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Introduction

These notes are the very late written version of a series of lectures given at the Trieste
Summer School in 1995. The aim was to provide an elementary introduction to the work of
Seiberg and Witten on exact results concerning N = 2 supersymmetric extensions of Quantum
Chromodynamics. We wanted to provide, in a single place, all the background material neces-
sary to study their work in detail. We had in mind graduate students who have already gone
through their Quantum Field Theory course, but we do not expect much more background
to follow these lectures. We have done our best to make the treatment pedagogical. In some
sections, we have heavily drawn on previous reviews, for instance in the treatment of supersym-
metry we have followed Bagger and Wess [22], and in the theory of monopoles we have used the
reviews by Goddard and Olive [1] and by S. Coleman [2, 3]. These sources provide excellent
presentations of these topics, and we had no compelling reason to try to make improvements on
their presentation. It is also quite obvious that we have drawn heavily on the original papers
of Seiberg and Witten [31, 32], but we have tried to provide the necessary tools to make their
reading more accessible to interested students and/or researchers. Recently there have been
other lecture notes published at a more advanced level, where one can find more details and also
the connection with String Theory (see, for instance, the notes by W. Lerche [40]). We would
also like to mention that we have not tried to be exhaustive in quoting all the literature on
the subject. A more complete reference list can be found in [40]. The reference list is intented
to provide a guidance to enter the vastly growing literature on duality in String Theory and
Field Theory. We apologize to those authors who may be offended by not finding their works
referenced.

These notes are divided into four sections, with each section further subdivided into several
subsections. Section 1 is devoted to an introduction to monopoles in gauge theories. We start
with a discussion of the Dirac monopole and the idea of charge quantization, and then describe
the ’t Hooft-Polyakov monopole in gauge theories with spontaneous symmetry breaking. Then
we introduce the notion of Bogomol’nyi bound and the BPS states. After this, we describe
the topological classification of monopoles and then describe the Montonen-Olive conjecture of
electric-magnetic duality. We end this section with a description of how, in the presence of a
θ-term in the Lagrangian, the electric charge of a monopole is shifted by its magnetic charge.
Section 2 is devoted to an introduction to supersymmetric gauge theories. First we describe the
supersymmetry algebra and its representations without and with central charges and discuss
its local realizations in terms of superfields. Then we construct N = 1 Lagrangians and finally,
N = 2 supersymmetric Lagrangians with both gauge multiplets and matter multiplets (hyper-
multiplets). At the end, we calculate the N = 2 central charge both in the pure gauge theory,
as well as in the theory with matter and establish its relation to the BPS bound. Having built
the foundations in the first two sections, in section 3 we describe the Seiberg-Witten analysis of
the N = 2 pure gauge theory with gauge group SU(2). In the first two subsections, we discuss
the parametrization of the moduli space and the breaking of R-symmetries. Then we describe
how the chiral U(1) anomaly of the theory can be used to obtain the one-loop form of the
low-energy effective action. The rest of the section is devoted to finding the exact low-energy
effective action by using duality and the singularity structure on the moduli space of the theory.
We express the exact solution in terms of complete elliptic integrals. In section 4, we briefly
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describe the Seiberg-Witten analysis of N = 2 SU(2) gauge theory with Nf matter fields. After
a discussion of the general features of these theories, we describe how the duality group is no
longer pure SL(2, Z). Then we describe the singularity structure on the moduli space of these
theories and sketch the procedure for obtaining the exact solutions. Our aim in section 4 is
to give a flavour of the analysis of theories with matter and, for a deeper understanding, the
interested reader is referred to the original work of Seiberg and Witten.

1 Magnetic Monopoles in Gauge Theories

In this section, we begin by reviewing the proporties of the Dirac monopole and the idea
of charge quantization. Then we describe the magnetic monopoles and dyons which arise in
non-Abelian gauge theories with spontaneous symmetry breaking and discuss their general
properties. We also introduce the notion of the Bogomol’nyi bound and BPS states. In the
last two subsections, we describe the Montonen-Olive conjecture of electric-magnetic duality
and Witten’s argument about how the presence of the θ-term in the Lagrangian modifies the
monopole and dyon electric charges. For a more detailed discussion of most of the material in
this section, the reader is referred to the review article by Goddard and Olive [1], and to the
lecture notes by Coleman [2, 3].

1.1 Conventions and Preliminaries

Let us start by stating our conventions: we always take c = 1, and almost always h̄ = 1, except
when it is important to make a distinction between classical and quantum effects. For index
manipulations, we use the flat Minkowsky metric η of signature {+,−,−,−}. Moreover, we
choose units in which Maxwell’s equations take the form:

~∇ · ~E = ρ , ~∇× ~B − ∂ ~E/∂t = ~j ,
~∇ · ~B = 0 , ~∇× ~E + ∂ ~B/∂t = 0 .

(1)

In these units, a factor of (4π)−1 appears in Coulomb’s law: For a static point-like charge q at
the origin, we have ρ = qδ3(~r). Integrating the first Maxwell equation over a sphere of radius

r and using spherical symmetry, we get
∫
S2
~E · d~s = 4πr2E(r) = q. Hence, ~E = q~r/4πr3, as

stated. The electrostatic potential φ defined by ~E = −~∇φ is given by φ = q/4πr.

In relativistic notation, one introduces the four-potential Aµ = {φ, ~A}. The electric and
magnetic fields are defined as components of the corresponding field strength tensor Fµν as
follows:

Fµν = ∂µAν − ∂νAµ ,

F0i = ∂0Ai − ∂iA0 = −∂0A
i − ∂iA

0 = Ei ,

Fij = ∂iAj − ∂jAi = −(∂iA
j − ∂jAi) = −ǫijkBk , (2)
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so that Bi = −1
2
ǫijkFjk = −1

2
ǫoiµνFµν . The dual field strength tensor is given by

F̃ µν =
1

2
εµναβFαβ ,

with ε0123 = +1. In component notation, we have

F µν =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −Bx By 0


 , F̃ µν =




0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0


 . (3)

In terms of the electric four-current jµ = {ρ,~j}, the Maxwell’s equations take the compact
form

∂νF
µν = −jµ , ∂ν F̃

µν = 0 . (4)

Note that when jµ = 0, the above equations are invariant under the replacement ~E → ~B, ~B →
−~E. This is referred to as the electric-magnetic duality transformation. In the presence of
electric sources, this transformation is no longer a symmetry of Maxwell’s equations. In order
to restore the duality invariance of these equations for non-zero jµ, Dirac [4] introduced the

magnetic four-current kµ = {σ,~k} and modified Maxwell’s equations to

∂νF
µν = −jµ , ∂ν F̃

µν = −kµ . (5)

The above equations are now invariant under a combined duality transformation of the fields
and the currents which can be written as

F → F̃ , F̃ → −F ; jµ → kµ , kµ → −jµ . (6)

Note that the full invariance group of the equations (5) is larger than this discrete duality. In
fact, they are invariant under a continuous SO(2) group which rotates the electric and magnetic
quantities into each other.

For point-like electric and magnetic sources, the current densities can be written as

jµ(x) =
∑

a

qa

∫
dxµ

aδ
4(x− xa) ,

kµ(x) =
∑

a

ga

∫
dxµ

aδ
4(x− xa) .

A particle of electric charge q and magnetic charge g experiences a Lorentz force given by

m
d2xµ

dτ 2
= (qF µν + g F̃ µν)

dxν

dτ
.

Although, at the level of quations of motion, Dirac’s modification of Maxwell’s theory
seems trivial, it has highly non-trivial consequences in quantum theory. One way of realizing

3



the problem is to note that the vector potential ~A is indispensable in the quantum formulation
of the theory. On the other hand, equations ~B = ~∇ × ~A and ~∇ · ~B 6= 0 are not compatible
unless the vector potential ~A has singularities and, hence, is not globally well-defined. It
turns out that these singularities are gauge dependent and, therefore, their presence should
not be experimentally detectable. In the classical theory, which can be formulated in terms
of ~B alone, this requirement is trivially satisfied. However, in quantum theory, it leads to the
important phenomenon of the quantization of electric charge. In the following, we will first
give a semiclassical derivation of this effect and then describe a derivation based on the notion
of the Dirac string.

1.2 A Semiclassical Derivation of Charge Quantization

Consider a non-relativistic charge q in the vicinity of a magnetic monopole of strength g,
situated at the origin. The charge q experiences a force m~̈r = q~̇r× ~B, where ~B is the monopole
field given by ~B = g~r/4πr3. The change in the orbital angular momentum of the electric charge
under the effect of this force is given by

d

dt

(
m~r × ~̇r

)
= m~r × ~̈r =

qg

4πr3
~r ×

(
~̇r × ~r

)
=

d

dt

(
qg

4π

~r

r

)
.

Hence, the total conserved angular momentum of the system is

~J = ~r ×m~̇r − qg

4π

~r

r
. (7)

The second term on the right hand side (henceforth denoted by ~Jem) is the contribution coming
from the elecromagnetic field. This term can be directly computed by using the fact that the
momentum density of an electromagnetic field is given by its Poynting vector, ~E× ~B, and hence
its contribution to the angular momentum is given by

~Jem =
∫
d3x~r × ( ~E × ~B) =

g

4π

∫
d3x~r ×

(
~E × ~r

r3

)
.

In components,

J i
em =

g

4π

∫
d3xEj

(
δij −

xixj

r2

)
1

r
=

g

4π

∫
d3xEj∂j(x̂

i)

=
g

4π

∫

S2

x̂i ~E · ~ds− g

4π

∫
d3x~∇ · ~Ex̂i . (8)

When the separation between the electric and magnetic charges is negligible compared to their
distance from the boundary S2, the contribution of the first integral to ~Jem vanishes by spherical
symmetry. We are therefore left with

~Jem = − gq

4π
r̂ . (9)

4



Returning to equation (7), if we assume that orbital angular momentum is quantized. Then
it follows that

qg

4π
=

1

2
nh̄ , (10)

where n is an integer. Note that in the above we have assumed the total angular momentum of
the charge-monopole system to be quantized in half-integral units. This is a strange assumption
considering that we did not have to treat the electrically charged particle or the monopole as
fermios. both of the components are bosonic. However, it turns out that this actually is the
case and that the situation does not contradict the spin-statistics theorem [5, 6]. We will not
discuss this issue further but remark that the derivation of the same equation presented in the
next subsection does not depend on this assumption.

Equation (10) is the Dirac charge quantization condition. It implies that if there exists a
magnetic monopole of charge g somewhere in the universe, then all electric charges are quantized
in units of 2πh̄/g. If we have a number of purely electric charges qi and purely magnetic charges
gj, then any pair of them will satisfy a quantization condition:

qigj

4πh̄
=

1

2
nij (11)

Thus, any electric charge is an integral multiple of 2πh̄/gj. For a given gj, let these charges
have n0j as the highest common factor. Then, all the electric charges are multiples of q0 =
n0j2πh̄/gj. Note that q0 itself may not exist in the spectrum. Similar considerations apply to
the quantization of magnetic charge.

Till now, we have only dealt with particles that carry either an electric or a magnetic
charge. Let us now consider dyons, i.e., particles that carry both electric and magnetic charges.
Consider two dyons of charges (q1, g1) and (q2, g2). For this system, we can repeat the calculation

of ~Jem by following the steps in (8) where now the electromagnetic fields are split as ~E = ~E1+ ~E2

and ~B = ~B1 + ~B2. The answer is easily found to be

~Jem = − 1

4π
(q1g2 − q2g1) r̂ (12)

The charge quantization condition is thus generalized to

q1g2 − q2g1

4πh̄
=

1

2
n12 (13)

This is referred to as the Dirac-Schwinger-Zwanziger condition [7, 8]. This condition is invariant
under the SO(2) transformation (q + ig) → eiφ(q + ig) which is also a symmetry of (5).

1.3 The Dirac String

In the following, we present a more rigorous derivation of the Dirac quantization condition
which is based on the notion of a Dirac string. Let ~Bmon denote the magnetic field around a
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monopole. Since ~∇ · ~Bmon 6= 0, it is not possible to construct a well-defined ~Amon such that
~Bmon = ~∇ ~Amon. To overcome this problem, Dirac intruduced a semi-infinite solenoid (or string)
running from (0, 0,−∞) to the monopole position, (0, 0, 0). This solenoid carries a magnetic

field ~Bsol = gθ(−z)δ(x)δ(y)ẑ which also is not divergence free. However, the total magnetic
field,

~B = ~Bmon + ~Bsol =
g

4πr2
+ gθ(−z)δ(x)δ(y)ẑ , (14)

satisfies ~∇· ~B = gδ(~r)−gδ(~r) = 0. It is therefore possible to construct a non-singular ~A = ~Amon+
~Asol corresponding to the monopole-solenoid system. In fact, the singular ~Asol associated with
the Dirac string is used to cancel the singularity in ~Amon. The position of the singularity in ~Amon,
and therefore the position of the Dirac string, can be shifted by singular gauge transformations.
Since the Dirac string is an artificial construct, it should be unobservable and should not
contribute to any physical process. However, in an Aharonov-Bohm experiment, the presence
of the string can affect the wavefunction of an electric charge by contributing to its phase. This
resulting Aharonov-Bohm phase along a contour Γ encircling the string and enclosing an area
S can be easily computed to be

e
∮

Γ

~Asol · d~l = e
∫

S

~Bsol · d~s = eg .

Here, e = q/h̄ is the electromagnetic coupling constant. This phase, and therefore the Dirac
string, is unobservable provided

eg = 2πn ,

which is again the Dirac charge quantization condition.

g

(a) (b)

Bsol
→

Bsol
→

Bmon
→

Γ

Figure 1

1.4 The Georgi-Glashow Model: A Simple Theory with Monopoles

Till now we have been working in the framework of particle mechanics where both electric and
magnetic charges are point-like objects and are introduced by hand into the theory. However,
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in field theory, these objects can also arise as solitons which are non-trivial solutions of the
field equations with localized energy density. If the gauge field configuration associated with a
soliton solution has a magnetic character, the soliton can be identified as a magnetic monopole.
The simplest solitons are found in the Sine-Gordon theory, which is a scalar field theory in 1+1
dimensions. However, by Derrick’s theorem, a scalar field theory in more than two dimensions
cannot support static finite energy solutions. This is basically due to the fact that because of
the non-trivial structure of the soliton at large distances, the total energy of the configuration
diverges. This situation can be cured by the addition of gauge fields to the theory. Thus, a
scalar theory with gauge interactions in four dimensions can admit static finite energy field
configurations. The stability of such solitonic configurations are often related to the fact that
they are characterized by conserved topological charges. For a more detailed discussion of these
issues, the reader is referred to [1, 2, 3]. In the following, we describe the Georgi-Glashow model
which is a simple theory in 3 + 1 dimensions with monopole solutions.

The Georgi-Glashow model is a Yang-Mills-Higgs system which contains a Higgs multiplet
φa (a = 1, 2, 3) transforming as a vector in the adjoint representation of the gauge group SO(3),
and the gauge fields Wµ = W a

µT
a. Here, T a are the hermitian generators of SO(3) satifying

[T a, T b] = ifabcT c. In the adjoint representaion, we have (T a)bc = −ifa
bc and, for SO(3),

fabc = ǫabc. The field strength of Wµ and the cavariant derivative on φa are defined by

Gµν = ∂µWν − ∂νWµ + ie[Wµ,Wν ] ,

Dµφ
a = ∂µφ

a − eǫabcW b
µφ

c . (15)

The minimal Lagrangian is then given by

L = −1

4
Ga

µνG
aµν +

1

2
DµφaDµφ

a − V (φ) , (16)

where,

V (φ) =
λ

4

(
φ2 − a2

)2
. (17)

The equations of motion following from this Lagrangian are

(DνG
µν)a = −e ǫabc φb (Dµφ)c, DµDµφ

a = −λφa(φ2 − a2) . (18)

The field strength also satifies the Bianchi identity

Dν G̃
µνa = 0 . (19)

Let us find the vacuum configurations in this theory. Using the notations G0i
a = −E i

a and
Gij

a = −ǫijkBk
a , the energy density is written as

θ00 =
1

2

(
(E i

a)
2 + (Bi

a)
2 + (D0φa)

2 + (Diφa)
2
)

+ V (φ) . (20)

Note that θ00 ≥ 0, and it vanishes only if

Gµν
a = 0, Dµφ = 0, V (φ) = 0 . (21)
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The first equation implies that in the vacuum, W a
µ is pure gauge and the last two equations

define the Higgs vacuum. The structure of the space of vacua is determined by V (φ) = 0 which
solves to φa = φa

vac such that |φvac| = a. The space of Higgs vacua is therefore a two-sphere
(S2) of radius a in the field space. To formulate a perturbation theory, we have to choose one
of these vacua and hence, break the gauge symmetry spontaneously (this is the usual Higgs
mechanism). The part of the symmetry which keeps this vacuum invariant, still survives and the
corresponding unbroken generator is φc

vacT
c/a. The gauge boson associated with this generator

is Aµ = φc
vacW

c
µ/a and the electric charge operator for this surviving U(1) is given by

Q = h̄e
φc

vacT
c

a
. (22)

If the group is compact, this charge is quantized. The perturbative spectrum of the theory can
be found by expanding φa around the chosen vacuum as

φa = φa
vac + φ′a .

A convenient choice is φc
vac = δc3a. The perturbative spectrum (which becomes manifest after

choosing an appropriate gauge) consists of a massive Higgs (H), a massless photon (γ) and two
charged massive bosons (W±):

Mass Spin Charge

H a(2λ)
1

2 h̄ 0 0
γ 0 h̄ 0
W± aeh̄ = aq h̄ ±q = ±eh̄

In the next section, we investigate the existence of monopoles (non-perturbative states) in the
Georgi-Glashow model.

1.5 The ’t Hooft - Polyakov Monopole

Let us look for time-independent, finite energy solutions in the Georgi-Glashow model. Finite-
ness of energy requires that as r → ∞, the energy density θ00 given by (20) must approach
zero faster than 1/r3. This means that as r → ∞, our solution must go over to a Higgs vac-
uum defined by (21). In the following, we will first assume that such a finite energy solution
exists and show that it can have a monopole charge related to its soliton number which is, in
turn, determined by the associated Higgs vacuum. This result is proven without having to deal
with any particular solution explicitly. Next, we will describe the ’t Hooft-Polyakov ansatz for
explicitly constructing one such monopole solution. We will also comment on the existence of
Dyonic solutions. For convenience, in this section we will use the vector notation for the SO(3)
gauge group indices and not for the spatial indices.

The Topological Nature of Magnetic Charge: Let ~φvac denote the field ~φ in a Higgs vacuum. It
then satisfies the equations

~φvac · ~φvac = a2 ,

∂µ
~φvac − e ~Wµ × ~φvac = 0 , (23)
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which can be solved for ~Wµ. The most general solution is given by

~Wµ =
1

ea2
~φvac × ∂µ

~φvac +
1

a
~φvacAµ . (24)

To see that this actually solves (23), note that ∂µ
~φvac · ~φvac = 0, so that

1

ea2
(~φvac × ∂µ

~φvac) × ~φvac =
1

ea2

(
∂µ
~φvaca

2 − ~φvac(~φvac · ∂µφvac)
)

=
1

e
∂µ
~φvac .

The first term on the right-hand side of Eq. (24) is the particular solution, and ~φvacAµ is the
general solution to the homogeneous equation. Using this solution, we can now compute the
field strength tensor ~Gµν . The field strength Fµν corresponding to the unbroken part of the
gauge group can be identified as

Fµν =
1

a
~φvac · ~Gµν

= ∂µAν − ∂νAµ +
1

a3e
~φvac · (∂µ

~φvac × ∂ν
~φvac) . (25)

Using the equations of motion in the Higgs vacuum it follows that

∂µF
µν = 0 , ∂µ F̃

µν = 0 .

This confirms that Fµν is a valid U(1) field strength tensor. The magnetic field is given by
Bi = −1

2
ǫijkFjk. Let us now consider a static, finite energy solution and a surface Σ enclosing

the core of the solution. We take Σ to be far enough so that, on it, the solution is already in
the Higgs vacuum. We can now use the magnetic field in the Higgs vacuum to calculate the
magnetic charge gΣ associated with our solution:

gΣ =
∫

Σ
Bidsi = − 1

2ea3

∫

Σ
ǫijk ~φvac ·

(
∂j~φvac × ∂k~φvac

)
dsi . (26)

It turns out that the expression on the right hand side is a topological quantity as we explain
below: Since φ2 = a; the manifold of Higgs vacua (M0) has the topology of S2. The field ~φvac

defines a map from Σ into M0. Since Σ is also an S2, the map φvac : Σ → M0 is characterized
by its homotopy group π2(S

2). In other words, φvac is characterized by an integer ν (the winding
number) which counts the number of times it wraps Σ around M0. In terms of the map φvac,
this integer is given by

ν =
1

4πa3

∫

Σ

1

2
ǫijk~φvac ·

(
∂j~φvac × ∂k~φvac

)
dsi . (27)

Comparing this with the expression for magnetic charge, we get the important result

gΣ = −4πν

e
. (28)

Hence, the winding number of the soliton determines its monopole charge. Note that the above
equation differs from the Dirac quantization condition by a factor of 2. This is because the
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smallest electric charge which could exist in our model is q0 = eh̄/2 in terms of which, (28)
reduces to the Dirac condition.

