manipulations have the same heuristic status as the “proofs” of
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perturbative finiteness of superstrings. Applying the Ward identity to (3.1) we eliminate

the fermionic collective coordinates from one puncture, say x+
1 , and we get∫

M
〈Σ|x+

1 〉 ⊗j 6=1 e
i(θ+

j
−θ+

1 )Q− |x+
j 〉 ⊗k e

−iθ+
1 Q−eiθ

−
k
Q+ |x−k 〉. (3.3)

Now we can use the algebra {Q+, Q−} = −i
√

2γµ∂µ to commute the two exponentials

acting on the anti-instanton Hilbert spaces, at the expense of producing insertions of the

momentum operator, which in turn translates the anti-instanton boundary states. The

Q− charge annihilates the anti-instantons and we are left with∫
M
〈Σ|x+

1 〉 ⊗j 6=1 e
i(θ+

j
−θ+

1 )Q− |x+
j − i

√
2θ−1 γ(θ+

j − θ
+
1 )〉 ⊗ |x−1 + i

√
2θ−1 γθ

+
1 〉

⊗k 6=1 e
i(θ−

k
−θ−1 )Q+ |x−k + i

√
2θ−k γθ

+
1 〉,

(3.4)

where we have applied the same manipulations to the x−1 puncture. In the particularly

simple case of an amplitude involving only instantons, the expression (3.4) reduces to∫
M〈Σ|x

+
1 〉 ⊗j 6=1 |x

+
j , θ

+
j − θ

+
1 〉, from which we can eliminate all θ1 dependence altogether

by a change of variables in the measure: θj → θj +θ1. Thus we see that the pure instanton

vacuum amplitudes all vanish after integration over fermionic collective coordinates (again,

up to total derivatives in the perturbative moduli space), even if, as stated before, the static

interactions between some states in the supermultiplet could be non-trivial.

If θ+
j = θ+

1 and θ−k = θ−1 , i.e. when we have only one I–A pair connected by a Riemann

surface, then we have succeeded in eliminating all fermionic collective coordinates in favour

of a total derivative with respect to the relative position. This seems to be impossible for

higher interactions (3 body, 4 body, etc). If we truncate the instanton action to the 2-body

interaction terms, as in (2.5), then the partition function takes the form

Z2−body = e−Γ0

∑
n+n−

1

n+!n−!

∫ ∏
j

dx+
j dθ

+
j J

+
j e
−Γj

∏
k

dx−k dθ
−
k J
−
k e
−Γk×

×
∏
(j,k)

exp

(
i
√

2θ−k γθ
+
j ·

∂

∂xjk

)
e−Γjk(xjk),

(3.5)

where xjk = x−k − x+
j and Γjk(xjk) is given by (1.2). Integration over the fermionic

coordinates is equivalent to the insertion of factors i
√

2γµαβ∂µΓ2(x−−x+) for each pairing of

fermionic lines, in a graphical representation in which each instanton is an effective operator

with 16 fermionic legs, labelled by the 8s⊕8c of SO(8) Dirac indices. In eq. (1.1), Γ2(x−−
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x+) was interpreted as an off-shell tree-level propagator (inverse generalized Laplacian)

for the bosonic boundary states, thus the fermionic insertions are true off-shell string field

theory generalizations of fermionic propagators. Notice that the function Γ2(x− − x+)

may contain contributions from an arbitrary number of boundaries and handles, so that

we really obtain the fully dressed fermionic propagators of string field theory.

We can also saturate the zero modes by applying several derivatives to the same off-

shell propagator. A term with an even number of derivatives (γ ·∂)2nΓ2 can be interpreted

as a bosonic line connecting effective operators with n derivatives Ob ∼ ϕNb ∂nψNf , with

an even number of fermions Nf = even. On the other hand, terms with an odd number of

derivatives (γ ·∂)2n+1Γ2 may be interpreted as a fermionic propagator connecting fermionic

operators with n derivatives Of ∼ ϕNb∂nψNf , and Nf = odd. We thus get the stringy

generalization of the standard rules for the clustering of zero modes, and the multiple-

scattering approximation familiar from Field Theory [19]. It is very satisfying to see them

emerge from world-sheet Ward identities in the underlying string theory.

We can exhibit the effective operators more precisely in the one-instanton sector.

Fermionic zero modes pose selection rules on the effective operators arising in the process

of “integrating out” instanton fluctuations. In the one-instanton sector we have to saturate

the 16 zero modes of the D-instanton, and the analogue of the resulting ’t Hooft effective

interaction is generated to leading order in the string coupling by 16 tadpoles of fermionic

vertex operators V ψ in the instanton background. This easily follows from the fermionic

D-instanton calculus in the form∫
dx0 dθ J e

−Γ1

16∏
α=1

〈V ψpα | e
iθ±Q∓ |I±, x0〉disk =

∫
dx0 J e

−Γ1

16∏
α=1

〈V ψpα |Q
α
∓ |I

±, x0〉disk.