An Ansatz for Monopoles: Now we describe an ansatz proposed by ’t Hooft [9] and Polyakov
[10] for constructing a monopole solution in the Georgi-Glashow model. For a spherically
symmetric, parity-invariant, static solution of finite energy, they proposed:

φa =
xa

er2
H(aer) ,

W a
i = −ǫaij

xj

er2
(1 −K(aer)) , W a

0 = 0 . (29)

For the non-trivial Higgs vacuum at r → ∞, they chose φc
vac = axc/r = ax̂c. Note that this maps

an S2 at spatial infinity onto the vacuum manifold with a unit winding number. The asymptotic
behaviour of the functions H(aer) and K(aer) are determined by the Higgs vacuum as r → ∞
and regularity at r = 0. Explicitly, defining ξ = aer, we have: as ξ → ∞, H ∼ ξ, K → 0 and
as ξ → 0, H ∼ ξ, (K − 1) ∼ ξ. The mass of this solution can be parametrized as

M =
4πa

e
f (λ/e2)

For this ansatz, the equations of motion reduce to two coupled equations for K and H which
have been solved exactly only in certain limits. For r → 0, one gets H → ec1r

2 and K =
1 + ec2r

2 which shows that the fields are non-singular at r = 0. For r → ∞, we get H →
ξ + c3exp(−a

√
2λr) and K → c4ξexp(−ξ) which leads to W a

i ≈ −ǫaijxj/er2. Once again,
defining Fij = φcGc

ij/a, the magnetic field turns out to be Bi = −xi/er3. The associated
monopole charge is g = −4π/e, as expected from the unit winding number of the solution. It
should be mentioned that ’t Hooft’s definition of the Abelian field strength tensor is slightly
different but, at large distances, it reduces to the form given above.

Note that in the above monopole solution, the presence of the Dirac string is not obvious.
To extract the Dirac string, we have to perform a singular gauge transformation on this solution
which rotates the non-trivial Higgs vacuum φc

vac = ax̂c into the trivial vacuum φc
vac = aδc3. In

the process,the gauge field develops a Dirac string singularity which now serves as the source
of the magnetic charge [9].

The Julia-Zee Dyons:

The ’t Hooft-Polyakov monopole carries one unit of magnetic charge and no electric charge.
The Georgi-Glashow model also admits solutions which carry both magnetic as well as electric
charges. An ansatz for constructing such a solution was proposed by Julia and Zee [11]. In
this ansatz, φa and W a

i have exactly the same form as in the ’t Hooft-Polyakov ansatz, but W a
0

is no longer zero: W a
0 = xaJ(aer)/er2. This serves as the source for the electric charge of the

dyon. It turns out that the dyon electric charge depends of a continuous parameter and, at the
classical level, does not satisfy the quantization condition. However, semiclassical arguments
[12, 13] show that, in CP invariant theories, and at the quantum level, the dyon electric charge
is quantized as q = nh̄e. This can be easiy understood if we recognize that a monopole is not
invariant under a guage transformation which is, of course, a symmetry of the equations of
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motion. To treate the associated zero-mode properly, the gauge degree of freedom should be
regarded as a collective coordinate. Upon quantization, this collective coordinate leads to the
existence of electrically charged states for the monopole with discrete charges. In the presence
of a CP violating term in the Lagrangian, the situation is more subtle as we will discuss later.
In the next subsection, we describe a limit in which the equations of motion can be solved
exactly for the ’tHooft-Polyakov and the Julia-Zee ansatz. This is the limit in which the soliton
mass saturates the Bogomol’nyi bound.

1.6 The Bogomol’nyi Bound and the BPS States

In this subsection, we derive the Bogomol’nyi bound [14] on the mass of a dyon in term of its

electric and magnetic charges which are the sources for F µν = ~φ · ~Gµν/a. Using the Bianchi
identity (19) and the first equation in (18), we can write the charges as

g ≡
∫

S2
∞

BidS
i =

1

a

∫
Ba

i φ
adSi =

1

a

∫
Ba

i (D
iφ)ad3x ,

q ≡
∫

S2
∞

EidS
i =

1

a

∫
Ea

i φ
adSi =

1

a

∫
Ea

i (Diφ)ad3x . (30)

Now, in the center of mass frame, the dyon mass is given by

M ≡
∫
d3xθ00 =

∫
d3x

(
1

2

[
(Ea

k )2 + (Ba
k)

2 + (Dkφ
a)2 + (D0φ

a)2
]
+ V (φ)

)
,

where, θµν is the energy momentum tensor. After a little manipulation, and using the expres-
sions for the electric and magnetic charges given in (30), this can be written as

M =
∫
d3x

(
1

2

[
(Ea

k −Dkφ
a sin θ)2 + (Ba

k −Dkφ
a cos θ)2 + (D0φ

a)2
]
+ V (φ)

)

+ a(q sin θ + g cos θ) , (31)

where θ is an arbitrary angle. Since the terms in the first line are positive, we can write
M ≥ (q sin θ+ g cos θ). This bound is maximum for tan θ = q/g. Thus we get the Bogomol’nyi
bound on the dyon mass as

M ≥ a
√
g2 + q2 .

For the ’t Hooft-Polyakov solution, we have q = 0, and thus, M ≥ a|g|. But |g| = 4π/e and
MW = aeh̄ = aq, so that

M ≥ a
4π

e
=

4π

e2h̄
MW =

4πh̄

q2
MW =

ν

α
MW .

Here, α is the fine structure constant and ν = 1 or 1/4, depending on whether the electron
charge is q or q/2. Since α is a very small number (∼ 1/137 for electromagnetism), the above
relation implies that the monopole is much heavier than the W-bosons associated with the
symmetry breaking.
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From (31) it is clear that the bound is not saturated unless λ→ 0, so that V (φ) = 0. This
is the Bogomol’nyi-Prasad-Sommerfield (BPS) limit of the theory [14, 15]. Note that in this
limit, φ2

vac = a2 is no longer determined by the theory and, therefore, has to be imposed as
a boundary condition on the Higgs field. Moreover, in this limit, the Higgs scalar becomes
massless. Now, to saturate the bound we have to set

D0φ
a = 0 , Ea

k = (Dkφ)a sin θ , Ba
k = (Dkφ)a cos θ , (32)

where, tan θ = q/g. In the BPS limit, one can use the ’t Hooft-Polyakov (or the Julia-Zee)
ansatz either in (18), or in (32) to obtain the exact monopole (or dyon) solutions [14, 15].
These solutions automatically saturate the Bogomol’nyi bound and are referred to as the BPS
states. Also, note that in the BPS limit, all the perturbative excitations of the theory saturate
this bound and, therefore, belong to the BPS spectrum. As we will see later, the BPS bound
appears in a very natural way in theories with N = 2 supersymmetry.

1.7 Monopoles from a Distance

Till now, we have described the monopoles arising in the Georgi-Glashow model in terms of
the structure of the Higgs vacuum of the theory. In this section, we will consider monopoles
in a general Yang-Mills-Higgs system and relate the Higgs vacuum description to a description
in terms of the unbroken gauge fields. These are the gauge fields which remain massless and
are relevant for the study of monopoles at large distances. This formulation is convenient for
describing non-abelian monopoles.

Let φ transform as a vector in a given representation of a gauge group G. For convenience
of notation, in the following we do not distinguish between the group element g and a given
realization of it. Writing the gauge fields as Wµ = T aW a

µ , we can construct the covariant
derivative of φ and the curvature tensor of Wµ as

Dµφ = ∂µφ+ ieWµφ ,

Gµν = ∂µWν − ∂νWµ + ie[Wµ,Wν ] .

The Lagrangian density L, the stress-energy tensor θµν and the gauge current ja
µ are then given

by

L = −1

4
(Ga

µν)
2 + (Dµφ)†Dµφ− V (φ) ,

θµν = −Ga
µλG

aλ
ν + (Dµφ)†(Dνφ) + (Dνφ)†(Dµφ) − gµνL ,

θ00 =
1

2
E iaEa

i +
1

2
BiaBa

i +D0φ
†D0φ+Diφ

†Diφ+ V (φ) ,

ja
µ = ieφ†T aDµφ− ie(Dµφ)†T aφ . (33)

Here, the Higgs potential is gauge invariant: V (gφ) = V (φ). The equations of motion following
from the above Lagrangian are

DµDµφ
a = − ∂V

∂φa
, DνGa

µν = −ja
µ . (34)
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When the gauge group is SO(3) spontaneously broken to U(1), we can work out the Bogomol’nyi
bound exactly as in the previous section and the outcome is

M ≥
√

2 a
√
g2 + q2 . (35)

For a general gauge group G, the Higgs vacuum, as in the Georgi-Glashow model, is defined by

V (φ) = 0 , Dµφ = 0 .

The first equation defines the vacuum manifold M0 ≡ {φ : V (φ) = 0}, and the second equation
leads to

[Dµ, Dν ]φ = Gµνφ = 0 .

Thus, in the Higgs vacuum, Gµν takes values in a subgroup of the gauge group G which keeps
the Higgs vacuum invariant. We denote this unbroken subgroup of G by H . The generators of
G which do not keep the Higgs vacuum invariant are of course broken and the corresponding
gauge bosons become massive. If V (φ) does not have extra global symmetries and accidental
minima, then it is reasonable to assume that the action of G on M0 is transitive. This means
that any point in M0 is related to any other point (and, in particular, to a reference point φ0)
by some element of G. Therefore, the little group or the invariance group, H ⊂ G, of any point
in M0 is isomorphic to the the little group of any other point. Hence, the structure of M0 is
described by the right coset G/H .

For a solution to have finite energy, at sufficiently large distances from the core of the
solution the field φ must take values in the Higgs vacuum. Let Σ be a 2-dimensional surface
around the core such that, on this surface, φ is already in M0. On this surface, φ describes a
map from Σ (with the topology of S2) into M0. This map is characterised by its homotopy
class which has to be an element of π2(M0) ≃ π2(G/H). As described before, the associated
topological number is the magnetic charge of the solution. As long as no monopole crosses the
surface Σ, φ remains a continuous function of time and its homotopy class does not change.
To show that the map φ satisfies the group properties of π2(G/H), one has to consider several
widely separated monopoles and study how their magnetic charges combine. For a discussion
of this issue, see [2].

The above discussion of the topological characterisation of the monopole is in terms of the
structure of the Higgs vacuum. However, it is more natural to have a description in terms
of the unbroken gauge fields. The relationship between these two descriptions is contained in
the equation Dµφ = 0 which is valid on the S2 surface Σ. Let us parametrise S2 by a square
{0 ≤ s, t ≤ 1}. The map r(s, t) from this square to the sphare is single valued everywhere
except on the boundary of the square which is identified with a single point on the sphere:

r(0, t) = r(1, t) = r(s, 0) = r(s, 1) = r0 .

For fixed s, as t varies from 0 to 1, r(s, t) describes a closed path on S2.
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The covariant derivative along t becomes

Dtφ(s, t) =
∂ri

∂t
Diφ(s, t) = 0 .

For constant s, this can be solved as

φ(s, t) = g(s, t)φ(s, 0) ,

where, g(s, t) satisfies Dtg = 0, g(s, 0) = 1 and is given by the path-ordered integral

g(s, t) = P

(
exp

(
ie
∫ t

0

~W · ∂~r
∂t
dt

))
. (36)

Clearly, g(s, t) is an element of G which gauge transforms any φ(s, t) into a reference φ(s, 0) and
φ(s, 0) = φ0 is independent of s. Therefore, g(s, t) contains the same topological information
as φ(s, t) and is characterised by a homotopy class in π2(G/H). Since at s = 0, 1 we have
∂r/∂t = 0, then, g(0, t) = g(1, t) = 1. For t = 1, φ(s, 1) = g(s, 1)φ0. But since φ(s, 1) = φ0,
we conclude that g(s, 1) must be an element of the unbroken gauge group H and denote it by
h(s):

h(s) ≡ g(s, 1) = P exp

(
ie
∫ 1

0

~W · ∂~r
∂t
dt

)
. (37)

Since h(1) = h(0) = 1, as we move along s, h(s) describes a closed path in H and is thus, an
element of π1(H). However, note that as we vary t from 1 to 0, g(s, t) continuously interpolates
between h(s) and the identity. Therefore, h(s) can describe only those closed paths in H which
are homotopic to the trivial path when H is embedded in G. We denote the subgroup of
π1(H) which corresponds to such paths by π1(H)G. If the homotopy class of the map φ(s, t)
is changed in π2(G/H), the homotopy class of h(s) changes in π1(H)G. In fact, there is a
one-to-one correspondence between π2(G/H) and π1(H)G and the two groups are isomorphic
[2]. Thus, we can equally well characterise the monopole by its homotopy class in π1(H)G.
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Let us discuss this in some more detail. Since any closed path in H is also a closed path in
G, there is a natural homomorphism from π1(H) into π1(G). As the discussion above shows,
π1(H)G is in the kernel of this homomorphism. Moreover, for a compact connected group G,
π2(G) = 0, which implies that π2(G) can be embedded in π2(G/H) as its identity element.
What we have done above, basically, is to construct part of the following exact sequence:

π2(G) → π2(G/H) → π1(H) → π1(G) → π1(G/H) → π0(H)

Note that if G is simply connected then, π1(G) = 0 and π1(H)G = π1(H). So that the full π1(H)
enters the physical description of the monopole. For non-simply connected G, this possibility
can be realised in the presence of a Dirac string. Such a string appears as a singular point on
the (s, t) plane, in the presence of which, it is no longer possible to continuously deform h(s)
to the identity map. Therefore, the homotopy class of h(s) is no longer restricted to π1(H)G.
However, for non-simply connected G, it is still possible to have a description in terms of an
unrestricted π1 group provided we embed G in its universal covering group G̃. Let us denote the
little group of φ by Ĥ. Since G̃ is necessarily connected, π1(G̃) = 0 and π1(Ĥ) = π1(H)G. As an
example, let us consider the Georgi-Glashow model. Here, G = SO(3) (with (Ta)ij = −iǫaij)

and G̃ = SU(2) (with Ta = 1
2
σa). The homotopically distinct paths in H (or Ĥ) are:

h(t) = exp(it ~φ · ~T 4πN/a), for 0 ≤ t ≤ 1 .

The integer N , which characterises the elements of π1, is determined as follows:

G̃ = SU(2), H̃ = U(1), ~φ · ~T ∈ 1
2
Z, ⇒ N ∈ Z ,

G = SO(3), H = SO(2), ~φ · ~T ∈ Z, ⇒ N ∈ 1
2
Z .

Since SO(3) ∼ S2/Z2, only paths with integer N contribute in both cases. Later we show that
g = 4πN/e. For SU(2), q0 = eh̄/2 and gq0/4πh̄ = N/2. For SO(3), q0 = eh̄ and gq0/4πh̄ = N .

For Glashow-Weinberg-Salam model, G = SU(2) × U(1) and H = U(1) is a linear combi-
nation of SU(2) and U(1). Although π1(H) = Z, π1(H)G = 0. Therefore, in this model, any
non-trivial monopole must have a Dirac string.

We set out to describe the monopole in terms of the unbroken gauge fields (the H-fields).
Although, we have obtained a description in terms of π1(H)G, it is not manifest that h(s),
as given by (37), involves only the H-fields. We show this in the following: The quantity
g−1(s, t)Dsg(s, t) is invariant under a t-dependent gauge transformation. Moreover, by con-
struction, Dtg(s, t) = 0. Hence, we can write

∂t(g
−1Dsg) = Dt(g

−1Dsg) = g−1[Dt, Ds]g = ieg−1Gijg
∂ri

∂t

∂rj

∂s
. (38)

Let us integrate the first and the last terms above from t = 0 to t = 1. Since g−1Dsg = 0 at
t = 0 and g−1Dsg = h−1dh/ds at t = 1, we get

h−1 dh

ds
= ie

∫ 1

0
dt g−1Gij g

∂ri

∂t

∂rj

∂s
. (39)
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Since Gij was calculated on Σ, it involves only the H-gauge fields. The conjugation by g does
not bring in a dependence on the massive gauge fields as is evident from the left-hand side of
the equation. Hence the map is given entirely in terms of the H-fields without any reference
to the Higgs field. As a simple application, consider the Dirac monopole. Integrating (39)

from s = 0 to s = 1, we get h(1) = exp(ie
∫ ~B · ~ds). Since h(1) = 1, this leads to the Dirac

quantization condition eg = 2πn or qg/4πh̄ = n/2. Another interesting consequence of (39) is
a possible explanation for the fractional charges of quarks. We describe this in the next section.

1.8 The Monopole and Fractional Charges

So far, we have seen how the existence of a monopole can quantize the electric charge in integer
units. In the physical world, however, we also come across fractionally charged quarks. In the
following, we see how the existence of a monopole can also account for these fractional charges
[16, 1].

Let us represent our adjoint Higgs by φ = φaT a, where T a are the fundamental represen-
tation matrices. Moreover, we only consider φ on the surface Σ as described in the previous
subsection. With φ in the Higgs vacuum, a generator T a belongs to the unbroken subgroup H
of G provided [T a, φ] = 0. This implies that φ itself is a generator of H and commutes with
its other generators. Thus the Lie Algebra of H is of the form L(H) = u(1) ⊕ L(K) and we
choose L(K) to be orthogonal to u(1): Tr(φKa) = 0 for Ka ∈ K. Locally, H has the structure
U(1) × K, though, this is not necessarily the global structure. We refer to K as the colour
group and identify the U(1) as corresponding to electromagnetism. The gauge fields in H can
be decomposed as W µ = Aµφ/a+Xµ, with Tr(φXµ) = 0. Expanding the covariant derivative
∂µ + ieWµ we can identify the electric charge operator which couples to Aµ as Q = (eh̄/a)φ.

Since h−1dh/ds is a generator of H , we may write

h−1dh

ds
= ieα(s)

φ0

a
+ iβaK

a . (40)

Using Tr(TaTb) = δab, φ(r) = gφ0g
−1 and equation (39), we get

α(s) = − i

ae
Tr

(
φ0h

−1dh

ds

)

=
1

a

∫ 1

0
Tr (ϕ(r)Gij)

∂ri

∂t

∂rj

∂s
dt .

Identifying the electromagnetic field strength tensor as F µν = Tr (φGµν/a), we get α(s) =
dΩ/ds, where, Ω(s) is the magnetic flux in a solid angle subtended at the origin by the path
0 ≤ t ≤ 1 at fixed s on S2. Substituting this back in (40) and integrating from s = 0 to s, gives

h(s) = k(s)eiQΩ(s)/h̄ .

Since h(1) = 1 and Ω(1) = g (where g is the total magnetic charge inside Σ), the quantization
condition is replaced by

eigQ/h̄ = k(1)−1 = k ∈ K .
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The left-hand side is invariant under K, therefore, we can at most have k ∈ Z(K), the center of
K. If we take K = SU(N), then, k = e2πin/N with n = 1, 2, . . .N . If all values of n are allowed,
then U(1) ∩ K ⊂ ZN . This corresponds to the fact that globally, H cannot be decomposed
as U(1) × K. Now, let |s > be a colour singlet. Then k|s >= |s > and exp(igqs/h̄) = 1,
which is again the Dirac quantization condition. Thus, if q0 and g0 are the units of electric and
magnetic charges for colour singlets, then qs = nsq0 and g = mg0 with g0q0 = 2πh̄. The colour
non-singlet states |c > can be classified according to their behaviour under the center of the
colour group K:

k|c >= e2πi t(c)/N |c >= eigQ/h̄|c > ,
where, t(c) is an integer modN . For a minimal monopole g0, we obtain g0qc/h̄ = 2π(m+t(c)/N),
hence,

qc = q0(m+
t(c)

N
) .

If we set N = 3, as for QCD, and m = 0, then qc = q0/3, 2q0/3, q0.

1.9 Non-Abelian Magnetic Charge and the Montonen-Olive Con-

jecture

In this subsection we first consider the generalization of charge quantisation to non-abelian
monopoles [17], and then describe the electric-magnetic duality conjecture of Montonen and
Olive [18].

Goddard, Nuyts and Olive [17] attempted to classify all H-monopole configurations. To

describe such a monopole, we consider a static configuration and choose the gauge ~r · ~W a = 0.
At large distances, it is reasonable to write the magnetic componenets of the field strength as

Gij =
1

4πr2
ǫijk r̂

kG(r) ,

where DµG(r) = 0. Since G(r) transforms in the adjoint representation, we can write G(r) =
g(s, t)G0g(s, t)

−1. Substituting the above expression in (39), and integrating over s, we get

ln (h(s)) =
ie

4πr2
G0

∫ s

0
ds
∫ 1

0
dt ǫijkr̂

k ∂r
i

∂t

∂rj

∂s

=
ie

4π
G0 Ω(s) . (41)

Here, Ω(s) is the solid angle subtended at the origin by the loop 0 ≤ t ≤ 1, s = const on S2.
The elements in π1(H)G are, therefore, given by

h(s) = e
ie
4π

G0Ω(s) .

Since, h(1) = 1, the above equation implies that

eieG0 = 1 , (42)
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which is the generalized charge quantization condition. Clearly, G0 is arbitrary upto a conjuga-
tion in the gauge group. This freedom can be used to solve the charge quantization condition
as follows: Assume that H is compact and connected and let T denote an Abelian subgroup
of H generated by its Cartan subalgebra. Then, any element of H is conjugate to at least
one element of T . Thus, it is always possible to find a frame in which G0 = βaT a. The co-
efficients βa are still not unique as they transform under the Weyl group of H which keeps
this parametrization of G0 unchanged. Therefore, the equivalence classes of βa, related by the
action of the Weyl group, are the gauge invariant objects which characterise the non-abelian
magnetic charges. The βa are determined by the quantization condition exp(ieβaT a) = 1. To
solve this, let ωa denote a weight vector of H in the given representation, and let Λ(H) denote
the weight lattice. Then the quantization condition implies that

eβaωa ∈ 2πZ , for all ω ∈ Λ(H) .

Note that the factors of e and 2π are convention dependent. Thus, eβ lies on a lattice dual to
Λ(H): eβ ∈ Λ∗(H). This dual lattice can by itself be regarded as the weight lattice of a dual
group Hv which has eβ’s as its weight vectors (For details, see [17]). Moreover, (Hv)v = H . H
is referred to as the electric group and Hv as the magnetic group. The magnetic charges are
related to Hv in the same way that electric charges are related to H . A simple example of a
dual pair of groups is provided by SO(3) and SU(2). In this case, G0 = βT 3. T 3 has integral
eigenvalues for SO(3) and half-integral eigenvalues for SU(2). The quantization condition
exp(ieβT 3) = 1 gives:

for H = SO(3) : eβ = 4π
n

2
= 4π × (weight of SU(2)) ,

for H = SU(2) : eβ = 4πn = 4π × (weight of SO(3)) .

For a general SU(N) group, the dual relation is given by (SU(NM)/ZN )v = (SU(NM)/ZM )
and, in particular, SU(N)v = SU(N)/ZN .

Now, we will briefly describe the Montonen-Olive conjecture [18] which is based on the
above results. This conjecture states that a gauge theory is characterized by H × Hv, and
that we have two equivalent descriptions of the theory: One in terms of H-gauge fields with
normal charged particles in the perturbative spectrum and another, in terms of Hv-gauge fields
with monopoles in the perturbative spectrum. The Noether currents (associated with electric
charges) also get interchanged with topological currents (associated with magnetic charges).
Hence, the coupling constant q/h̄ of the H-theory is replaced by g/h̄ in the in the Hv-theory.
Since, g ∼ 1/e, this conjecture relates a strongly coupled theory to a weekly coupled one,
and vice-versa. As a result of this, it is not easy to either prove or disprove this conjecture.
Montonen and Olive provided some semiclassical evidence in favour of this conjecture in the
BPS limit of the Georgi-Glashow model. This model contains a Higgs boson, a photon and
two massive charged vector bosons in its perturbative spectrum, and magnetic monopoles as
solitonic classical solutions. The unbroken gauge group is self dual, H = U(1) = Hv, therefore,
the dual theory has the same form as the original one with the monoples as elementary states
and the massive gauge bosons as solitonic solutions. The gauge boson mass in the dual theory
(where it appears as a soliton) can be computed using the BPS formula and turns out to have
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the right value. Moreover, the long-range force between two monopoles as obtained by Manton
[19], can be obtained by calculating the potential between W -bosons in the dual theory and
turns out to be the same.

Since the Montonen-Olive duality is non-perturbative in nature, it cannot be verified in a
perturbative framework unless we have some kind of control over the perturbative and non-
perturbative aspects of the theory. Such a control is provided by superysymmetry. In fact,
in the N = 4 super Yang-Mills theory, some very non-trivial predictions of this duality were
verified in [20]. In later parts, we will consider in detail the analogue of the Montonen-Olive
duality in N = 2 supersymmetric gauge theories. A prerequisite for this, however, is the
introduction of the θ-term in the Yang-Mills action which affects the electric charges of dyons.

1.10 The θ-Parameter and the Monopole Charge

In this section we will show, following Witten [21], that in the presence of a θ-term in the
Lagrangian, the magnetic charge of a particle always contributes to its electric charge.

As shown by Schwinger and Zwanziger, for two dyons of charges (q1, g1) and (q2, g2), the
quantization condition takes the form

q1g2 − q2g1 = 2πnh̄ (43)

For an electric charge q0 and a dyon (qn, gn), this gives q0gn = 2πnh̄. Thus, the smallest
magnetic charge the dyon can have is g0 = 2πh̄/q0. For two dyons of the same magnetic
charge g0 and electric charges q1 and q2, the quantization condition implies q1 − q2 = nq0.
Therefore, although the difference of electric charges is quantized, the individual charges are
still arbitrary. This arbitrariness in the electric charge of dyons can be fixed if the theory is
CP invariant as follows: Under a CP transformation (q, g) → (−q, g). If the theory is CP
invariant, the existence of a state (q, g0) necessarily leads to the existence of (−q, g0). Applying
the quantization condition to this pair, we get 2q = q0 × integer. This implies that q = nq0
or q = (n + 1

2
)q0, though at a time we can either have dyons of integral or half-odd integral

charge, and not both together.

In the above argument, it was essential to assume CP invariance to obtain integral or half-
odd inegral values for the electric charges of dyons. However, in the real world, CP invariance is
violated and there is no reason to expect that the electric charge should be quantized as above.
To study the effect of CP violation, we consider the Georgi-Glashow model with an additional
θ-term which is the source of CP violation:

L = −1

4
F a

µνF
aµν +

1

2
(Dµ

~φ)2 − λ(φ2 − a2)2 +
θe2

32π2
F a

µνF̃
aµν . (44)

Here, F̃ aµν = 1
2
ǫµνρσF a

ρσ and the vector notation is used to represent indices in the gauge space.
The presence of the θ-term does not affect the equations of motion but changes the physics
since the theory is no longer CP invariant. We want to construct the electric charge operator
in this theory. The theory has an SO(3) gauge symmetry but the electric charge is associated

19



with an unbroken U(1) which keeps the Higgs vacuum invariant. Hence, we define an operator
N which implements a gauge rotation around the φ̂ direction with gauge parameter Λa = φa/a.
These transformations correspond to the electric charge. Under N , a vector ~v and the gauge
fields ~Aµ transform as

δ~v =
1

a
~φ× ~v , δ ~Aµ =

1

ea
Dµ

~φ .

Clearly, ~φ is kept invariant. At large distances where |φ| = a, the operator e2πiN is a 2π-rotation
about φ̂ and therefore exp (2πiN) = 1. Elsewhere, the rotation angle is 2π|φ|/a. However, by
Gauss’ law, if the gauge transformation is 1 at ∞, it leaves the physical states invariant. Thus,
it is only the large distance behaviour of the transformation which matters and the eigenvalues
of N are quantized in integer units. Now, we use Noether’s formula to compute N :

N =
∫
d3x

(
δL

δ∂0Aa
i

δAa
i +

δL
δ∂0φa

δφa

)
.

Since δ~φ = 0, only the gauge part (which also includes the θ-term) contributes:

δ

δ∂0A
a
i

(
F a

µνF
aµν
)

= 4F aoi = −4Eai ,

δ

δ∂0A
a
i

(
F̃ a

µνF
aµν
)

= 2ǫijkF a
jk = −4Bai .

Thus, we get

N =
1

ae

∫
d3xDi

~φ · ~E i − θe

8π2a

∫
d3xDi

~φ · ~Bi

=
1

e
Q− θe

8π2
M ,

where, we have used equations (30). Here, Q and M are the electric and magnetic charge
operators with eigenvalues q and g, respectivly, and N is quantized in integer units. This leads
to the following formula for the electric charge

q = ne+
θe2

8π2
g .

For the ’t Hooft-Polyakov monopole, n = 1, g = −4π/e, and therefore, q = e(1 − θ/2π). For a
general dyonic solution we get

g =
4π

e
m, q = ne+

θe

2π
m . (45)

Thus, in the presence of a θ-term, a magnetic monopole always carries an electric charge which
is not an integral multiple of some basic unit.

It is very useful to represent the charged states as points on the complex plane, with electric
charges along the real axis and magnetic charges along the imaginary axis. A state can thus
be represented as

q + ig = e(n+mτ) , (46)
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where,

τ =
θ

2π
+

4πi

e2
(47)

In this parametrisation, the Bogomol’nyi bound (35) takes the form

M ≥
√

2|ae(n +mτ)| . (48)

Note that (46) implies that all states lie on a two-dimensional lattice with lattice parameter τ
and (48) implies that the BPS bound for a state is proportional to the distance of its lattice
point from the origin. These equations play a very important role in the subsequent discussions.

2 Supersymmetric Gauge Theories

In this section we will explain some aspects of supersymmetry and supersymmetric field theories
which are relevant to the work of Witten and Seiberg. We start by explaining our conventions
and then briefly describe the representations of supersymmetry algebra with and without central
charges. We then discuss the representations of N = 1 supersymmetry in terms of quantum
fields and construct Lagrangians with N = 1 and N = 2 supersymmetry. Most of the material
in this section is by now standard and can be found in [22, 23, 24]. Towards the end of this
section, we will explicitly calculate the central charges in N = 2 theories with and without
matter.

2.1 Conventions

We start by descrbing our conventions. We use the flat metric ηab = diag (1,−1,−1,−1).
The spinors of the Lorentz group SL(2, C) ∼ SU(2)L × SU(2)R are written with dotted and
undotted components and, under SL(2, C), transform as

ψ′
α = M β

α ψβ , ψ̄′
α̇ = M∗ β̇

α̇ ψ̄β̇ .

Spinor indices are raised or lowered with the ǫ-tensor,

ǫαβ = ǫα̇β̇ =

(
0 1
−1 0

)
= (iσ2) .

By definition, this tensor is invariant under a SL(2, C) transformation: ǫαβ = Mα
γǫ

γδM β
δ . This

can be written as MTσ2M = σ2 which implies σ2M = (MT )−1σ2 Using this, we can write the
transformations of the spinors with raised indices as

ψ′α = ψβ(M−1) α
β , ψ̄′α̇ = ψ̄β̇(M∗)−1 α̇

β̇
.

Now, let us define
(σµ)αα̇ ≡ (1, ~σ) ,
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then,

σµPµ =

(
P 0 − P 3 −P 1 + iP 2

−P 1 − iP 2 P 0 + P 3

)
,

and det(σµPµ) = PµP
µ. We can raise the indices on σµ using the ǫ-tensor and define σ̄ as

(σ̄µ)α̇α = −(σµ)αα̇ = ǫα̇β̇ǫαβ(σµ)ββ̇ .

Numerically, this gives,

(σ̄µ) = (iσ2)(σ
µ)T (iσ2)

T = σ2(σ
µ)Tσ2 = (1,−~σ) .

With these conventions, Lorentz transformations are generated by

(σµν) β
α =

1

4
[σµ

αβ̇
σ̄νβ̇β − (µ ↔ ν)] ,

(σ̄µν)α̇
β̇

=
1

4
[σ̄µα̇βσν

ββ̇
− (µ↔ ν)] .

For the scalar product of spinors, we use the following conventions

ψχ = ψαχα = −ψαχ
α = χαψα = χψ ,

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = χ̄ψ̄ ,

(ψχ)† = χ̄α̇ψ̄
α̇ = χ̄ψ̄ = ψ̄χ̄ .

We list some more spinor identities

χσµψ̄ = −ψ̄σ̄µχ ,
(χσµψ̄)† = ψσµχ̄ ,
χσµσ̄νψ = ψσν σ̄µχ ,

(χσµσ̄νψ)† = ψ̄σ̄νσµχ̄ .

In the above basis, the Dirac matrices and Dirac and Majorana spinors are given by

γµ =

(
0 σµ

σ̄µ 0

)
, ψD =

(
ψα

χ̄α̇

)
, ψM =

(
ψα

ψ̄α̇

)
. (49)

As usual, one defines γ5 = −iγ0γ1γ2γ3. Consider a massless fermion moving in the z-direction.
Then, P µ = E(1, 0, 0, 1), and the Dirac equation gives (γ0 − γ3)ψ = 0. Since the helicity
operator is now J3 = i

2
γ1γ2, one gets, J3ψ = i

2
(γ0)2γ1γ2ψ = i

2
γ0γ1γ2γ3ψ = −1

2
γ5ψ. Hence,

γ5 = +1 ⇒ −ve helicity , γ5 = −1 ⇒ +ve helicity .

2.2 Supersymmetry Algebra without Central Charges

In the absence of central charges, the supersymmetry algebra is written as

{QI
α, Q̄α̇J} = 2σµ

αα̇Pµδ
I
J ,

{QI
α, Q

J
β} = 0 , {Q̄α̇I , Q̄β̇J} = 0 . (50)
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Here, Q and Q̄ are the supersymmetry generators and transform as spin-half operators under
the angular momentum algebra. The indices I, J run from 1 to N , where N is the total number
of supersymmetries. Moreover, the supersymmetry generators commute with the momentum
operator Pµ and hence, with P 2. Therefore, all states in a given representation of the algebra
have the same mass. For a theory to be supersymmetric, it is necessary that its particle content
form a representation of the above algebra. The supersymmetry algebra can be embedded
in the super-Poincaré algebra and its representations can be obtained systematically using
Wigner’s method. In the following, we will give a brief description of the representations of
supersymmetry algebra.

Massless Irreducible Representations: For massless states, we can always go to a frame where
P µ = M(1, 0, 0, 1). Then the supersymmetry algebra becomes

{QI
α, Q̄α̇J} =

(
0 0
0 4M

)
δI
J .

Now, in a unitary theory the norm of a state is always positive definite. Since Qα and Q̄α̇ are
conjugate to each other, and {Q1, Q̄1̇} = 0, it follows that Q1|phys >= Q̄1̇|phys >= 0. As for
the other generators, it is convenient to rescale them as

aI =
1

2
√
M
QI

2 , (aI)† =
1

2
√
M
Q̄I

2̇ .

Then, the supersymmetry algebra takes the form

{aI , (aJ)†} = δIJ , {aI , aJ} = 0 , {(aI)†, (aJ)†} = 0 .

This is a Clifford algebra with 2N generators and has a 2N -dimensional representation. From
the point of view of the angular momentum algebra, aI is a rising operator and (aI)† is a lowering
operator for the helicity of massless states. We choose the vacuum such that J3|Ωλ >= λ|Ωλ >
and aI |Ωλ >= 0 for all I. Other states are generated by the action of (aI)†’s on the vacuum
state. From anti-symmetry it follows that a state with m (aI)†’s, and hence with helicity
λ−m/2, will have a degeneracy of NCm. The helicity of all states so constructed will span the
range λ to λ−N/2. Some examples are:

N = 1 : |λ >, |λ− 1/2 >
N = 2 : |λ >, 2 |λ− 1/2 >, |λ− 1 >
N = 4 : |λ >, 4 |λ− 1/2 >, 6 |λ− 1 >, 4 |λ− 3/2 >, |λ− 2 >

The irreducible representations are not necessarily CPT invariant. Therefore, if we want to
assign physical states to these representations, we have to suplement them with their CPT
conjugates. If a representation is CPT self-conjugate, it is left unchanged. Below, we list the
representations after the addition of the CPT conjugates and indicate the particle spectra which
can be assiged to them:

N = 1, λ = 1/2 : |1/2 > , |0 > , | − 1/2 > , |0 >
λ = 1 : |1 > , |1/2 > , | − 1 > , | − 1/2 >

N = 2, λ = 1/2 : |1/2 > , 2|0 > , | − 1/2 > , | − 1/2 > , 2|0 > , |1/2 >
λ = 1 : |1 > , 2|1/2 > , |0 > , | − 1 > , 2| − 1/2 > , |0 >

N = 4, λ = 1 : |1 > , 4|1/2 > , 6|0 > , 4| − 1/2 > , | − 1 >
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Thus, for N = 1, the representation contains a Majorana spinor and a complex scalar if λ = 1/2
(scalar multiplet), or a massless vector and a Majorana spinor if λ = 1 (vector multiplet). For
N = 2 and λ = 1/2, we have two Majorana spinors (or one Dirac spinor) with two complex
scalars. This representation has the same particle content as two copies of the N = 1, λ = 1/2
multiplet. For N = 2 and λ = 1, we have a massless vector, two Majorana spinors and a
complex scalar. Note that this multiplet has the same particle content as the two N = 1
multiplets for λ = 1/2 and λ = 1 put together. For N = 4, the representation is self-conjugate
and accommodates a massless vector, two Dirac fermions and three complex scalars.

Massive Irreducible Representations: For massive states, we can always go to the rest frame
where Pµ = (M, 0, 0, 0) and define

aI
α = QI

α/
√

2M , (aI
α)† = Q̄α̇I/

√
2M .

Then the supersymmetry algebra reduces to

{aI
1, (a

J
1 )†} = δIJ , {aI

2, (a
J
2 )†} = δIJ ,

with all other anti-commutators vanishing. The Clifford vacuum is defined by aI
α|Ω >= 0

and the representation is constructed by applying (aI
α)†’s on Ω. Let |Ω > be a spin singlet.

Then there are 2NCm states at level m and the dimension of the the representation is given by∑2N
m=0

2NCm = 22N . The maximum spin which can be reached is N/2 and not N as one might
naively expect. This is because (aI

1)
†(aI

2)
† = 1

2
ǫαβ(aI

α)†(aI
β)† is a scalar. Thus the state with

m = 2N has spin zero, as the vacuum. The degeneracy of states with a given spin is labelled by
the irreducible representations of the group USp(2N) which we will not discuss here. Instead,
let us consider the simplest example. For N = 1, the massive representation contains 22 = 4
states,

|Ω >, a†α|Ω >,
1√
2
ǫαβa†αa

†
β|Ω > ,

with spin content (0) ⊕ (1/2) ⊕ (0). Here, (j) denotes a state of total spin j and degeneracy
2j + 1. Thus, in the above example, we have a Weyl (or Majorana) spinor and a complex
scalar (λ, φ). For N = 2, the representation contains 24 = 16 states which, under the SU(2)
of angular momentum, decompose as 5(0) ⊕ 4(1/2) ⊕ 1(1). The N = 4 massive multiplet has
28 = 256 states and inclueds a spin 2 state.

Till now we have considered representations based on a singlet vacuum. Let us consider
a vacuum |Ωj > of spin j which is 2j + 1-fold degenerate. The representation now contains
(2j + 1)22N states. The spectrum is worked out by combining the j = 0 representation of the
Clifford algebra and a spin j, using the angular momentum addition rules. For example, to
obtain the N = 1 representation based on |Ωj >, we combine (0) ⊕ (1/2) ⊕ (0) with (j) to
obtain (j) ⊕ (j + 1/2) ⊕ (j − 1/2) ⊕ (j). For j = 1/2, we get (1/2) ⊕ (1) ⊕ (0) ⊕ (1/2) which
corresponds to a gauge field, a Dirac fermion and a scalar field, all of the same mass. Note that
in all cases we get the same number of bosonic and fermionic degrees of freedom.
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2.3 Supersymmetry Algebra with Central Charges

As shown by Haag, Lapuszanski and Sohnius [25], the supersymmetry algebra (50) admits a
central extension and can be generalised to

{QI
α, Q̄β̇J} = 2σµ

αβ̇
Pµδ

I
J ,

{QI
α, Q

J
β} = 2

√
2ǫαβZ

IJ ,

{Q̄α̇I , Q̄β̇J} = 2
√

2ǫα̇β̇Z
∗
IJ , (51)

where, Z and Z∗ are the central charge metrices which are antisymmetric in I and J . Let
us focus on the case of even N . Using a unitary transformation, we can skew-diagonalize Z:
Z̃IJ = U I

AU
J
BZ

AB, so that it takes the form Z = ǫ⊗D, where D is an N/2-dimensional diagonal
matrix. Thus, the index I which counts the number of supersymmetries can be decomposed
into (a,m), with a = 1, 2 coming from the antisymmetric tensor ǫ, and m = 1, ..., N/2 coming
from the diagonal matrix D. By a further chiral rotation, we may choose the eigenvalues of
D to be real. Once we have skew-diagonalized, it is sufficient to consider just the N = 2
supersymmetry, for which the algebra takes the form

{Qa
α, Q̄β̇b} = 2(σµ)αβ̇Pµδ

a
b ,

{Qa
α, Q

b
β} = 2

√
2ǫαβǫ

abZ ,

{Q̄α̇a, Q̄β̇b} = 2
√

2ǫα̇β̇ǫabZ . (52)

Since Z commutes with all the generators, we can fix it to be the eigenvalue for the given
representation. Now, let us define:

aα =
1

2
{Q1

α + ǫαβ(Q2
β)†} , bα =

1

2
{Q1

α − ǫαβ(Q2
β)†} .

Then, the algebra (51) reduces to

{aα, a
†
β} = δαβ(M +

√
2Z) , {bα, b†β} = δαβ(M −

√
2Z) , (53)

with all other anticommutators vanishing. Since all physical states have positive definite norm,
it follows that for massless states, the central charge is trivially realised (i.e.,Z = 0). For
massive states, this leads to a bound on the mass M ≥

√
2|Z|. When M =

√
2|Z|, one set

of operators in (53) is trivially realized and the algebra resembles the massless case and the
dimension of representation is greatly reduced. For example, a reduced massive N = 2 multiplet
has the same number of states as a massless N = 2 multiplet. Thus the representations of
the N = 2 algebra with a central charge can be classified as either long multiplets (when
M >

√
2|Z|) or short multiplets (when M =

√
2|Z|).