(3.6)

In general, string scattering amplitudes directly produce the amputated Green func-

tion of string field theory. Accordingly, the Dirichlet disk tadpoles can be interpreted as

the source terms in the classical background equations through the formal relation

〈VΦ(p) |I, x0〉disk ∼ (p2 +M2
Φ) 〈Φ(p)〉I,x0 .

At the massless level, this simply reduces to ∂2
x ϕc`(x, x0), where ϕc`(x, x0) denotes collec-

tively the bosonic massless fields in the background of an instanton located at x0. These

are particularly simple in the case of the type-IIB gravitational instantons we are interested
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in: at the massless level [6], the D-instanton only couples to the dilaton φ and the R–R

scalar “axion”

i ac` ∼ e
−φc` = e−φ∞

(
1 +

Qα′4

|x− x0|8

)−1

in the bosonic sector3, where Q denotes the R–R charge in appropriate units. The fermionic

zero modes γ ·Dψc` = 0 appearing in (3.6) are obtained from the bosonic solution by a

broken supersymmetry transformation. In general, starting from the bosonic solution

we can generate the full fermionic instanton solution as a function of both bosonic and

fermionic collective coordinates (i.e. the full supermultiplet of instanton fields) by explicit

iteration of the type-IIB supersymmetry transformations as presented in [20]. Formally,

one finds the structure

ϕc`(x, x0, θ) ∼
8∑

n=0

Cn(θ γ · ∂x θ)
n ϕc`(x, x0)

ψc`(x, x0, θ) ∼
7∑

n=0

Cn (θ γ · ∂x θ)
n θ γ · ∂xϕc`(x, x0)

(3.7)

for bosonic and fermionic fields respectively. Now, all effective operators produced by

integrating out D-instantons are generated in the local limit by the standard rule:〈 ∏
bosons

∂2ϕ
∏

fermions

γ · ∂ ψ

〉
inst

→
∑

local ops.

〈Oeff(ϕ, ψ)〉vac. (3.8)

Here the factors ∂2 and γ · ∂ correspond to the amputation of the Green function. The

right-hand side of (3.8) has the form

Oeff ∼ e
−D/λ J AϕNb ∂N∂ ψNf (3.9)

for an effective operator with Nb bosons, Nf fermions and N∂ derivatives. Here A denotes

the contribution of non-zero modes (starting with the one-loop determinant in the instanton

background).

More explicitly, the effective operators are given by all the different forms of saturating

the fermionic integration in the expression

e−Γ1

∫
dx0 d

16θ J

Nb∏
j=1

∂2
xj
ϕc`(xj, x0, θ)

Nf∏
k=1

γ · ∂xkψc`(xk, x0, θ), (3.10)

3 This is an elementary solution of the Laplace equation with source at x0, so ϕc`(x, x0) ∼

〈x0| 1
∂2 |x〉 indeed scales like a massless bosonic propagator.
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where ϕ(x, x0, θ) and ψ(x, x0, θ) are the classical configurations in (3.7), in complete anal-

ogy with the superfield instanton calculus as developed for example in [21]. If each bosonic

leg soaks up 2nj fermion collective coordinates, and each fermionic leg 2mk + 1 such that∑
2nj +

∑
(2mk+1) = 16, then, considering the amputation factors and the scaling of the

bosonic solution ϕc` ∼ (∂)−2, we find a total of
∑
nj +

∑
mk = 8− Nf

2 derivatives in the

effective operator. In general, defining the natural dimensional index for supersymmetric

transformations N ≡ N∂ + Nf/2, we have the selection rule N = Z
2 for Z chiral zero

modes.

Realizing the supersymmetry in the linearized approximation, there are additional

selection rules coming from the BPS character of the instantons, and the fact that the

only bosonic massless couplings correspond to the two scalars of the massless type-IIB

multiplet. The discussion is simplified by the fact that we may arrange the massless IIB

supermultiplet into a light-cone superfield containing the antisymmetric products of the 8s

representation of SO(8) according to ref. [22]. In any case, from the physical point of view,

the upshot of this discussion of zero-mode selection rules is that effective operators induced

by ten-dimensional D-instantons of the type-IIB theory have 16 fermions or an equivalent

number of derivatives. They are thus of very high dimension, and no interesting infrared

dynamics is induced in the one-instanton sector. This is true in spite of the strong Coulomb

forces binding the instantons and anti-instantons, similar to the familiar case of 2+1 gauge

theories [23], [24]. This is consistent with the fact that supersymmetry completely de-

termines the type-IIB supergravity action to order N = 2, and no potential is allowed.