The mass boundM ≥
√

2|Z| is reminiscent of the Bogomol’nyi bound in the Georgi-Glashow
model. In fact, it turns out that in the supersymmetric version of the Georgi-Glashow model
(which is based on the algebra without central charges) the solitonic solutions do give rise to a
central extension term in the supersymmetry algebra, thus realizing (51)[26]. The origin of the
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central charge is easy to understand: The supersymmetry charges Q and Q̄ are space integrals
of local expressions in the fields (the time component of the super-currents). In calculating
their anticommutators, one encounters surface terms which are normally neglected. However,
in the presence of electric and magnetic charges, these surface terms are non-zero and give rise
to a central charge. As we will explicitly show towards the end of this section, it is found that

Z = a(q + ig) = ae(n +mτ) , (54)

so that M ≥
√

2|Z| coincides with the Bogomol’nyi bound (35). From (53) it is clear that the
BPS states (which saturate the bound) are annihilated by half of the supersymmetry generators
and thus belong to reduced representations of (51). An important consequence of this is that,
for BPS states, the relationship between their charges and masses is dictated by supersymmetry
and does not receive perturbative or non-perturbative corrections in quantum theory. This is
so because a modification of this relation implies that the states no longer belong to a short
multiplet. On the other hand, quantum correction are not expected to generate the extra
degrees of freedom needed to convert a short multiplet into a long multiplet. Since there is no
other possibility, we conclude that for short multiplets the relation M =

√
2|Z| is not modified

either perturbatively or non-perturbatively.

2.4 Local Representations of N=1 Supersymmetry

In this subsection we describe the action of supersymmetry on the local fields in a quantum field
theory. It is well known that the Poincaré group naturally acts on the space-time coordinates.
All other objects transform as components of tensors or spinors defined on the space-time
manifold. Similarly, the supersymmetry transformations naturally act on an extension of the
space-time, called the “superspace”. The quantum fields then transform as components of a
“superfield” defined on the superspace. In the following, we first describe these notions and
then introduce the chiral and vector superfields.

Superspace : The superspace is obtained by adding four spinor degrees of freedom θα, θ̄α̇ to
the space-time coordinates xµ. The spinor index is raised and lowered with the ǫ-tensor and
θθ = θαθα = −2θ1θ2. Similarly, θ̄θ̄ = θ̄α̇θ̄

α̇ = 2θ̄1̇θ̄2̇. We also have

θαθβ =
1

2
ǫαβθθ , θ̄α̇θ̄β̇ = −1

2
ǫα̇β̇ θ̄θ̄ , θσµθ̄θσν θ̄ =

1

2
θθθ̄θ̄ηµν .

These formulae are the basis for Fierz rearrangements.

Under the supersymmetry transformations (50) with N = 1 and transformation parameters
ξ and ξ̄, the superspace coordinates are taken to transform as

xµ → x′µ = xµ + iθσµξ̄ − iξσµθ̄ ,

θ → θ′ = θ + ξ ,

θ̄ → θ̄′ = θ̄ + ξ̄ . (55)
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Since these transformations are implemented by the operator ξαQα+ ξ̄α̇Q̄
α̇, we can easily obtain

the representation of the supercharges acting on the superspace as

Qα =
∂

∂θα
− iσµ

αα̇θ̄
α̇ ∂µ , Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇ ∂µ . (56)

These satisfy {Qα, Q̄α̇} = 2iσµ
αα̇ ∂µ. Moreover, using the chain rule, it is easy to see that ∂/∂xµ

is invariant under (55) but not ∂/∂θ and ∂/∂θ̄. Therefore, we introduce the super-covariant
derivatives

Dα =
∂

∂θα
+ iσµ

αα̇ ∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iσµ

αα̇θ
α ∂µ . (57)

They satisfy {Dα, D̄α̇} = −2iσµ
αα̇ ∂µ and commute with Q and Q̄.

Superfields: A superfield is a function on the superspace, say, F (x, θ, θ̄). Since the θ-coordinates
are anti-commuting, the most general N = 1 superfield can always be expanded as

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x)

+ θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x) . (58)

Clearly, any function of superfields is, by itself, a superfield. Under supersymmetry, the su-
perfield transforms as δF = (ξQ + ξ̄Q̄)F , from which, the transformation of the component
fields can be obtained. Note that since d(x) is the component of highest dimension in the
multiplet, its variation under supersymmetry is always a total derivative of other components.
Thus, ignoring surface terms, the space-time integral of this component is invariant under su-
persymmetry. This tells us that a supersymmetric Lagrangian density may be constructed as
the highest dimension component of an appropriate superfield. To describe physical systems,
we do not need all components of the superfield. The relevant components are selected by
imposing appropriate constraints on the superfield.

Chiral Multiplets: The N = 1 scalar multiplet is represented by a superfield with one constraint:

D̄α̇Φ = 0 .

This is referred to as the chiral superfield. Note that for yµ = xµ + iθσµθ̄, we have

D̄α̇y
µ = 0, D̄α̇θ

β = 0 .

Therefore, any function of (y, θ) is a chiral superfield. It can be shown that this also is a
necessary condition. Hence, any chiral superfield can be expanded as

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y) . (59)

Here, A and ψ are the fermionic and scalar components respectively and F is an auxiliary field
required for the off-shell closure of the algebra. Similarly, an anti-chiral superfield is defined by
DαΦ† = 0 and can be expanded as

Φ†(y†, θ̄) = A†(y†) +
√

2θ̄ψ̄(y†) + θ̄θ̄F †(y†) , (60)
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where, yµ† = xµ − iθσµθ̄. The product of chiral superfields is a chiral superfield. In general,
any arbitrary function of chiral superfields is a chiral superfield:

W(Φi) = W(Ai +
√

2θψi + θθFi)

= W(Ai) +
∂W
∂Ai

√
2θψi + θθ

(
∂W
∂Ai

Fi −
1

2

∂2W
∂AiAj

ψiψj

)
. (61)

W is referred to as the superpotential. In terms of the original variables, Φ and Φ† take the
form

Φ(x, θ, θ̄) = A(x) + iθσµθ̄∂µA− 1

4
θ2θ̄2

2A

+
√

2θψ(x) − i√
2
θθ∂µψσ

µθ̄ + θθF (x) , (62)

Φ†(x, θ, θ̄) = A†(x) − iθσµθ̄∂µA
† − 1

4
θ2θ̄2

2A†

+
√

2θ̄ψ̄(x) +
i√
2
θ̄θ̄ θσµ ∂µψ̄ + θ̄θ̄F †(x) . (63)

Vector Multiplet: This multiplet is represented by a real superfield satifying V = V †. In
components, it takes the form

V (x, θ, θ̄) = C + iθχ− iθ̄χ̄+ i
2
θ2(M + iN) − i

2
θ̄2(M − iN)

−θσµθ̄Aµ + iθ2θ̄(λ̄+ i
2
σ̄µ∂µχ)

−iθ̄2θ(λ+ i
2
σµ∂µχ̄) + 1

2
θ2θ̄2(D − 1

2
2C) .

Many of these components can be gauged away using the abelian gauge transformation V →
V + Λ + Λ†, where Λ (Λ†) are chiral (antichiral) superfields. In the so called Wess-Zumino
gauge, we set C = M = N = χ = 0, so that

V = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D .

In this gauge, V 2 = 1
2
AµA

µθ2θ̄2 and V 3 = 0. The Wess-Zumino gauge breaks supersymmetry,
but not the gauge symmetry of the abelian gauge field Aµ. The Abelian field strength is defined
by

Wα = −1

4
D̄2DαV , W̄α̇ = −1

4
D2D̄α̇V .

Wα is a chiral superfield. Since it is gauge invariant, it can be computed in the Wess-Zumino
gauge and takes the form

Wα = −iλα(y) + θαD − i

2
(σµσ̄νθ)α Fµν + θ2(σµ∂µλ̄)α , (64)

where, Fµν = ∂µAν − ∂νAµ is the familiar abelian field strength tensor.

In the non-Abelian case, V belongs to the adjoint representation of the gauge group: V =
VAT

A, where, TA† = TA. The gauge transformations are now implemented by

e−2V → e−iΛ†

e−2V eiΛ where, Λ = ΛAT
A
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The non-Abelian gauge field strength is defined by

Wα =
1

8
D̄2e2VDαe

−2V

and transforms as
Wα →W ′

α = e−iΛWαe
iΛ .

In components, it takes the form

Wα = T a
(
−iλa

α + θαD
a − i

2
(σµσ̄νθ)αF

a
µν + θ2σµDµλ̄

a
)
, (65)

where,
F a

µν = ∂µA
a
ν − ∂νA

a
µ + fabcAb

µA
c
ν , Dµλ̄

a = ∂µλ̄
a + fabcAb

µλ̄
c .

In the next section, we will construct supersymmetric Lagrangians in terms of superfields.

2.5 Construction of N=1 Lagrangians

In this section we will construct the N = 1 Lagrangians for the scalar and the vector multiplets.
These serve as the building blocks for the N = 2 Lagrangian which is our real interest. As
stated before, a supersymmetric Lagrangian can be constructed as the highest component of a
superfield. Thus the problem reduces to that of finding appropriate superfields.

Lagrangian for the Scalar Multiplet: Let us first consider the product of a chiral and an anti-

chiral superfield Φ†
iΦj . This is a general superfield and its highest component can be computed

using (62) and (63) as

Φ†
iΦj |θ2θ̄2 = − 1

4
A†

i2Aj −
1

4
2A†

iAj + F †
i Fj +

1

2
∂µA

†
i∂

µAj

− i

2
ψjσ

µ∂µψ̄i +
i

2
∂µψjσ

µψ̄i .

Dropping some total derivatives and summing over i = j, we get the free field Lagrangian

L = Φ†
iΦi |θ2θ̄2= ∂µA

†
i∂

µAi + F †
i Fi − iψ̄iσ̄

µ∂µψi .

This is the free Lagrangian for a massless scalar and a massless fermion with an auxiliary field
which can be eliminated by its equation of motion. Supersymmetric interaction terms can
be constructed in terms of the superpotential (61) and its conjugate, which are holomorphic
functions of Φ and Φ†, respectively. Moreover, note that the space of the fields Φ may have
a non-trivial metric gij in which case the scalar kinetic term, for example, takes the form
gij∂µA

†
i∂

µAj , with appropriate modifications for other terms. In such cases, the free field
Lagrangian above has to be replaced by a non-linear σ-model. Thus, the most general N = 1
supersymmetric Lagrangian for the scalar multiplet (including the interaction terms) is given
by

L =
∫
d4θ K(Φ,Φ†) +

∫
d2θW(Φ) +

∫
d2θ̄W̄(Φ†) .
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Note that the θ-integrals pick up the highest component of the superfield and in our conventions,∫
d2θθ2 = 1 and

∫
d2θ̄θ̄2 = 1. In terms of the non-holomorphic function K(A,A†), the metric

on the field space is given by gij = ∂2K/∂Ai∂A
†
j . For this reason, the function K(Φ,Φ†) is

referred to as the Kähler potential.

For a renormalizable theory, the forms of K and W are not arbitrary and are constrained
by R-symmetry. This symmetry acts on the chiral superfields as follows

RΦ(x, θ) = Φ′(x, θ) = e2inαΦ(x, e−iαθ) ,

RΦ†(x, θ̄) = Φ′†(x, θ) = e−2inαΦ†(x, eiαθ̄) .

Under this, the component fields transform as

A → e2inαA ,
ψ → e2i(n−1/2)αψ ,
F → e2i(n−1)αF .

We refer to n as the R-character. Since θ → e+iαθ, or d2θ → e−2iαd2θ, The R-character of the
superfields in each term of W must add up to one. Similarly, K should be R-neutral. The
vector multiplet is real and it has no natural R-symmetry. This symmetry plays an important
role in the study of supersymmetric gauge theories and we will come back to it in the next
section.

Lagrangians for the Vector Multiplet: As mentioned in the previous section, the Abelian field
strength W , given by (64), is a chiral superfield. Using the expansion there, one can easily
compute that

W αWα |θθ= −2iλσµ∂µλ̄+D2 − 1

2
F µνFµν +

i

4
ǫµνρσFµνFρσ .

Hence, the usual abelian supersymmetric Lagrangian (which does not contain the FF̃ term) is
given by

L =
1

4g2

(∫
d2θW αWα +

∫
d2θ̄ W̄α̇W̄

α̇
)
.

Similarly, in the non-Abelian case, using the normalization TrT aT b = δab, we have

Tr(W αWα |θθ) = −2iλaσµDµλ̄
a +DaDa − 1

2
F aµνF a

µν +
i

4
ǫµνρσF a

µνF
a
ρσ , (66)

and, hence, the usual non-Abelian supersymmetric Lagrangian (without the FF̃ -term) is given
by

L =
1

4g2
Tr
(∫

d2θW αWα +
∫
d2θ̄ W̄α̇W̄

α̇
)
.

However, we are interesed in the supersymmetric analogue of the Lagrangian (44) which also
contains a θ-term. From (66), it is obvious that the super Yang-Mills Lagrangian with a θ-term
can be written as

L =
1

8π
Im

(
τ Tr

∫
d2θW αWα

)

= − 1

4g2
F a

µνF
aµν +

θ

32π2
F a

µνF̃
aµν +

1

g2
(
1

2
DaDa − iλaσµDµλ̄

a) , (67)
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where, τ = θ/2π + 4πi/g2. Note that τ can be regarded as a constant chiral superfield.

Interaction Terms and the General N = 1 Lagrangian: Let the chiral superfields Φi belong to
a given representation of the gauge group in which the generators are the matrices T a

ij . The

kinetic energy term Φ†
iΦi is invariant under global gauge transformations Φ′ = e−iΛΦ. In the

local case, to insure that Φ′ remains a chiral superfield, Λ has to be a chiral superfield. The
supersymmetric gauge invariant kinetic energy term is then given by Φ†e−2V Φ. We are now in
a position to write down the full N=1 supersymmetric Lagrangian as

L =
1

8π
Im

(
τTr

∫
dθ W αWα

)
+
∫
d2θd2θ̄Φ†e−2V Φ +

∫
d2θW +

∫
d2θ̄ W̄ . (68)

Note that since each term is separately invariant, the relative normalisation between the scalar
part and the Yang-Mills part is not fixed by N = 1 supersymmetry. In the above, we have
set the normalization of the scalar part to one, but later, we will change this by rescaling the
scalar multiplet Φ. In terms of component fields, the above Lagrangian takes the form

L = − 1

4g2
F a

µνF
aµν +

θ

32π2
F a

µνF̃
aµν − i

g2
λaσµDµλ̄

a +
1

2g2
DaDa

+ (∂µA− iAa
µT

aA)†(∂µA− iAaµT aA) − i ψ̄σ̄µ(∂µψ − iAa
µT

aψ)

− DaA†T aA− i
√

2A†T aλaψ + i
√

2 ψ̄T aAλ̄a + F †
i Fi

+
∂W
∂Ai

Fi +
∂W̄
∂A†

i

F †
i − 1

2

∂2W
∂Ai∂Aj

ψiψj −
1

2

∂2W̄
∂A†

i∂A
†
j

ψ̄iψ̄j . (69)

Here, W denotes the scalar component of the superpotential. The auxiliary fields F and Da

can be eliminated by using their equations of motion. The terms involving these fields, thus,
give rise to the scalar potential

V =
∑

i

∣∣∣∣∣
∂W
∂Ai

∣∣∣∣∣

2

− 1

2
g2(A†T aA)2 . (70)

2.6 The N = 2 Supersymmetric Lagrangian for Gauge Fields

The on-shell N = 1 scalar multiplet (A,ψ) and vector multiplet (Aµ, λ), put together, have
the same field content as the on-shell N = 2 vector multiplet (A,ψ, λ, Aµ). The Lagrangian
(69) contains all these fields but as such is not N = 2 supersymmetric. We now assume that
(A,ψ, λ, Aµ) form an N = 2 vector multiplet and discuss the restrictions which this assumtion
imposes on the N = 1 Lagrangian in (69). First, since Aa

µ and λa belong to the adjoint
representation of the gauge group, Ai and ψi should also belong to the same representation if
they are to be part of the same multiplet. Hence, T a

ij = −ifa
ij and the sets of indices {i} and

{a} coincide. Second, since the two supersymmetry generators in the N = 2 algebra appear on
the same footing, the same must be the case with the fermions ψa and λa in (69). To satisfy
this condition, we set the superpotential W to zero since it couples only to ψa. This condition
also fixes the arbitrary relative normalization between the Yang-Mills part and the scalar part
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of the Lagrangian since it requires that the kinetic energy terms for both fermions should have
the same normalization. This is achieved by scaling Φ → Φ/g in (69). It turns out that if
the Lagrangian (69) satisfies these conditions, then it has N = 2 supersymmetry. The terms
containing the auxiliary fields now take the form

1

g2
Tr
(

1

2
DD +D [A† , A] + F †F

)
,

where, we have used the notation Φ = ΦaT a, with T a in the fundamental representation. On
eliminating D and F , we get the scalar potential

V = − 1

2g2
Tr
(
[A† , A]2

)
. (71)

The full Lagrangian with N = 2 supersymmetry can now be written as

L =
1

8π
Im Tr

[
τ
(∫

d2θW αWα + 2
∫
d2θd2θ̄Φ†e−2V Φ

)]

=
1

g2
Tr
(
− 1

4
FµνF

µν + g2 θ

32π2
FµνF̃

µν + (DµA)†DµA− 1

2
[A† , A]2

− i λσµDµλ̄− i ψ̄σ̄µDµψ − i
√

2 [λ, ψ]A† − i
√

2 [λ̄, ψ̄]A
)
, (72)

where, in the component expansion, the auxiliary fields have been eliminated. Note that (72)
is the supersymmetric generalization of the Yang-Mills-Higgs theories described in section 1,
with the Higgs potential V given by (71), and with a θ-term. Therefore, the discussion in
section 1 also applies to our N = 2 supersymmetric theory. In particular, the Higgs vacuum
is defined by DµA = 0, V = 0, and the potential vanishes for non-zero field configurations
provided A commutes with A†. Thus the model admits monopole and dyonic solutions and
contains massive gauge bosons. For example, if the gauge group is SU(2) or SO(3), it is broken
down to U(1) and two of the gauge bosons become massive.

Now, suppose that we are interested in the behaviour of this model at energies lower than
some cutoff Λ which is smaller than the mass of the lightest massive state in the theory.
At such energies, we will not encounter any on-shell massive states and the physics can be
described by the Wilsonian low-energy effective action. This effective action is obtained by
completely integrating out all massive states as well as integrating out all massless excitations
above the scale Λ [36, 37]. This, in general, is a complicated procedure and cannot be carried
out explicitly. Fortunately, in our model, the general form of the Wilsonian effective action is
severely constrained by N = 2 supersymmetry. This is easiest to see when the theory (72) is
formulated in term of N = 2 superfields as described below.

The N = 2 Superspace Formulation: The N = 2 superspace is obtained by adding four more

fermionic degrees of freedom, say, θ̃ and ¯̃θ, to the N = 1 superspace. Thus, a generic N = 2

superfield can be written as F (x, θ, θ̄, θ̃,
¯̃
θ). We need a superfield which has the same components

as the N = 2 vector multiplet. This is obtained by imposing the constraints of chirality and
reality on a general N = 2 superfield [27]. We briefly describe this following the approach of
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[28]. An N = 2 chiral superfield Ψ is defined by the constraints D̄α̇Ψ = 0 and ¯̃Dα̇Ψ = 0, where,

the supercovariant derivative ¯̃Dα̇ is defined in the same way as D̄α̇ with θ replaced by θ̃. The
expansion of Ψ can be arranged in powers of θ̃ and can be written as

Ψ = Ψ(1)(ỹ, θ) +
√

2θ̃αΨ(2)
α (ỹ, θ) + θ̃αθ̃αΨ(3)(ỹ, θ) ,

where, yµ = xµ + iθσµθ̄ + iθ̃σµ¯̃θ. This expansion helps us relate the N = 2 formalism to the
N = 1 language we have been using so far. Clearly, the component Ψ(1) has the same form
as the N = 1 chiral superfield Φ. The remaining two components are constrained by a reality
condition. The outcome is that Ψ(2)

α = Wα(ỹ, θ) as given in (65), and Ψ(3) is given by

Ψ(3)(ỹ, θ) = Φ†(ỹ − iθσθ̄, θ, θ̄)exp
[
2gV (ỹ − iθσθ̄, θ, θ̄

]
|θ̄θ̄ .

Here, Φ(ỹ − iθσθ̄, θ, θ̄) is to be understood as the expansion in (62). Clearly, Ψ has the same
field content as the N = 2 vector multiplet. One can verify that in terms of the N = 2 superfield
Ψ, the N = 2 Lagrangian (72) is given by the compact expression

L =
1

4π
Im Tr

∫
d2θd2θ̃

1

2
τΨ2 . (73)

Using the N = 2 chiral superfield Ψ (also referred to as the N = 2 vector superfield), we
can now construct the most general N = 2 Lagrangian for the gauge fields: Corresponding to
any function F(Ψ), we can construct a Lagrangian

L =
1

4π
Im Tr

∫
d2θd2θ̃F(Ψ)

=
1

8π
Im

(∫
d2θFab(Φ)W aαW b

α + 2
∫
d2θd2θ̄ (Φ†e2gV )aFa(Φ)

)
. (74)

Here, Fa(Φ) = ∂F/∂Φa, Fab(Φ) = ∂2F/∂Φa∂Φb and F is referred to as the N = 2 prepotential.
From the above, we can easily read off the Kähler potential as Im(Φ†aFa(Φ). This gives rise to
a metric gab = Im(∂a∂bF) on the space of fields. A metric of this form is called a special Kähler
metric. If we demand renormalisability, then F has to be quadratic in Ψ as in (73). However,
if we want to write a low-energy effective action, then renormalisability is not a criterion and
F can have a more complicated form. In particular, we can start from the microscopic theory
(72), corresponding to a quadratic prepotential, and try to construct the modified F for the
low-energy Wilsonian effective action. The exact determination of this function is the subject
of the work of Seiberg and Witten.

2.7 The N = 2 Supersymmetric Lagrangian for Matter Fields

Since matter fields and gauge fields transform under different representations of the gauge
group, they cannot be part of the same multiplet. TheN = 2 matter supermultiplet is called the
hypermultiplet and contains one pair of complex scalars and one pair of two-component spinors,
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all transforming under the same representation of the gauge group. From our discussion of the
representations of the supersymmetry algebra it follows that if a hypermultiplet is massive, then
its mass should appear as a central extension in the supersymmetry algera. This is so because
otherwise N = 2 supersymmetry requires a larger number of components than is contained
in a hypermultiplet. In N = 1 notation, a hypermultiplet contains a chiral superfield Q and
an anti-chiral superfield Q̃†, both transforming under the same representatin Nc of the gauge
group SU(Nc) We denote the components of Q and Q̃ by (q, ψq, Fq) and (q̃, ψq̃, Fq̃) respectively.
The form of the Lagrangian for Nf hypermultiplets (labelled by an index i), interacting with a
N = 2 vector multiplet, can be partly inferred from the N = 1 theories and is given by

L =
∫
dθ4

(
Q†

ie
−2VQi + Q̃ie

2V Q̃†
i

)
+
∫
dθ2

(√
2Q̃iΦQi +miQ̃iQi

)
+ h.c.

+ · · · (75)

Here, the dots represent the Lagrangian for the pure N = 2 vector multiplet and we have
supressed the gauge group indices. The term

√
2Q̃iΦQi is related, by N = 2 supersymmetry,

to the coupling of the hypermultiplet with the N = 1 vector multiplet V . The presence of this
term is not required in an N = 1 Lagrangian. As in normal QCD, when all masses mi are
equal, the theory is invariant under the global flavour group SU(Nf).

Eliminating the auxiliary fields Fq and Fq̃, which appear in the hypermultiplet, results in a
contribution to the scalar potential given by (compare with (70))

V =
1

2
g2
∑

a

DaD
a ,

with

Da =
Nf∑

i=1

(
q†iλ

aqi − q̃iλ
aq̃†i
)
. (76)

Here, λa are the gauge group generators in the fundamental representaion. This term is referred
to as the D-term. It must be mentioned that the N = 2 algebra has a global SU(2)R symmetry
which should also be a symmetry of the Lagrangian. However, in our decomposition of the
hypermultiplet in terms of Q and Q̃†, this symmetry is not manifest since it rotates the scalar
components q and q̃† as a doublet. It is not difficult to write an N = 2 Lagrangian with manifest
SU(2)R symmetry [23].

Minimization of the D-term: To find the vacuum of the theory, now we also have to minimize
the D-term contribution and the hypermultiplet mass term contribution to the scalar potential
[29, 30]. For non-zero quark masses, the only solution is q = q̃ = 0. Thus, only the scalar A
can have a non-zero vacuum expectation value. But when mi = 0, then the D-term can be
minimized for a set of non-vanishing q and q̃ (the potential has flat directions). However, the
Q̃ΦQ term in the Lagrangian now requires Avac = 0. In the following, we determine these flat
directions.

The minimum of the D-term corresponds to Da = 0. To solve this, note that q(i)
α (where α

denotes a colour index) can be regarded as a set of Nc vectors in CNf . Thus, we can construct
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the matrix of scalar products,

∑

i

q(i)
α q

†(i)
β = qα · q†β = (qq†)αβ .

In terms of this, ∑

i

q†iλ
aqi = Tr

(
qq†λa

)
.

Similarly, we construct the matrix q̃†α · q̃β = (q̃†q̃)αβ . Hence, Da = 0 can be written as

Da = Tr
[(
qq† − q̃†q̃

)
λa
]

= 0 .

Since λa are in an irreducible representation of SU(Nc), the above condition is solved by

(qq†) − (q̃†q̃) = c21Nc
. (77)

Here, we can distinguish two cases: Nf < Nc and Nf ≥ Nc.

1) Nf < Nc: In this case, the matrix (qq†) has rank Nf and thus it has N−Nf zero eigenvalues.
The same applies to the matrix (q̃†q̃). By using SU(Nc) × SU(Nf) × U(1)R rotations, (qq†)
can be diagonalized and condition (77) then implies that (q̃†q̃) must also be diagonal. Hence,
in this basis, we can solve for q and q̃ as

q =




v
(1)
1 0 · · · 0

0 v
(2)
2

...
. . .

v
(Nf )
Nf

0 0 · · · 0
...

...
...




, q̃ =




ṽ
(1)
1 0 · · · 0 · · ·
0 ṽ

(2)
2 0 · · ·

...
. . .

0 ṽ
(Nf )
Nf

0 · · ·



.

The presence of zero eigenvalues imply that c = 0 and therefore, v
(i)
i = ṽ

(i)
i . In this case, the

gauge symmetry is broken down to SU(Nc − Nf) except for Nc = Nf − 1, where it is totally
broken. 2NfNc −N2

f quark superfields become heavy and the remaining N2
f quark superfields

remain massless and correspond to the Goldstone bosons of broken global symmetries.

2) Nf ≤ N : In this case (qq†) has rank Nc and, generically, its eigenvalues are not zero. As a
result, c 6= 0. Arguing as above, in this case the vacuum values of q and q̃ can be written as

q =




v
(1)
1 0 · · · 0 · · ·
0 v

(2)
2 0 · · ·

...
. . .

0 v
(Nc)
Nc

0 · · ·



, q̃ =




ṽ
(1)
1 0 · · · 0

0 ṽ
(2)
2

...
. . .

ṽ
(Nc)
Nc

0 0 · · · 0
...

...
...




.
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and

ṽ
(i)
i =

√
|v(i)

i |2 − c2 .

In this case, the gauge group is completely broken, and depending on the values of v
(i)
i , the

pattern of chiral symmetry breaking quite complicated with many possibilities. For Nf > N ,
there are surviving R-symmetries.

2.8 Central Charges in the N = 2 Pure Gauge Theory

We have seen that the N = 2 supersymmetry algebra with central charge Z implies the bound
M ≥

√
2|Z| on the particle masses. It was also stated that this bound is the same as the BPS

bound on the masses which is determined in terms of the electric and magnetic charges. In this
section, we prove the above statement by explicitly calculating Z following [26].

In the supersymmetry algebra, The central charge Z appears in the commutator of the
supercharges QI

α which, in turn, are space integrals of SI0
α (Here, SIµ

α denotes the supercurrent).
Thus, we first have to compute SI0’s in terms of the basic fields, and then evaluate their
commutators. The central charge is related to a surface term in the space integral of this
commutator which is non-zero if the field configuration corresponds to electric and magnetic
charges.

As a warm up exercise, we start with the theory forN = 1 chiral superfields. The Lagrangian
is given by

L =
∫
d4θΦ†Φ +

∫
d2θ W(Φ) +

∫
d2θ̄W̄(Φ†) .

Defining yµ = xµ + iθσµθ̄, the superfield can be expanded as Φ = A(y) +
√

2 θψ(y) + θθF (y).
In this basis, Qα = ∂/∂θα, Q̄α̇ = −∂/∂θ̄α̇ +2i(θσµ)α̇ ∂/∂y

µ, and the supersymmetry variations,
δǫ = ǫαQα + ǭα̇Q̄

α̇, of the fields are given by

δA =
√

2ǫψ , δĀ =
√

2ǭψ̄ ,

δψ =
√

2ǫF + i
√

2σµǭ∂µA , δψ̄ = −i
√

2ǫσµ∂µĀ+
√

2F̄ ǭ ,

δF = i
√

2ǭσ̄µ∂µψ , δF̄ = i
√

2ǫσµ∂µψ̄ .

Using these transformations, we can compute the variation of the terms involving the superpo-
tential W as

δ(W ′F − 1

2

∂2W
∂A2

ψψ) = W ′′δAF + W ′δF − 1

2
W ′′′δAψψ + W ′′ψδψ

= W ′′√2ǫψF + i
√

2W ′ǭσ̄µ∂µψ +
√

2W ′′ψ(iσµǭ∂µA + ǫF )

= ∂µ

(
i
√

2
∂W
∂A

ǭσ̄µψ

)
.

Note that we have used W ′′′δAψψ = W ′′′√2(ǫψ)ψψ = 0. Since W ′′′ is totally symmetric, this
statement is also true in the presence of many fields ψi. Thus, we have,

δ(
∫
d2θW +

∫
d2θ̄W̄) = i

√
2∂µ

(
∂W
∂Aj

ǭσ̄µψj − ∂W̄
∂Āj

ψ̄jσ̄
µǫ

)
.
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Next we calculate the variation of the kinetic terms,

LD = ∂µA
†∂µA+ F †F − i

2
ψ̄σ̄µ∂µψ +

i

2
∂µψ̄σ̄

µψ .

A slightly lengthy computation yields:

δLD = − i√
2
∂µ(Fψ̄σ̄µǫ) +

i√
2
∂µ(ǫψ∂µA† − ǫσνµψ∂νA

†)

+
i√
2
∂µ(F †ǭσ̄µψ) +

i√
2
∂µ(ǭψ̄∂µA− ψ̄σ̄µν ǭ∂νA) .

Adding the variations of the superpotential and the kinetic terms, and using the definitions

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) ,

we get the supercurrent as

Sρ
matter =

√
2ǫσν σ̄ρψ∂νA

† + i
√

2
∂W̄
∂A† ψ̄σ̄

ρǫ+
√

2ψ̄σ̄ρσν ǭ∂νA− i
√

2
∂W
∂A

ǭσ̄ρψ . (78)

Note that for convenience, we have included the supersymmetry transformation parameters ǫ, ǭ
in the definition of the supercurrent. So, expanding in components, we actually have:

Sρ = ǫαSρ
α + ǭα̇S̄

ρα̇ . (79)

Next we consider the inclusion of gauge fields which are described by a vector multiplet.
The supersymmetry variations of the fields in this multiplet are given by

δAa
µ = −iǭσ̄µλ

a + iλ̄aσ̄µǫ ,
δDa = ǭσ̄µDµλ

a +Dµλ
aσ̄µǫ ,

δλa = 1
2
σµνǫF a

µν + iǫDa ,
δλ̄a = 1

2
ǭσ̄νµF a

µν − iǭDa .

(80)

Furthermore, in the presence of the gauge interactions, the matter field transformations need
some modification:

δA =
√

2ǫψ ,

δψ =
√

2ǫF + i
√

2σµǭDµA ,

δψ̄ =
√

2ǭF † − i
√

2ǫσµDµA
† ,

δF = i
√

2ǭσ̄µDµψ − 2iT aAǭλ̄a .

(81)

The last term in δF is needed to cancel part of the variation of ψ in the term A†T aλaψ in
the Lagrangian (69). The part of the Lagrangian describing the pure vector superfieled can be
written as

L =
1

g2

(
−1

4
F a

µνF
aµν − i

2
λ̄aσ̄µDµλ

a +
i

2
Dµλ̄

aσ̄µλa +
1

2
D2
)

+
θ

32π2
F a

µνF̃
aµν .
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If we ignore the θF F̃ term, then the supercurrent obtained from this part of the Lagrangian
takes the form

Sρ
gauge = − i

2g2

(
λ̄aσ̄ρσµνǫF a

µν + ǭσ̄µν σ̄ρλaF a
µν

)
.

For the theory coupled to matter, the supercurrent is not just the sum of the above, plus
the gauge-covariantized version of Sρ

matter . We also expect some contribution from the terms
DaA†T aA and iA†T aλaψ + h.c.. Taking this into account, the supercurrent for the interacting
N = 1 Lagrangian (69) is given by

Sρ = − i

2g2

(
λ̄aσ̄ρσµνǫ+ ǭσ̄µν σ̄ρλa

)
F a

µν −
(
ǭσ̄ρλa + λ̄aσ̄ρǫ

)
A†T aA

+
√

2ǫσµσ̄ρψDµA
† +

√
2ψ̄σ̄ρσµǭDµA+ i

√
2
∂W̄
∂A† ψ̄σ̄

ρǫ− i
√

2
∂W
∂A

ǭσ̄ρψ . (82)

Now, let us turn our attention to the pure N = 2 gauge theory. As discussed in section 1,
this is obtained from theN = 1 theory (69) by setting W = 0 and by scaling the chiral superfield
Φ to Φ/g. Furthermore, Φ is now a vector in the adjoint representation of the gauge group.
Thus, relabelling (λ, ψ) as (λ1, λ2), we can easily write down one of the N = 2 supercurrents as

g2Sρ
(1) = − i

2

(
λ̄a

1σ̄
ρσµνǫ+ ǭσ̄µν σ̄ρλa

1

)
F a

µν −
(
ǭσ̄ρλa

1 + λ̄a
1σ̄

ρǫ
)
A†T aA

+
√

2 ǫσµσ̄ρλa
2 DµA

a† +
√

2 λ̄a
2σ̄

ρσµǭ DµA
a .

The N = 2 theory is also invariant under a second set of supersymmetry transformations
(with parameter ǫ′) which is obtained from (80) and (81) by the replacement λ→ ψ, ψ → −λ.
This corresponds to a transformation of the (λ, ψ) doublet by an element of SU(2)R, which is
a symmetry group of the N = 2 algebra. The associated conserved current is then obtained
from Sρ

(1) by the replacement λ1 → λ2, λ2 → −λ1:

g2Sρ
(2) = − i

2

(
λ̄a

2σ̄
ρσµνǫ′ + ǭ′σ̄µν σ̄ρλa

2

)
F a

µν −
(
ǭ′σ̄ρλa

2 + λ̄a
2σ̄

ρǫ′
)
A†T aA

−
√

2 ǫ′σµσ̄ρλa
1 DµA

a† −
√

2 λ̄a
1σ̄

ρσµǭ′DµA
a .

Let us first concentrate on Sµ
(1). Using the identities

σaσ̄bσc = ηabσc − ηacσb + ηbcσa + iǫabcdσd ,

σ̄aσbσ̄c = ηabσ̄c − ηacσ̄b + ηbcσ̄a − iǫabcdσ̄d ,

along with χσµψ̄ = −ψ̄σ̄µχ, this supercurrent can be rewritten as

g2Sµ
(1) = − ǫσν λ̄

a
1(iF

aµν + F̃ aµν) +
√

2 ǫσν σ̄µλa
2 DνA

†a + ǫσµλ̄a
1A

†T aA

+ (ǭ dependent terms) .

From the above, we can easily read off the components Sµ
(1)α (see eq. (79)) as

g2Sµ
(1)α = σναα̇λ̄

aα̇
1 (iF aµν + F̃ aµν) +

√
2(σν σ̄µλa

2)αDνA
†a + σµ

αα̇λ̄
aα̇
1 A†T aA .
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After lowering the spinor index using

λ̄α̇
1 = ǫα̇β̇λ̄1β̇ = i(σyλ

†
1)

α̇ , (Note that λ̄β̇ = λ†β)

and using vector notation for spatial components of vectors, The µ = 0 component of the
current takes the form

g2S0
(1)α = − i(~σσyλ

†a
1 )α · (i ~F a + ~̃F )a

+
√

2λa
2αD0A

†a +
√

2(~σ · ~DA†aλa
2)α + i(σyλ

†a
1 )αA

†T aA ,

where,

~F a = F a0i ,
~̃
F

a

= F̃ a0i .

As before, the expression for S0
(2)α is obtained from the above by the replacements λ1 → λ2,

λ2 → −λ1.

To evaluate the central charge, we are interested in the anti-commutator

{Q(1)α , Q(2)β} =
{∫

d3xS0
(1)α(~x, 0) ,

∫
d3y S0

(2)β(~y, 0)
}
.

As noticed by Olive and Witten [26], a non-zero contribution to this comes from certain bound-
ary terms which measure electric and magnetic charges. To check this result, we have to look,
in the anti-commutator, for terms of the form

∫
d3x∂i(A

†aF aoi + A†aF̃ aoi). For this, we need
only retain the relevant terms in the supercurrents:

g2S0
(1)α = −i(~σσyλ

†a
1 )α · (i ~F a + ~̃F )a +

√
2 (~σ · ~DA†aλa

2)α + · · · ,

g2S0
(2)α = −i(~σσyλ

†a
2 )α · (i ~F a + ~̃F )a −

√
2 (~σ · ~DA†aλa

1)α + · · · . (83)

Using this, we get

{Q(1)α , Q(2)β} =
1

g4

∫
d3x

∫
d3y [i

√
2(σiσy)αγσ

j
βλ{λ†a1γ , λ

b
1λ}(iF a

0i + F̃ a
0i)DjA

†b

−i
√

2(σj)αγ(σ
iσy)βλ{λ†a2γ, λ

b
2λ}(iF a

0i + F̃ a
0i)DjA

†b]

=
1

g2

∫
d3x i

√
2
[
(σiσyσ

j T )αβ − (σiσyσ
j T )βα

]
(iF a

0i + F̃ a
0i)DjA

†a
.

The term within the square brackets, involving the σ matrices, can be simplified if we use
σiσy = −σyσ

i T , so that

(σiσyσ
j T )αβ = −(σyσ

i Tσj T )αβ = −[σy(δ
ij − iǫijkσT

k )]αβ .

Subtracting from this a similar equation with α and β interchanged, we get the term within
the square brackets as equal to −2(σy)αβδ

ij = 2iǫαβδ
ij . Thus the commutator takes the form

{Q(1)α, Q(2)β} = −2
√

2

g2
ǫαβ

∫
d3x(iF a0i + F̃ a0i)DiA

†a .
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Using the Bianchi identity for the magnetic part, and the equation of motion for the electric
part, one can easily show that this is the same as

{Q(1)α, Q(2)β} = −2
√

2

g2
ǫαβ

∫
d3x ∂i

[
(iF a0i + F̃ a0i)A†a

]
.

Similarly,

{Q̄(1)α̇, Q̄(2)β̇} = −2
√

2

g2
ǫα̇β̇

∫
d3x ∂i

[
(−iF a0i + F̃ a0i)Aa

]
.

Thus, in the commutator of the supercurrents, we have recovered the total derivatives which
are nothing but the electric and magnetic charge densities:

Qele = − 1

ag

∫
d3x∂i(F

a0iAa) = gne , Qmag = − 1

ag

∫
d3x∂i(F̃

a0iAa) =
4π

g
nm .

Here, a is the value of A in the Higgs vacuum. The charge quantization condition used above
corresponds to integral fundamantal charges as in SU(2) breaking to U(1) with fileds in the
adjoint representation. Now, comparing with (52), we can easily read off the N = 2 central
charge as Z = −ia(ne + (4πi/g2)nm). Recall that the phase of Z is convention dependent and
we are mainly interested in its magnitude.

To find the effect of the θ-parameter, we can either modify the calculation by adding the
contribution from θF F̃ , or simply use the Witten effect described in section (1.10). As we learnt
there, the effect of the θ parameter is to shift the electric charge to Qele = gne +(θg2/8π2)Qmag.
Using this (and ignoring an overall factor of −i), we get the central charge as

Z = a (ne + τclnm) , where, τcl =
θ

2π
+

4πi

g2
.

Using supersymmetry algebra this implies a mass bound

M ≥
√

2 |Z| =
√

2 | a (ne + τclnm) | ,

which is the BPS bound. So far, we have considered the microscopic N = 2 action (72). At
the level of the effective action (74) specified by a prepotential F , the central charge takes the
form

Z = ane + aDnm ,

where aD = ∂F/∂a. This formula can be motivated as follows: As we will see in the next
section, the theory (74) has a dual description in which the magnetic monopoles, and not the
electric charges, appear as fundamental objects. In this description, ne and nm are interchanged
and also a is replaced by aD. Thus, in the dual theory, one can easily infer the contribution of
the monopole to the BPS bound to be aDnm. The full duality group, as we will see in the next
section, is SL(2, Z) under which a and aD transform as a doublet. Combining these facts leads
to the central extension formula given above. Similar constructions apply to arbitrary groups
SU(N) with adjoint matter.
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2.9 Central Charge in N=2 Gauge Theory with Matter

When matter in the fundamental representation is added to the N = 2 pure gauge theory
described above, there is an important change: the central charge also receives contributions
from the masses of the matter fields. In N = 2 supersymmetry, matter fields are part of
hypermultiplets. A hypermultiplet can be most easily described in the N = 1 notation as
consisting of a chiral superfield Q and an anti-chiral superfield Q̃†. Q (Q̃) contains components
q, ψq (q̃, ψq̃) and transforms in the N (N̄) representation of the gauge group SU(N). Under the

SU(2)R symmetry of the N = 2 algebra, q, q̃† form a doublet while ψq and ψ†
q̃ are singlets. Since

the fields in a hypermultiplet have spin ≤ 1/2, they belong to a short representation of the
N = 2 algebra and, therefore, must satify the relation M =

√
2Z. The fact that Z, as derived in

the previous section, does not satisfy this relation in the presence of bare hypermultiplet masses,
indicates that the central charge must receive further contributions from the hypermultiplets.
We will calculate this contribution below.