On general grounds, since the instanton “dynamics” reduces to a finite-dimensional inte-

gral, we expect the effective action after integrating out the instanton fluctuations to be

supersymmetric. This means that one expects instantons to induce effective actions that

could exhibit spontaneous breaking of supersymmetry in some cases. On the other hand

a non-supersymmetric effective action after integrating out instantons would indicate that

supersymmetry is anomalous. As we comment below, a possible exception could be the

I–A sector, because of the Hagedorn singularity.

On the other hand, working in less supersymmetric backgrounds, D-instantons or

more generally wrapped Euclidean D-branes could indeed generate interesting couplings

in the infrared. A notorious example appears in [25], where superpotentials are generated

in N = 1 backgrounds. An example with completely broken supersymmetry is given by

the finite-temperature boundary conditions, where one readily finds periodic potentials

11



for the ten-dimensional axion field, and runaway potentials for the dilaton generated by

D-instantons (see [13]).

Coming back to (3.5), we can discuss the dynamical effects of including the fermionic

collective coordinates. At large separations, in the dilute-gas limit, we obtain a supress-

ing factor |x+ − x−|−9 for each paired fermion line, from the long-distance scaling of the

fermionic propagator γ · ∂ Γ2(x+ − x−). This corresponds to the restoration of super-

symmetric zero modes (for example, factorization of determinants at one loop), and the

subsequent suppression of instanton effects.

At string-scale distances, we can estimate the fermionic propagators in the open chan-

nel expression (1.3). Each pair of fermionic collective coordinates carries a derivative in-

sertion and therefore an extra enhancement factor |x+ − x− − βHag/2|−1 in the partition

function (a logarithmic attraction term in the effective action). This means that fermion

exchange is also strongly attractive at short distances. We may consider as possible dom-

inant configurations those in which the fermionic zero modes are saturated in “dipole”

pairs, each one contributing an extra factor |x+ − x− − βHag/2|−16. These configurations

are also interesting because they integrate to a total derivative in the multi I–A partition

function. Indeed, summing a dilute gas of these “dipoles”, we obtain a vacuum effective

action

Γdipoles = Γ0 + Vol10 × e−2Γ1 × 28

∫ ∞
0

dx det(γ · ∂x) e−Γ2(x), (3.11)

where the determinant is over Dirac indices in the 8s⊕8c of SO(8). In a normal situation,

as in field theory, one would define the I–A coincidence boundary condition at x = 0

as trivial, thereby obtaining Γdipoles = 0 and unbroken supersymmetry. In this case,

the logarithmic singularity at finite separation renders (3.11) ill defined and there is a

possibility of supersymmetry breaking, depending on the boundary conditions (i.e. new

physics) involving the annihilation of the I–A pairs, which might signal an interesting

source of non-perturbative instabilities of type-IIB strings.

In any case, it is clear that no definite conclusions can be drawn until the physics of

I–A annihilation is understood. In fact, we can view the singularity as an effect of not

treating the extra massless modes appearing at the distance βHag/2 as fully fledged collec-

tive coordinates. Therefore, one should perhaps formulate the problem in terms of the U(2)

matrix dynamics of light modes of I–A “molecules” of approximate size βHag/2. However,

the study of possible bound states of the resulting I–A system is surely complicated by the

lack of supersymmetry of these configurations.
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4. Conclusions

We observe that the stringy generalization of some standard rules of instanton calcu-

lus is simply dictated by the structure of world-sheet Ward identities. This is the case of

the handling of supersymmetry zero modes and the corresponding fermion exchange inter-

actions. The consideration of anti-commuting collective coordinates does not resolve the

Hagedorn instability of overlapping I–A pairs. On the contrary, the interaction induced

by fermion exchange is strongly attractive at the string-scale distances.

Ten-dimensional D-instantons induce effective operators with N∂ +
Nf
2 = 8, where N∂

is the number of derivatives and Nf is the number of fermions. Therefore, they are not very

important in the infrared unless the I–A strong dynamics somehow breaks supersymmetry.

It is interesting to consider explicit D-instanton constructions in four-dimensional N = 1

backgrounds. In this case, in addition to the ten-dimensional D-instantons, we would

have wrapped Euclidean D-strings, 3-branes and 5-branes, as in [26]. Four dimensional

superpotentials would be generated if the instanton has exactly two chiral fermion zero

modes. A very general characterization of such superpotentials was recently put forward

in [25]. It would be interesting to work out in more detail the weak coupling quantization

of such four-dimensional R–R instantons.

Much work is still needed in order to fully understand the collective dynamics of

D-instantons and D-branes in general. The occurrence of a Hagedorn singularity in non-

supersymmetric sectors may indicate that new surprises beyond the U(N) enhancement

phenomenon of [15] are possible. It is then very important to learn the semiclassical rules

that reproduce non-trivial exact results such as [27].
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