Beside the standard kinetic terms and gauge couplings for the chiral fields Q and Q̃, the
N = 2 Lagrangian in the presence of matter also contains the N = 1 superpotential given by

Nf∑

i=1

√
2Q̃iΦQi +

Nf∑

i=1

miQ̃iQi + h.c.

Here, the index i runs over the Nf quark flavours and Φ is the chiral superfield of the vector
multiplet in the adjoint representation. The first term is related to the gauge coupling of the
matter fields by N = 2 and the second term is an N = 2 invariant mass term. When all masses
are equal, the theory also has a SU(Nf ) flavour symmetry which is broken down to smaller
subgroups when the masses are not equal. For all masses unequal, it breaks down to U(1)Nf .

The contribution of Q and Q̃ to the supercurrents can be easily calculated using (78), with
the superpotential W as given above. Thus, as the contribution to Sµ

(1)α, we get (supressing
both colour and flavour indices):

ǫαSµ
(1)α = · · · +

√
2 ǫσν σ̄µψqDνq

† + i
√

2m q̃†ψ̄qσ̄
µǫ

+
√

2 ǫσν σ̄µψq̃Dν q̃
† + i

√
2mq†ψ̄q̃σ̄

µǫ+ · · · .

To obtain the corresponding terms in the second supercurrent, we have to make the replace-
ments q → q̃†, q̃† → −q,

ǫαSµ
(2)α = · · · +

√
2 ǫσν σ̄µψqDν q̃ − i

√
2mqψ̄qσ̄

µǫ

−
√

2 ǫσν σ̄µψq̃Dνq + i
√

2m q̃ψ̄q̃σ̄
µǫ+ · · · .

Using the standard canonical commutation relations and following a procedure similar to the
previous section, we can calculate the contribution of these extra terms to the anti-commutator
of the supercharges. The additional term is of the form 2iǫαβ

∑
imiSi, with

Si =
∫
d3x

(
D0q

†
i qi + qiD0q

†
i −

i

2
ψ†

qiψqi +
i

2
ψqiψ

†
qi − (q → q̃, ψq → ψq̃)

)
,

41



where, the index i is not summed over. Clearly, this is a conserved charge associated with a
global U(1) symmetry under which Qi and Q̃i carry charges +1 and −1,respectively. These are
the U(1) factors of the broken flavour group. Taking this extra term into account, the formula
for the central charge takes the form

Z = nea+ nmaD +
∑

i

1√
2
miSi . (84)

This formula is crucial in the Seiberg-Witten analysis of N = 2 SU(2) gauge theory with quark
hypermultiplets.

3 The Seiberg-Witten Analysis of N = 2 Supersymmet-

ric Yang-Mills Theory

In this section, we analyze the N = 2 pure SU(2) theory following Seiberg and Witten [31].
N = 2 has powerful Ward identities which, together with some physical input, lead to interesting
conclusions like monopole condensation and - after N = 2 is softly broken to N = 1 - to
confinement due to condensation of the massless monopoles. The chain of reasoning is long
and elaborate. For the theories under consideration, when the θ-angle is set to zero, the BPS
bound is given by

M ≥
√

2 |Z| ,

Z = a (ne +
i

α
nm) , with α =

g2

4π
.

The form of Z is invariant under ne ↔ nm accompanied by α ↔ 1/α and a ↔ a/α. This may
be regarded as some evidence for the Montonen-Olive conjecture of electromagnetic duality,
although we have seen that Z gets an interesting renormalization in N = 2 theories. While
the conjecture in its original form makes sense in N = 4 theories, for N = 2, we can still
have an SL(2, Z) transformation acting on the parameter τ = θ/2π + i4π/g2 which embodies
a weaker form of Montonen-Olive conjecture. By combining these transformations with global
symmetries and the requirement of positivity of kinetic energy, Seiberg and Witten were able
to formulate a procedure for determining the exact form of the low-energy theory as will be
described below.

3.1 Parametrization of the Moduli Space

The classical action for the N = 2 supersymmetric Yang-Mills theory (72) containts the scalar
potential

V =
1

2g2
Tr
(
[φ†, φ]2

)
.
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Therefore, the Higgs vacuum is defined by [φ, φ†] = 0, which implies that φ takes values in
the Cartan subalgebra of the gauge group: φ = φiH

i. Thus, generically, the gauge group
G is broken to the subgroup H which is generated by elements from the Cartan subalgebra.
Elements in G/H do not leave the Higgs vacuum invariant, but being gauge transformations,
they relate physically equivalent vacua. On the other hand, once a given basis for the Cartan
subalgebra is chosen, then different vacuum values of φ, within this subalgebra, correspond to
different physical theories. Thus these degrees of freedom in φ (i.e., the φi’s) parametrize the
space of physically inequivalent vacua, or the moduli space of the theory. The dimension of this
moduli space is equal to the rank r of the gauge group G. However, this parametrization of the
moduli space is not the desired one as there is still some residual gauge invariance: The coset
G/H contains elements which, while not leaving the vacuum invariant, do not take φ out of the
Cartan subalgebra. These transformations are precisely the Weyl reflections. Therefore, the
correct parametrization of the moduli space is given not by φ, but by Weyl invariant functions
constructed out of it.

The Weyl invariants are obtained from the characteristic equation,

det(λ− φ) = 0 .

Since Weyl reflections act on φ by conjugation, det(λ−φ) is invariant. Hence, if we expand this
quantity as a polynomial in powers of λ, then the coefficients are Weyl invariant quantities. In
the following, we express these coefficients as simple functions of φ. Let a1, · · · , aN denote the
roots of the characteristic equation, or the eigenvalues of φ. If the gauge group is SU(N) (or
SO(N)), we have Trφ =

∑
ai = 0. For generic values of ai, the gauge group is broken to U(1)r.

When some of the eigenvalues coincide, the unbroken group jumps from U(1)r to something at
least as big as U(1)r−1 × SU(2). In terms of ai, the characteristic polynomial takes the form:

λN + λN−2
∑

i<j

aiaj − λN−3
∑

i<j<k

aiajak + · · ·+ (−1)N
N∏

i=1

ai = 0 .

For SU(2), φ = 1
2
aσ3 and it can be easily checked that the desired Weyl invariant is u =

Tr(φ2) = 1
2
a2. For SU(3), the coefficients in the characteristic polynomial are a1a2 +a1a3 +a2a3

and a1a2a3, where a1, a2, a3 are the eigenvalues of φ. Using (Trφ)2 = 0, and (Trφ)3 = 0, one
can easily write the Weyl invariants as

u = 1
2
Tr(φ2) = −(a1a2 + a1a3 + a2a3) ,

v = −1
3
Tr(φ3) = a1a2a3 .

In general, for SU(N) similar formulae can be worked out. The coefficients of the characteristic
polynomial are the “Chern” classes of φ,

det(λ− φ) = λN − λN−1c1(φ) + λN−2c2(φ) + · · · + (−1)jλN−jcj(φ) + · · · + (−1)NcN(φ) = 0 .

The coefficients cj(φ) can be easily determined from the following formal expansion,

det(λ− φ) = λN det(1 − φ/λ) = λNeTr ln(1−φ/λ) = λNexp

(
−

∞∑

n=1

Tr (φn)

nλn

)

= λN − 1

2
Tr(φ2)λN−2 − 1

3
Tr(φ3)λN−3 + · · · .
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Note that the series expansion for ln(1 − φ/λ) makes sense only for λ >> φ. Therefore, in
the above expansion only terms with positive powers of λ are relevant and they provide all the
Weyl invariant quantities we need for a gauge invariant parametrization of the moduli space.

In the above, we have treated φ classically. In quantum field theory, we parametrize the
moduli space by the vacuum expectation values of the corresponding classical Weyl invariants.
For example, the moduli space of the SU(2) N = 2 supersymmetric Yang-Mills theory is
parametrized by u =< Tr(φ2) >, which at the classical limit, reduces to a2/2.

3.2 R-Symmetry and its Breaking

The N -extended supersymmetry algebra (50) is invariant under global U(N) rotations of the N
supercharges. Therefore, a supersymmetric theory should also exhibit such a global symmetry,
usually referred to as R-symmetry. The action of this global symmetry on the supercharges
can be easily translated into a transformation of the superspace variables. For example, for
N = 1, the U(1) R-symmetry acts on the supercharge as Q → e−iαQ. From this we can
obtain its action on the superspace coordinates as θ → eiαθ and θ̄ → e−iαθ̄ (see (56)). For
N = 2, we have a U(1) which acts as above on the N = 2 superspace coordinates θI , θ̄I ,
along with an SU(2) R-symmetry which rotates the index I of the supercharges. In order to
keep the supersymmetric Lagrangian invariant under these transformations, we have to assign
appropriate transformation properties to various superfields. From this, we can easily obtain
the behaviour of the component fields under R-symmetry. Below, we will describe this in a
little more detail.

Action on the N = 2 Vector Multiplet: As discussed in the previous section, the N = 2 vector
multiplet contains a vector field Aµ, two Weyl spinors λ, ψ and a scalar φ, all transforming in
the adjoint representation of the gauge group G. These components can be arranged as

Aµ

λ ψ
φ

.

The SU(2)R transformation acts on the rows in the above diagram and rotates the fermions
(λ, ψ) into each other while keeping Aµ and φ invariant. In the N = 1 formalism, this multiplet
decomposes into a vector superfield V (Aµ, λ), and a chiral superfield Φ(φ, ψ). Therefore, the
only part of SU(2)R which remains manifest in the N = 1 language is a U(1)J subgroup which
does not mix λ and ψ. This subgroup is generated by σ3 and acts as (λ, ψ) → (eiαλ, e−iαψ).
The action of the U(1)R on the N = 1 superfields was discussed in the previous section. Below,
we summarize these transformations:

U(1)R : Φ → e2iαΦ(e−iαθ), V → V (e−iαθ) ,

U(1)J : Φ → Φ(e−iαθ), V → V (e−iαθ) .
(85)

Action on the N = 2 Hypermultiplet: In N = 2, the matter fields appear in hypermultiplets,

each containing two complex scalars (q, q̃†) and two Weyl fermions (ψq, ψ̃
†
q). All these compo-
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nents transform in the same (usually the fundamental) representation of the gauge group. The
components of a hypermultiplet can be arranged as

ψq

q q̃†

ψ̃†
q

.

Again, SU(2)R acts on the rows and thus rotates q, q̃†. In the N = 1 language, the hypermulti-
plet is decomposed in terms of chiral multiplets Q(q, ψq), and Q̃(q̃, ψ̃q), which carry dual gauge
quantum numbers. In this decomposition, only the U(1)J subgroup of SU(2)R is manifest.
Moreover, in the N = 1 decomposition, a hypermultiplet interacting with a vector multiplet
gives rise to a superpotential term

W =
√

2Q̃ΦQ.

Since W should carry two units of U(1)R charge, Q and Q̃ are neutral. We summarize these
transformations below:

U(1)R : Q→ Q(e−iαθ) , Q̃→ Q̃(e−iαθ) ,

U(1)J : Q→ eiαQ(e−iαθ) , Q̃→ eiαQ̃(e−iαθ) .

(86)

For later convenience, we list below the transformations of all component fields under U(1)R
and U(1)J :

U(1)R : φ → e2iαφ ,
(ψ, λ) → eiα(ψ, λ) ,

(ψq, ψ̃q) → e−iα(ψq, ψ̃q) ,
(Aµ, q, q̃) → (Aµ, q, q̃) .

U(1)J : (λ, q) → eiα(λ, q) ,
(ψ, q̃†) → e−iα(ψ, q̃†) ,

(φ,Aµ, ψq, ψ̃
†
q) → (φ,Aµ, ψq, ψ̃

†
q) .

Note that we can combine the two-component spinors λ and ψ̄ into a four-component Dirac
spinor ψD (see (49)). The spinor ψD transforms as eiαψD under U(1)J and as eiαγ5ψD under
U(1)R. Similarly, U(1)R acts as a chiral U(1) on the Dirac spinor constructed out of ψq and

ψ̃†
q , though now with the opposite charge. Thus U(1)R is a chiral symmetry and is, therefore,

broken by a chiral anomaly as will be discussed below.

Breaking of R-Symmetries: Classically, our theory has the full global SU(2)R × U(1)R as a
symmetry group. However, quantum mechanically, U(1)R is broken to a discrete subgroup due
to anomalies. This subgroup can be easily determined from elementary instanton considerations
(the more direct method will be described in the next subsection). To compute the anomaly
for the gauge group SU(Nc), note that by the index theorem, in the presence of an instanton,
there is one zero-mode for each left moving fermion in the fundamental or antifundamental
representaion and 2Nc zero-modes for each left-handed fermion in the adjoint representation. A
correlation function in this theory involves integrations over the fermionic collective coordinates
corresponding to these zero-modes. For a correlator to be non-zero, it should contain enough
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fermion insertions to soak the zero-modes. Hence, in the presence of Nf flavours, the first
non-vanishing correlator is

G = 〈λ(x1) · · ·λ(x2Nc
)ψ(y1) · · ·ψ(y2Nc

)ψq(z1) · · ·ψq(zNf
)ψ̃q(u1) · · · ψ̃q(uNf

)〉 . (87)

Under the U(1)R, G transforms as

G→ eiα(4Nc−2Nf )G .

Hence U(1)R is broken to the discrete group Z4Nc−2Nf
. In the following, we focus on the

pure Yang-Mills theory so that Nf = 0. In this case, U(1)R → Z4Nc
and is represented by

e2πiα, where α = n/4Nc , n = 1, · · ·4Nc. Thus the global symmetry group is SU(2)R × Z4Nc
.

However, note that the centre of SU(2)R, which acts as (λ, ψ) → eiπ(λ, ψ), is also contained in
Z4Nc

(corresponding to n = 2Nc). Hence, the true symmetry group is

(SU(2)R × Z4Nc
) /Z2 .

This surviving R-symmetry is broken further by the Higgs vacuum. The field φ2 has charge
4 under Z4Nc

and transforms to e2πin/Ncφ2, which is invariant only for n = Nc, 2Nc, 3Nc, 4Nc.
Therefore, if the vacuum is characterized by non-zero φ2, then Z4Nc

is broken down to Z4. This
is the situation for the SU(2) gauge theory (Nc = 2). In this case, all elements which do not
keep φ2 invariant, act as a Z2 : φ2 → −φ2. Therefore, the final R-symmetry group for the
SU(2) gauge theory is (SU(2)R × Z4)/Z2.

For the gauge group SU(3), we have Z4Nc
= Z12. The vacuum is parametrized by φ2 and

φ3, which, under Z4Nc
, transform to e2πin/Ncφ2 and e3πin/Ncφ3 respectively. Invariance of φ2

requires n = Nc, 2Nc, 3Nc, 4Nc, breaking Z12 to Z4. Invariance of φ3 picks n = 2Nc, 4Nc. Thus,
for the SU(3) gauge theory, Z12 is broken to Z2. The broken Z6 subgroup acts non-tivially on
the moduli space. For SU(4) and higher gauge groups, no subgroup of Z4Nc

survives.

3.3 Low-Energy Effective Action for N = 2 Gauge Theory

Let us consider the N = 2 supersymmetric Yang Mills theory based on a group G of rank r
which is spontaneously broken by a non-zero 〈φ〉. Far from the points where two eigenvalues
of 〈φ〉 coincide, the only massless fields are the vector supermultiplets associated with the
unbroken subgroup U(1)r of G. At sufficiently low energies, non of the massive states will
appear as physical states and an effective description of the theory can be given in terms of the
massless fields alone. In principle, this low-energy theory can be obtained by integrating out
all the massive modes as well as massless modes above a low-energy cutoff. In practice, this
procedure is not easy to implement. Seiberg and Witten formulated an indirect procedure for
determining the exact low-energy theory as we will in the remaining part of this section.

As discussed in the previous section, the effective action (the part with at most two deriva-
tives) is fully determined by a prepotential F which is only a function of r massless vector
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supermultiplets. In the N = 1 language, the corresponding Lagrangian takes the form (with
Ai denoting chiral superfields):

1

4π
Im

[∫
d4θ

∂F
∂Ai

Āi +
∫
d2θ

1

2

∂2F
∂Ai∂Aj

W αiW j
α

]
.

In terms of F(A), the Kähler potential is given by K = Im
(
Āi∂F(A)/∂Ai

)
. If ai denotes

the scalar component of the chiral superfield Ai, then the metric on the space of fields, and
therefore, the one on the space of Higgs vacuua, is given by

ds2 = gij̄ da
idāj = Im

d2F
∂ai∂aj

daidāj .

Note that, by virtue of N = 2 supersymmetry, this metric is the same as the generalized gauge
coupling which appears in front of the F i

µνF
µνi term in the above Lagrangian. This relationship

is not modified in the quantum theory.

In the following, we will be mainly interested in the SU(2) gauge group spontaneously
broken to U(1). In this case the effective low-energy Lagrangian takes the form

Leff =
1

4π
Im

[∫
d4θ

∂F(A)

∂A
Ā+

∫
d2θ

1

2

∂2F
∂A2

W αWα

]
, (88)

and the metric on the field space is given by

ds2 = Im(τ) dadā , where, τ(a) =
∂2F
∂a2

. (89)

Our aim in this subsection is to determine the perturbative form of F following [33]. The
determination of the exact form of the prepotential, including non-perturbative corrections, is
the subject of the later subsections.

To determine the one-loop perturbative correction to F , we start from the exact microscopic
theory (72) with gauge group SU(2). This theory is asymptotically free and therefore at
high energies one can perform reliable perturbative calculations. As indicated in the previous
subsection, the U(1)R symmetry of this theory is broken by the standard chiral anomaly. Thus
we have

∂µJ
µ
5 = − Nc

8π2
FµνF̃

µν .

This implies that, to one-loop, under a U(1)R transformation, the effective Lagrangian changes
by

δLeff = −αNc

8π2
FF̃ . (90)

If the theory also contains Nf fermions in the fundamental representation, then in the above
expression, Nc has to be replaced by Nc−Nf/2. Note that since (32π2)−1

∫
FF̃ is an integer, the

anomaly breaks U(1)R to Z4Nc
(or to Z4Nc−2Nf

in the presence of matter). The same result was
obtained in the previous subsection from a consideration of fermion zero modes in an instanton
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background. Moreover, the anomaly can be regarded as causing a shift in the θ-angle. In the
following, we use this freedom to set θ to zero by an appropriate chiral rotation of the fermions.

The one-loop form of F can be determined from the requirement that under a U(1)R
transformation, the low-energy effective action (88) change as in (90). The variation δLeff

could come only from terms in Leff which are quadratic in Fµν . Writing only the relevent
terms from the Lagrangian (88), this means

1

16π
Im

[
F ′′(e2iαA)(−FF + iF F̃ )

]
=

1

16π
Im

[
F ′′(A)(−FF + iF F̃ )

]
− αNc

8π2
FF̃ .

The form of the prepotential is therefore restricted by

F ′′(e2iαA) = F ′′(A) − 2αNc

π
,

or, for infinitesimal α, by
∂3F
∂A3

=
Nc

π

i

A
.

The above equation can be easily integrated to give the one-loop expression for the prepotential
as

F1−loop(A) =
i

2π
A2ln

A2

Λ2
. (91)

Here, Λ is a fixed dynamically generated scale like ΛQCD. It is known that, due to N = 2
supersymmetry, the above one-loop expression for the prepotential does not receive higher
order perturbative corrections. This is related to the fact that in this theory the perturbative
β-function is only a one-loop effect. Thus, in this theory, the one-loop nature of the perturbative
β-function is consistent with the well known one-loop nature of the anomaly. This is not the
case in N = 1 theories where the anomaly is, of course, still a one-loop effect but not the
β-function (see, for example, [36, 37]).

Although, the prepotential, as given in (91), is exact in perturbation theory, it does receive
non-perturbative corrections due to instanton effects as argued in [33]. The general form of
these corrections can be fixed as follows: First, it is clear that a correction to F coming
from a configuration of instanton number k should be proportional to the k-instanton factor
exp(−8π2k/g2) (since the prepotential is a holomorphic function, it cannot receive corrections
from anti-instanton configurations). Using the one-loop β-function of the theory given by
β(g) = −g3/4π2, the k-instanton factor can be written as

e−8π2k/g2

=
(

Λ

a

)4k

.

Furthermore, following the approach of Seiberg in [38, 39], we note that the broken U(1)R
symmetry is restored if we assign a charge of 2 to Λ. With this modification, the prepoten-
tial should transform under U(1)R as a field of charge 4, without a non-homogeneous term.
This implies that the k-instanton correction should also be proportional to A2. Putting these
together, the prepotential including generic non-perturbative corrections can be written as

F =
i

2π
A2ln

A2

Λ2
+

∞∑

k=1

Fk

(
Λ

A

)4k

A2 .
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The coefficients Fk are not field dependent due to the fact that in a supersymmetric theory,
instantons contribute to the path integral only through zero-modes[34]. The coefficient F1 was
calculated in [33] and found to be non-zero. The determination of the exact form of F is the
subject of the work of Seiberg and Witten.

The one-loop expression for F can also be obtained from integrating the expression for the
β-function, choosing A as one of the integration limits: In the classical low-energy theory, which
is obtained by simply dropping the massive fields from the microscopic Lagrangian (and not
integrating over them), the prepotential is given by F(A) = 1

2
τclA

2, where, τcl = θ
2π

+i4π
g2 . In the

quantum theory, for large a (which is the vev of the scalar somponent of A), asymptotic freedom
takes over and the theory is weakly coupled. Therefore, in this limit, a good approximation
to the quantum behaviour of the theory can be obtained by replacing g by the corresponding
running couplings g(a) (we have set θ to zero by a chiral redefinition of the fermion fields). In
the limit of large a, g(a) and hence F(a) can be obtained in perturbation theory by integrating
the β-function.

For other gauge groups we note that for every root α, (α > 0), we have massive fields
W α,W−α. For simply-laced groups, α2 = 2, and

F =
i

4π

∑

α>0

(~α · ~a)2 ln
(~α · ~a)2

Λ2
.

The coefficient of the logarithm follows from the one-loop β-function and it also leads to the
unbroken global U(1)R-symmetry.

The one-loop expression for F , coupled with the fact that a well defined theory should have
a positive kinetic energy term, leads to very interesting consequences. For large |a|, using (91),
we can calculate τ(a) = i

π
(ln a2

Λ2 + 3). This is a multi-valued function, though the metric on
the field space given by Imτ is single valued. However, since Imτ(a) is a harmonic function, it
cannot have a global minimum. Thus, if it is globally defined, it cannot be positive everywhere.
Therefore, the positivity of the kinetic energy requires that τ(a) is defined only locally. This
means that in the region of the complex plane where τ(a) becomes negative, one needs a
different description of the theory. In the next subsection we describe how these equivalent
descriptions could be obtained.

3.4 Duality

To find the duality transformations which relate different descriptions of the same theory, we
consider the gauge field terms in the bosonic part of the action. Working in the Minkowski

space with conventions (Fµν)
2 = −(F̃µν)

2 and
˜̃
F = −F , these terms can be written as

1

32π
Im

∫
τ(a)(F + iF̃ )2 =

1

16π
Im

∫
τ(a)(F 2 + iF̃F ) .

Now we regard F as an independent field and implement the Bianchi identity dF = 0 by
introducing a Lagrange multiplier vector field VD. To fix the Lagrange multiplier term, U(1) ⊂
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SU(2) is normalized such that all SO(3) fields have integer charges. Then, as discussed in
section 1, all matter fields in the fundamental representation of SU(2) will have half-integer
charges. With this convention, a magnetic monopole satisfies ǫ0µνρ∂µFνρ = 8πδ(3)(x). The
Lagrange multiplier term can now be constructed by coupling VD to a monopole:

1

8π

∫
VDµǫ

µνρσ∂νFρσ =
1

8π

∫
F̃DF =

1

16π
Re

∫
(F̃D − iFD)(F + iF̃ ) ,

where, FDµν = ∂µVDν − ∂νVDµ. Adding this to the gauge field action and integrating over F ,
gives the dual theory

1

32π
Im

∫ (
−1

τ

)
(FD + iF̃D)2 =

1

16π
Im

∫ (
−1

τ

)
(F 2

D + iF̃DFD) .

The dualization can also be performed in an N = 1 supersymmetric language. In this case, the
relevant term in the action is

1

8π
Im

∫
d2θτ(A)W 2 .

The Bianchi identity is replaced by ImDW = 0. This can be implemented by introducing a
vector superfield VD and the corresponding Lagrange multiplier term becomes

1

4π
Im

∫
d4xd4θ VDDW =

1

4π
Re

∫
d4xd4θ iDVDW = − 1

4π
Im

∫
d4xd2θWDW .

Adding this to the action and integrating out W , gives the dual action

1

8π
Im

∫
d2θ

(
− 1

τ(A)
W 2

D

)
.

Thus, the effect of the duality transformation is to replace a gauge field which couples to
electric charges by a dual gauge field which couples to magnetic charges, and at the same time,
transform the gauge coupling as

τ → τD = − 1

τ
. (92)

We recognize this as the electric-magnetic duality of section 1. Also, note that the action is
invariant under the replacement τ → τ + 1. This transformation, along with the one in (92),
generates the SL(2,Z) group which, therefore, is the full duality group of our theory. This
group acts on τ as

τ → aτ + b

cτ + d
, (93)

where, ad− bc = 1 and a, b, c, d ∈ Z.

N = 2 supersymmetry relates the dual description of the gauge fields to a dual description
for the scalar fields. To see this, let us introduce h(A) = ∂F/∂A. In terms of this, τ(A) =
∂h(A)/∂A and the scalar kinetic energy term becomes Im

∫
d4θ h(A)Ā. For the dual theory

corresponding to (92), let us introduce the corresponding dual variablesAD,FD, hD(AD) and τD.
Then, equation (92) implies that AD = h = ∂F/∂A and hD = −A. Under this transformation,
the scalar kinetic energy term retains its form,

Im
∫
d4θ h(A)Ā = Im

∫
d4θ hD(AD)ĀD .
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In the following, we use the notations AD and h(A) interchangeably.

We now consider the effect of the full SL(2, Z) group on A and F , or equivalently on A and
AD = ∂F/∂A. The transformation (93) implies that

(
AD

A

)
→
(
a b
c d

) (
AD

A

)
. (94)

Note that, in general, we could also add a constant column matrix C to the right-hand side
of the above equation. However, for non-zero C, the BPS mass formula for the theory in the
absence of matter is not invariant under the above transformation. Thus in this case we should
set C = 0. However, in the presence of matter fields, the BPS mass formula is modified and
a non-zero C is allowed. This case will be discussed in the last section. On the space of the
scalar fields, the transformations τ → −1/τ and τ → τ + 1 are implemented by the matrices

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
. (95)

These matrices generate the SL(2,Z) group.

The transformation of F can be easily obtained from (94), or equivanlently from

A′
D = aAD + bA ,

A′ = cAD + dA .

The first equation can be integrated with respect to A′ by using the second equation and the
result is

F ′ =
1

2
βδA2 +

1

2
αγA2

D + βγAAD + F .

Let us now come back to the metric on the moduli space as given by (89). In terms of the
variable aD, this takes the form

ds2 = Im daDdā = − i

2
(daDdā− dadāD) ,

which is invariant under the SL(2,Z) transformations. To make the description more precise,
note that the moduli space M is a complex one dimensional manifold and let u be a holomorphic
coordinate on this manifold. Finally, we will identify u as 〈Trφ2〉. Let a and aD be the
coordinates on a space X ∼= C2 on which we can choose a symplectic form ω = Im daD ∧ dā.
The functions (aD(u), a(u)) give a map f from M to X. In other words, they determine a
section of X regarded as an SL(2,Z) bundle over M. In terms of the coordinate u, the metric
on the moduli space takes the form

ds2 = Im
daD

du

dā

dū
dudū = − i

2

(
daD

du

dā

dū
− dāD

dū

da

du

)
dudū .

This is the pull-back of the Kähler metric associated with the symplectic form ω and is, there-
fore, manifestly SL(2,Z) invariant. Choosing u = a, we get back to the original formula. Note
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that for arbitrary (aD(u), a(u)), the metric is not positive. However, the solution we will obtain
later determines these functions such that the metric is always positive.

Higher Dimensions: For a group of rank r, the metric takes the form

ds2 = Im
∂2F
∂ai∂aj

daidāj .

Introduce a space X ≃ C2r with coordinates ai, aDj = ∂F/∂aj . Endow X with the symplectic
form ω = i

2

∑
i(da

i∧dāDi−daDi∧dāi) and the holomorphic 2-form ωh =
∑

i da
i∧daDi. Choose

us (s = 1, ..., r) as coordinates on the moduli space M. Then, ai(u), aDj(u) give a map f from
M to X such that f ∗(ωh) = 0 (this condition ensures that aDj = ∂F/∂aj). Thus, the metric
takes the form

ds2 = Im
∂aDi

∂ur

∂āi

∂ūs
durdūs .

This is the metric associated with f ∗(ω) and is therefore invariant under Sp(2r,R): If we write
vT = (aD, a), then the metric is invariant under v → Mv + c, where, M ∈ Sp(2r,R). In the
absence of matter, c = 0 and moreover, only the Sp(2r,Z) part survives.

If the moduli space M has a non-trivial structure, then, on being taken around a close
loop, the vector vT = (aD, a) will get transformed by an element of the monodromy group. As
will be shown later, the monodromy group is a subgroup of SL(2,Z), and its determination is
essential for solving the problem.

3.5 Dyon Masses

As described in sections 1 and 2, for the microspcopic SU(2) theory, the BPS bound is given
by M ≥

√
2|Z|, where,

Z = a(ne + τcl nm) ,

and τcl = θ
2π

+ i 4π
g2 . All states that saturate this bound fall in a short multiplet of the N =

2 algebra. In a more general N = 2 theory, like the low-energy effective action we have
been studying, this formula is slightly modified. Suppose, the theory contains matter fields in
hypermultiplets. When a 6= 0, these fields, which in the N = 1 formalism are described by
chiral fields M, M̃ , become massive. If a hypermultiplet carries charge ne, then its coupling to
the chiral field A is uniquely fixed by N = 2 supersymmetry as

√
2neAMM̃ .

From this we can easily see that for such a state, Z = a ne. On the other hand, if we consider
a magnetic monopole carrying nm units of magnetic charge, then a manipulation very similar
to the one in subsection 1.6 leads to the BPS bound

√
2|nm aD| or, equivalently, Z = nm aD.

In general, one can compute this formula for dyons and obtain

Z = ane + aDnm . (96)
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If the gauge group is of rank r, then we have

Z = aine,i + hi(a)n
i
m = a · ne + aD · nm .

Since masses are physically observable, the mass formula should be invariant under the mon-
odromies on the moduli space. Therefore, if v = (aD, a)

T transforms to Mv (with M ∈
Sp(2r,Z)), then the vector w = (nm, ne) should transform to wM−1. Note that this once again
requires M to be an integral matrix.

Under the action of the monodromy, the coupling matrix τij = ∂aDi/∂aj transforms to

(Aτ + B)(cτ + D)−1, where, M =

(
A B
C D

)
. This is very similar to the transformation of

the period matrix of a genus r Riemann surface under the action of the monodromy group
on the moduli space of genus r surfaces. This makes it reasonably appealing to identify our
r-dimensional moduli space of vacua M with the moduli space of genus r Riemann surfaces.
The variables ai, aDj are then related to the periods of these surfaces and can be calculated.
Moreover, Im τ is always positive definite, which resolves the problem of geting a negative
kinetic term. To check this hypothesis for our SU(2) theory, we first have to determine the
monodromy structure on the moduli space M. This is the subject of the next subsection.

3.6 Monodromies on the Moduli Space of the SU(2) Theory:

We have discussed the possibility of the existence of monodromies on the moduli space and
pointed out that understanding the monodromy structure may help us solve the theory, i.e.,
to determine the exact non-perturbative prepotential for the effective low-energy theory. This
is equivalent to determining the functions aD(u) and a(u). In this subsection, we set out to
identify the singularities on the moduli space M and calculate the associalted monodromies.

Monodromy at large u: At large |a|, the theory is asymptotically free and u = 1
2
a2. To a good

approximation, the prepotential is given by the one-loop formula F(a) = (i/2π)a2 ln (a2/Λ2),
from which we obtain

aD =
∂F
∂a

=
2ia

π
ln (

a

Λ
) +

ia

π
.

If we make a close loop on the u-plane around u = 0, we get ln u → ln u + 2πi, and ln a →
ln a+ iπ, hence,

aD → −aD + 2a ,
a → −a .

This is implemented by the monodromy matrix

M∞ = PT−2 =

(
−1 2
0 −1

)
, (97)

acting on (aD, a)
T . Here, P is the negative of the identity element in SL(2,Z) and T is as defined

in (95). Under the action of this monodromy, the magnetic and electric quantum numbers of
BPS states change as (nm, ne) → (−nm,−ne − 2nm) so that the mass formula is unchanged.
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Monodromies at finite u: The monodromy at u = ∞ implies that there exist other monodromies
somewhere else on the u-plane. If these monodromies commute with M∞, then a2 is a good
global coordinate. However, this cannot be the case as then the positivity of the kinetic energy
is violated. To get a non-abelian monodromy group, we need at least two singularities on the
u-plane, and at finite u, with non-trivial monodromies around them. These singularities will be
related by the broken discrete symmetry u → −u. We make this minimal assumption on the
number of extra singularities. Then a loop enclosing both these singularities should reproduce
the monodromy M∞

What is the origin of these singularities on the moduli space? To obtain the Wilsonian low-
energy effective action, we have integrated out all massive states in the theory. The massive
particle loops then give rise to a non-trivial metric on the moduli space. The values of the
masses, however, depend on the modulus u, and it may so happen that for certain values of
u, some of the masses become zero. Then, at these points, we end up integrating out massless
states and thus create singularities on the moduli space. The nature of a singularity, i.e.,
the monodromy associated with it, depends on the properties of the particle which becomes
massless at the singularity. Since, for finite u (the non-perturbative regime), the mass spectrum
as a function of u is not known, the singularities cannot be found in a straightforward way.
The way to proceed is to assume that some generic states become massless at certain values of
u (say u = 1 and u = −1) and find the corresponding monodromies (say M1 and M−1). The
massless states are then specified by the condition M1M−1 = M∞.

Naively, one may expect that the massive gauge boson multiplets contribute to the sin-
gularity when they become massless. Classically, this happens at the point u = 0, which, in
quantum theory, may get shifted to a non-zero u. However, as argued in [31], a spin-1 multiplet
becoming massless does not lead to a consistent picture. We will not repeat this argument here.

The only other massive states in the theory with spin ≤ 1/2 are monopoles and dyons,
which, due to the spin condition, belong to short N = 2 multiplets and, therefore, are BPS
states. These states are described by hypermultiplets. Seiberg and Witten suggested that the
singularities arise when some of these non-perturbative states become massless. The problem
now is to calculate the associated monodromies. Note that the hypermultiplets for monopoles
and dyons cannot be coupled to the fundamental fields of our theory in a local way. However, in
the subsection on duality it was seen that it is possible to go to a dual description of the theory
in which some dual gauge fields couple to the monopoles or dyons in exactly the same way that
the usual gauge fields couple to a particle of unit electric charge. Thus we only have to calculate
the monodromy when a massive electrically charged hypermultiplet becomes massless and then,
using the duality transformation, find the monodromy for a generic monopole or dyon. Let us
consider a dual description of the theory in which a certain monopole or dyon appears as an
elementary state, and let us label this description by a letter, say q. Near the point where this
state is massless, all massive fields can be integrated out and the theory is essentially a U(1)
theory coupled to a hypermultiplet. If we denote the vev of the scalar field in this description
of the theory by a(q), then the mass of a BPS state of unit electric charge goes to zero when
a(q) = 0 at some u = uq. Thus, near this point, a(q) is a good local coordinate and can be
expanded as a(q) ≈ cq (u−uq). Moreover, near this point, the one-loop U(1) β-function implies
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(see the next subsection):

τ(a(q)) = − i

π
ln
a(q)

Λ
,

from which we obtain

aD(q) = − i

π
a(q) ln

a(q)

Λ
+
i

π
.

Moving on a closed loop around uq so that (u− uq) → e2πi(u− uq), we get the monodromy

aD(q) → aD(q) + 2a(q) ,
a(q) → a(q) .

(98)

Let us now calculate the monodromy when a (nm, ne) dyon becomes massless (the dyon is
stable or marginally stable if nm and ne are coprime). The first step is to find a dual description
of the theory in which this dyon appears as an elementary stat of charge (0, 1). Under a generic
SL(2,Z) transformation we get a (nm(q), ne(q)) dyon with

(
aD(q)
a(q)

)
=

(
αaD + βa
γaD + δa

)
,

(
nm(q)
ne(q)

)
=

(
nmδ − neγ
−nmβ + neα

)
, (99)

so that Z = nmaD +nea is invariant. In the above, αδ−βγ = 1. Now we choose the parameters
such that nm(q) = 0, ne(q) = 1. With this choice, (aD(q), a(q)) become the variables in terms of
which the dyon couples to the SL(2,Z) transformed gauge field in the same way that the unit
electric charge couples to usual gauge fields. In particular, when the dyon becomes massless at
some point on the moduli space, the associated monodromy, in this description, is given by (98).
Inverting the first equation in (99), we get aD = −βa(q) + neaD(q) and a = αa(q) − nmaD(q).
Thus we can easily find the action of the monodromy on the original variables as

(
aD

a

)
→
(

1 + 2nenm 2n2
e

−2n2
m 1 − 2nenm

) (
aD

a

)
. (100)

Denoting the monodromy matrix as M(nm, ne), we note that TrM(nm, ne) = 2. Thus the
monodromy always belongs to the parabolic subgroup of SL(2,Z).

Now we calculate the monodromies at u = ±1. Let us assume that a (m,n) dyon becomes
massless at u = 1 and a (m′, n′) dyon becomes massless at u = −1. The the associated
monodromies should satisfy

M1(m,n)M−1(m
′, n′) = M(∞) . (101)

Using (97) and (100), this can be written as
(

1 + 2mn 2n2

−2m2 1 − 2mn

)
=

(
−1 2
0 −1

)(
1 − 2m′n′ −2n′2

2m′2 1 + 2m′n′

)
,

leading to the equations
1 +mn = m′n′ + 2m′2 ,

m2 = m′2 ,
n2 = n′2 + 1 + 2m′n′ ,

1 −mn = −m′n′ .
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These imply that m = ±1 and m′ = ±1. For each combination of (m,m′), we can easily
determine n′ in terms of n and get the following possible sets of solutions

(m,n) : (1, n) , (−1, n) , (−1, n) , (1, n) ,
(m′, n′) : (1, n− 1) , (1,−n− 1) , (−1, n+ 1) , (−1,−n+ 1) .

There do not seem to be any solutions where M∞ is factorized into a product of more than two
such parabolic M(m,n). Moreover, note that the solution allows only dyons of unit magnetic
charge to contribute to the monodromy. This is consistent with the result that, semiclassically,
only these dyons are stable.

Let us consider another consistency check: In general, under the action of the monodromy,
the quantum numbers of dyons will change. However, we expect that the particular dyon
which becomes massless and is the source of the singularity should remain invariant under the
monodromy (as it is the properties of this dyon which determine the monodromy matrix). This
can be easily checked. The eigenvalue equation

(qm, qe)

(
1 + 2mn 2n2

−2m2 1 − 2mn

)
= (qm, qe) , (102)

leads to nqm−mqe = 0, providedm and n do not vanish simultaneously. Clearly, qm = m, qn = n
is a solution of this equation. If we restrict ourselves to stable dyons, then this is the only
solution. Thus, knowing the monodromy, we can find the dyon which gives rise to it.

The simplest solution to the equation (101) corresponds to m = m′ = 1, n = 0, n′ = −1.
The monodromy matrices are then given by

M1 =

(
1 0
−2 1

)
, M−1 =

(
−1 2
−2 3

)
. (103)

A comparison with (102) implies that M1 arises due to a monopole becoming massless at u = 1
and M−1 arises when a (1,−1) dyon becomes massless at u = −1. At the point where the
monopoles become massless, we have aD = 0 and where the (1,−1) dyon becomes massless, we
have a − aD = 0 as is evident from Z = nmaD + nea. Note that the monodromy at infinity,
M∞, shifts the electric charge by 2 units. Hence, at the points where condensation takes place,
the electric charge is really defined modulo 2. We can conjugate the representation of the
fundamental group by Mn

∞.

3.7 U(1) β-function

To construct the monodromies in the previous subsection, we have used the β-function for a
U(1) theory interacting with a hypermultiplet. Let us look at this in some more detail. If we
have Weyl fermions with charge Qf and complex scalars with charge Qs, then their contribution
to the U(1)β-functions is

β(g) ≡ µ
d

dµ
g =

g3

16π2


∑

f

2

3
Q2

f +
∑

s

1

3
Q2

s


 .
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If we denote the coefficient of g3 by b and define α = g2/4π, then the above equation can be
rewritten as

µ
d

dµ

(
1

α

)
= −8πb .

Consider hypermultiplet which is a reduced multiplet of N = 2 with spin ≤ 1/2. In N = 1
language, this is described by chiral superfields M, M̃ and contains two Weyl fermions and two
complex scalars, all with the same charge Q. Hence we get

b =
1

16π2
Q2

(
2 · 2

3
+ 2 · 1

3

)
=

1

8π2
Q2 .

Now remember that, using the anomaly, we have set the θ-parameter to zero by a chiral rotation
of the fermions. As a result we have τ = i/α, so that,

µ
dτ

dµ
= − i

π
Q2 .

Identifying µ with the natural scale of the theory which is a and setting Q = 1, we obtain

τ ≃ − i

π
ln
a

Λ
.

This is the expression which was used in the determination of the monodromies at finite u. If
we are interested in the contribution from a monopole multiplet, then we can perform the above
calculation in terms of the dual variables. The answer then becomes τD ≃ −(i/π) ln (aD/Λ).

3.8 Monopole Condensation and Confinement

In this subsection we describe how confinement in N = 1 gauge theory can be understood in
terms our macroscopic N = 2 theory. The N = 2 vector superfield A can be decomposed, in the
N = 1 formalism, into a vector superfield Wα and a chiral superfield Φ. To break N = 2 down
to N = 1, one can add a superpotential W = m TrΦ2 to the action. This gives a bare mass
to the Φ multiplet and, therefore, the low-energy theory is a pure Abelian gauge theroy. This
low-energy theory has Z4 chiral symmetry and is believed to have a mass gap with confinement
and spontaneous breaking of Z4 to Z2. Seiberg and Witten gave a macroscopic description of
this phenomenon based on the N = 2 picture as will be described below.

In N = 2 theory, the massless spectrum in the semiclassical limit contains only the Abelian
vector multiplet A. Let us analyze the effect of turning on a mass m for the scalar multiplet Φ.
In the low-energy theory, Tr Φ2 is represented by a chiral superfield U . Its scalar component
is u = 〈Trφ2〉, which is a holomorphic function on the moduli space. For small m, we can
simply add Weff = mU to the low-energy Lagrangian. This presumably removes the vacuum
degeneracy and gives a mass to the scalar multiplet. To make the Abelian gauge field also
massive (so that the theory has a mass gap), we need either (i) extra light gauge fields giving
rise to a strongly coupled non-Abelian theory, or (ii) light charged fields giving rise to a Higgs
mechanism. Thus, in either case, somewhere on M extra massless states must appear. As
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indicated before, one cannot get extra light gauge fields. Therefore, we consider option (ii) with
the light charged fields being monopoles or dyons. Near the point with massless monopoles, we
go to a dual description of the theory and use the N = 1 chiral superfields M, M̃ to describe the
monopole hypermultiplet. In this dual description, the full N = 1 superpotential then becomes

Ŵ =
√

2ADMM̃ +m U(AD) .

The low-energy vacuum structure is easy to analyze. Vacua correspond to solutions of

dŴ = 0 ,

satisfying |M | = |M̃ |, so that the D-term vanishes. For m = 0, M = M̃ = 0 and aD is arbitrary.
Thus we recover the N = 2 moduli space. If m 6= 0, then

√
2MM̃ +m

du

dAD
= 0 ,

aDM = aDM̃ = 0 .

Assuming that du/daD 6= 0, we get M, M̃ 6= 0, so that aD = 0 andM = M̃ = (−mu′(0)/
√

2)1/2.
Since M is charged, its vacuum expectation value generates a mass for the gauge field through
the Higgs mechanism. Thus, by a simple analysis, we reproduce the expected mass gap of the
microscopic theory. To understand charge confinement, note that, since the hypermultiplet
MM̃ describes monopoles, we have a magnetic Higgs mechanism. Thus, M 6= 0 means that
massless magnetic monopoles condense in vacuum. This gives rise to the confinement of electric
charges by the dual (i.e., magnetic) Meissner effect.

3.9 The Solution of the Model

In this subsection, we will identify the moduli space of the N = 2 theories with the moduli
space of genus 1 Riemann surfaces and then use this identification to calculate aD(u) and a(u).

Let us first summarize what we have learnt about the structure of the moduli space: The
moduli space M is the u-plane with singularities at 1,−1,∞ and a Z2 symmetry acting as
u → −u (Fig. 3). Over this punctured plane there is a flat SL(2,Z) bundle V , which has
(aD, a)

T as a section. This bundle has monodromies

M1 =

(
1 0
−2 1

)
, M−1 =

(
−1 2
−2 3

)
, M∞ =

(
−1 2
0 −1

)
, (104)
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around the singularities.

M∞= M1M–1

M–1

u = –1 u = +1

M1

The u - plane

Figure 3

To be more precise, the quantities (aD(u), a(u)) form a holomorphic section of the bundle
V ⊗C, and have the following asymptotic behaviour

u ≈ ∞ :

{
a ∼=

√
2u

aD ≈ i
√

2u
π

ln u
,

u = 1 :

{
aD ≈ c0(u− 1)
a ≈ a0 + i

π
aDln aD

.

where, a0 and c0 are constants. For u = −1 we get a behaviour similar to u = 1 but with aD

replaced by a− aD. The metric on the moduli space is ds2 = Im(τ) |da|2 with

τ =
daD/du

da/du
. (105)

To insure positivity of kinetic energy, Im(τ) should be positive definite. The monodromies
generate a subgroup Γ(2) of SL(2,Z) and, in fact, the u-plane with its singularities is the
quotient of the upper half plane H by Γ(2). This quotient has three cusps corresponding to
the three singularites.

The space H/Γ(2), which is the u-plane, also parametrizes the family of curves Eu described
by the equation

y2 = (x− 1)(x+ 1)(x− u) , (106)

where x is a complex variable. First, note that this equation is invariant under the transfor-
mations

w : {u→ −u , x→ −x , y → ±iy} ,
that generate a Z4 symmetry, out of which only a Z2 subgroup acts on u. This is the same
as the symmetry structure on M. Now, let us describe the curve which the above equation
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represents. The curve basically is the x-space the topology of which is determined by the
requirement that y is a single valued function. Sine the equation is quadratic in y, if we move
along a close loop on the x-space around anyone of the three zeros of y, then we get y → −y.
The same is also true for a loop which contains all the zeros, or equivalently, a loop around
the point x = ∞ (this is because there is an odd number of zeros). Therefore, if y is to be a
single valued function, then the x-space should be a double cover of the complex plane C with
the point at infinity added to it. Furthermore, this space should have four branch points at
x = −1, 1, u,∞ which are joined pairwise by two cuts (Fig. 4). To fix attention, consider one
branch cut from −1 to 1, and another from u to ∞. The two sheets are joined along these cuts
so that on crossing a cut, we move from one sheet to the other. It is on this space that y is
single valued.

+1–1

u b – cycle

a – cycle

∞

The x – space

Figure 4

The x-space so obtained is nothing but a genus one Riemann surface. This can be easily
visualized as follows: On a torus, draw a circle c1 along the a-cycle and translate this along the
torus to get a circle c2 (Fig. 5(a)). Now, squash the circles c1 and c2 into line segments l1 and
l2 (Fig. 5(b)). This divides the torus into two halves joined along these segments. If we now
cut open both the two halves, the surface we get is the same as the x-space described above
with l1 and l2 as the two branch cuts and with the point at infinity mapped to a point at finite
x (Fig. 5(c)).

(a)

c2

c1

(b) (c)

11

2
2

Figure 5
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From this, it is clear that a loop on the x-plane that goes around one of the two cuts
corresponds to the a-cycle of the torus. On the other hand, a loop which intersects both cuts
(in our case, goes around 1 and u), corresponds to the b-cycle on the torus. Note that when
two of the branch points on the x-space coincide, a cycle on the curve Eu shrinks to zero size
and the curve becomes singular. For example, in our case, if u = ∞, the a-cycle shrinks to zero
size and when u = 1, this happens to the b-cycle. Thus the singularities on the u-plane are at
the points where a curve in the family Eu develops a vanishing cycle.

To identify aD and a, on the genus one Riemann surface Eu, we pick up two independent
one cycles γ1 and γ2, normalized such that their intersection number is one:

γ1 · γ2 = 1 .

These cycles, which continuously vary with u, form a local basis for the first homology group
Vu = H1(Eu,C) of Eu. A cycle can be paired with elements λ from the first cohomology group

γ →
∮

γ
λ .

λ can be thought of as a meromorphic (1, 0)-form on Eu with vanishing residue, modulo exact
forms. The vanishing of the residue insures that the pairing is invariant under continuous
deformations of γ even across poles of λ. By virtue of this pairing, we can also regrad λ as an
element of Vu. For the one-forms on Eu, we can choose a basis

λ1 =
dx

y
, λ2 =

xdx

y
.

Upto scalar multiplication, λ1 is the unique holomorphic differential on Eu and if we define

bi =
∮

γi

λ1 , for i = 1, 2 ,

then the torus is characterized by a parameter

τu = b1/b2 , with Im(τu) > 0 .

Let us consider an arbitrary section

λ = a1(u)λ1 + a2(u)λ2 ,

of Vu and, for the moment, make the identification

aD =
∮

γ1

λ , a =
∮

γ2

λ .

If λ is a form with vanishing residue then, on circling a singularity, aD and a transform in the
right way, simply according to how γ1 and γ2 transform under a subgroup of SL(2, Z) (this
is further explained in subsection 4.6 below). On the other hand, if λ has a pole with a non-
vanishing residue, then it is possible that the integration path may move across this pole and, as
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a result, aD and a may no longer transform under a pure SL(2, Z). This second possibility is of
course not consistent with the symmetries of the BPS mass formula in the absence of fermions
with non-zero bare masses, as we already discussed in a previous subsection. Therefore, λ
should not have a pole with a non-vanishing residue (In the presence of fermions with non-zero
bare masses, the situation is different and will be discussed at the end of the next section). The
above identification of aD and a implies that

daD

du
=
∮

γ1

dλ

du
,

da

du
=
∮

γ2

dλ

du
.

To fix the arbitrariness in λ, we use the condition Imτ > 0 for the metric on M as defined in
(105). First, suppose that

dλ

du
= f(u)λ1 = f(u)

dx

y
.

Then,
daD

du
= f(u) b1 ,

da

du
= f(u) b2 ,

so that

τ =
b1
b2

= τu .

Since Im τu > 0, we get Im τ > 0. As argued by Seiberg and Witten, the converse is also true,
so dλ/du does not depend on λ2. The function f(u) is fixed by the asymptotic behaviour of
the theory near the singularities on the u plane and is given by f(u) = −

√
2/4π. With this,

we can obtain λ as

λ =

√
2

2π

dx
√
x− u√

x2 − 1
=

√
2

2π

dxy

x2 − 1
=

√
2

2π

dx

y
(x− u) .

To calculate a and aD, we have to choose a specific basis of one-cycles on Eu. We identify γ2

with the a-cycle on the torus, or equivalently, with a curve which loops around the points −1
and 1 on the x plane. We can deform this curve so that it lies entirely along the cut from −1
to 1 and back. Thus, a(u) is given by

a(u) =

√
2

π

∫ 1

−1

dx
√
x− u√

x2 − 1
. (107)

For γ1, we choose the curve which loops around the points 1 and u and get

aD(u) =

√
2

π

∫ u

1

dx
√
x− u√

x2 − 1
. (108)

It can be checked that with this choice of the one-cycles, a and aD have the desired behaviour
near the singularities [31].

Explicit Formulae for a(u) and aD(u): One can easily find explicit formulae for the a and aD

in terms complete elliptic integrals E(k) and K(k) by using the integral representation of
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hypergeometric functions F (α, β, γ; z) [35]. The hypergeometric functions are given by

F (α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0
dx xβ−1(1 − x)γ−β−1(1 − zx)−α

=
Γ(γ)

Γ(α)Γ(β)

∑

n≥0

Γ(α + n)Γ(β + n)

Γ(γ + n)

zn

n!
.

Comparing this with the integral representation of a in (107), we can easily see that

a(u) =
√

2(1 + u)F (−1/2, 1/2, 1; 2/(1 + u)) .

As for aD, let us first make the substitution x = (u− 1)t+ 1 in (108). This gives

aD(u) =
i

π
(u− 1)

∫ 1

0
dt t−

1

2 (1 − t)
1

2 (1 − 1 − u

2
t)−

1

2 .

Comparing this with the expression for the hypergeometirc functions, we get

aD(u) =
i

2
(u− 1)F (1/2, 1/2, 2; (1− u)/2) .

In terms of the hypergeometric functions, the complete elliptic integrals are given by

K(k) =
π

2
F
(
1/2, 1/2, 1; k2

)
,

E(k) =
π

2
F
(
−1/2, 1/2, 1; k2

)
.

Further, we define k′2 = 1 − k2 and set

E ′(k) ≡ E(k′) , K ′(k) ≡ K(k′) .

Now, using the identity

c(1 − z)F (a, b, c; z) − cF (a, b− 1, c; z) + (c− a)zF (a, b, c + 1; z) = 0 ,

with c = 1, a = b = 1/2 and z = (1 − u)/2, in the expression for aD, we get

a(u) =
4

πk
E(k) ,

aD(u) =
4

iπ
E(i

k′

k
) +

4i

πk2
K(i

k′

k
) .

Here, k2 = 2/(1 + u) and (1 − u)/2 = −k′2/k2. These expressions can be further simplified if
we note that

F (a, b, c; z) = (1 − z)−aF (a, c− b, c; z/(z − 1)) = (1 − z)−bF (b, c− a, c; z/(z − 1)) .
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This implies that K(ik′/k) = kK(k′) = kK ′(k) and E(ik′/k) = k−1E(k′) = k−1E ′(k), so that

a(u) =
4

πk
E(k) ,

aD(u) =
4

πi

E ′ −K ′

k
.

The generalized coupling τ can be calculated by using

dE

dk
=

E −K

k
,

dK

dk
=

1

kk′2
(E − k′2K) ,

dE ′

dk
= − k

k′2
(E ′ −K ′) ,

dK ′

dk
= − 1

kk′2
(E ′ − k2K ′) ,

and is given by

τ =
∂aD

∂a
=
daD/dk

da/dk
=
iK ′

K
.

4 The Seiberg-Witten Analysis of N = 2 Gauge Theory

With Matter

In this section, we consider the N = 2 supersymmetric gauge theory, with gauge group SU(2),
coupled to Nf matter multiplets. The analysis involves many technical issues and the properties
of the theory depend on the value of Nf . As in usual QCD, matter fields (fermions) and gauge
bosons contribute to the β-function with opposite signs. Thus, to insure asymptotic freedom,
we require Nf ≤ 4. The theory with Nf = 4 is finite to all orders in perturbation theory
and, when the quarks are massless, it is very likely conformally invariant non-perturbatively.
Seiberg and Witten provided evidence that this theory is an example of an SL(2, Z) invariant
theory. The only other SL(2, Z) invariant theory known in four dimensions is the N = 4
supersymmetric gauge theory which also has a vanishing β-function. However, in the following,
we will mainly concentrate on Nf ≤ 3. For the Nf = 4 case, the reader is referred to original
work of Seiberg and Witten [32].

In the presence of matter, it is convenient to choose a charge normalization different from the
previous sections. In N = 2 pure gauge theory all fields transform in the adjoint representation
and the charges of particles and monopoles are integers. Hence, in the formula Z = ane+aDnm,
ne and nm are integers. With this normalization, when quarks are present, ne could be half-
integral. In this section we choose a slightly different convention: To ensure that ne is always
integral, we multiply it by 2 and divide a by 2 to keep the mass formula unchanged. Since aD

is kept unchanged, it is now given by 2aD = ∂F/∂a. In terms of the gauge invariant quantity
u = Trφ2, as |u| → ∞, the asymptotic behaviour of a and aD with this normalization becomes

a ∼= 1

2

√
2u , aD ≃ i

4

π
a log a .
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Furthermore, the effective coupling is also rescaled to τ = ∂aD/∂a = θ
π

+ 8πi
g2 . This rescaling

of the charge affects the form of the curve which determines the solution of the model, keeping
the physics unchanged.

In this section we are going to study the theory with gauge group SU(2). In this case, the
most interesting dynamics appear in the Coulomb branch of the moduli space, where SU(2)
breaks down to U(1). It is, therefore, instructive to first study N = 2 supersymmetric QED.

4.1 N = 2 Supersymmetric QED

The N = 2 supersymmetric QED contains the photon vector multiplet and k quark hypermul-
tiplets. The photon multiplet consists of the N = 1 chiral superfields (Wα, A) and each quark
hypermultiplet consists of two N = 1 chiral superfields M i and M̃i, with U(1) charges +1 and
−1, respectively. The only renormalizable N = 2 compatible superpotential is:

W =
√

2AM iM̃i +
∑

i

miM
iM̃i .

When mi = 0, the theory has a global symmetry group SU(k) × SU(2)R × U(1)R. SU(k)
is a flavour symmetry group acting on the k hypermultiplets, while SU(2)R rotates the two
supersymmetries and U(1)R is the usual R-symmetry which is afflicted by an anomaly. As in
the case without matter, the strategy is to first determine the classical moduli space and then
to see whether the quantum moduli space is qualitatively different. The symmetries of the
theory are very useful in determining the structure of these moduli spaces.

In general, the classical moduli space has a Higgs branch and a Coulomb branch. The Higgs
branch is defined by some of the M i’s acquiring vacuum expectation values. In this case, both
in QED and in QCD with gauge group SU(2), the gauge group is completely broken. For
k = 1, there is no Higgs phase. When k ≥ 2, and mi = 0, then, using the global symmetries
together with the the vanishing condition for the D-term, it is possible to rotate M and M̃
to the form M = (B, 0, 0, ...) and M̃ = (0, B, 0, ...). From this one can read off the different
patterns of symmetry breaking as a function of the number of flavours k. A theory on the
Higgs branch does not contain monopoles or dyons and hence, the dynamical possibilities are
not as rich as on the Coulomb branch. The classical moduli space is a hyperKähler manifold
and the symmetries of the theory lead to a unique hyperKähler metric on it. As a result of
this uniqueness, the metric does not receive quantum mechanical corrections. Therefore, on
the Higgs branch, the classical and the quantum moduli spaces are the same.

In the case at hand, if all mi = 0, then the Coulomb branch is defined by < A > 6= 0
which, in turn, implies that < M i >=< M̃i >= 0. The U(1) gauge group remains unbroken
while all the M ’s become massive. At a generic point on the moduli space, the effective low-
energy threory (which involves only the massless modes) is a pure N = 2 gauge theory and the
Kähler potential is of the special geometry type : K = ImaD(a)ā. This is related by N = 2
supersymmetry to the the gauge kinetic term,

∫
d2θ

∂aD

∂a
W αWα .
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The Kähler potential (and thus the metric) receive quantum corrections, but the one-loop
approximation to K is exact and also there are no non-perturbative corrections since this theory
does not contain instantons. Using the one-loop β-function for QED with k hypermultiplets,
we obtain

aD = − ik

2π
a ln(a/Λ) . (109)

To reproduce this formula one should be careful about the extra factors of 2 in the super-
symmetric way of defining g and the normalization convention mentioned earlier. The metric
Im(τ) obtained from this is zero at |a| = Λ/e and thus the effective coupling constant is singu-
lar. Because of this Landau pole singularity, the theory does not make sense in the ultra-violet
region unless embedded in a larger theory which is asymptotically free. If fermion mass terms
are added, the singularities on the Coulomb branch can move. Since, when a = − 1√

2
mi one

electron becomes massless, we have

aD = − i

2π

∑

i

(a+mi/
√

2) ln
(a +mi/

√
2)

Λ
.

To each bare mass is now associated a singularity on the moduli space where the particle
becomes massless. Depending on the possible equality of two or more masses, one can have
Higgs and Coulomb branches touching, leading to an intricate structure.

Here, we also see a manifestation of the modified form of the central charge of the N = 2
algebra discussed in section 2. For pure N = 2, we have Z = nea + nmaD. However, now the
electron masses are not just

√
2|a|, rather the i-th multiplet has mass |

√
2a+mi|. As shown in

section 2, this is consistent with the fact that the U(1) charges Si of the massive hypermultiplets
appears in the formula for the central charge Z as

Z = nea+ nmaD +
∑

i

Simi/
√

2 .

4.2 N = 2 Supersymmetric QCD with Matter

The N = 2 supersymmetric QCD coupled to Nf matter hypermultiplets contains the N = 1
superpotential

W =
Nf∑

i=1

(
√

2Q̃iΦQ
i +miQ̃iQ

i) .

In general, whenmi = 0, this theory has a global symmetry group SU(Nf )×SU(2)R×U(1)R. In
the special case, when the gauge group is SU(2), the flavour group is enlarged toO(2Nf). This is
due to the fact that for SU(2) the fundamental representation and its conjugate are isomorphic
and, therefore, Qi and Q̃i can be combined into a 2Nf -dimensional vector transforming under
O(2Nf). Thus, for the special case of the SU(2) gauge group, the theory also has a parity
symmetry group Z2 ⊂ O(2Nf) acting as

ρ : Q1 ↔ Q̃1 , (110)
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with all other fields remaining unchanged. This parity plays an important role in the analysis
of the theory. The global symmetry group of the theory is actually a quotient of O(2Nf) ×
SU(2)R × U(1)R. The quotient is to be taken because a Z2 ⊂ U(1)R is the same as (−1)F

contained in the Lorentz group. This, combined with the center of SU(2)R, is the same as the
Z2 in the center of O(2Nf).

For Nf = 0, 1, the theory has only a Coulomb branch with (< φ >6= 0). On this branch
SU(2) is broken to U(1) and all quarks are massive. Moreover, U(1)R is spontaneously broken
because Φ has U(1)R charge 2. For Nf ≥ 2 we can either have a Coulomb branch or Higgs
branches. On a Higgs branch, the gauge symmetry is fully broken and the dynamics is not very
rich. We will not analyse this branch in detail, but will only mention that, as in the QED case,
the metric on the moduli space is uniquely determined by the symmetries and does not receive
quantum correction.

Some Properties of the Quantum Theory: The perturbative β-function of our theory (which,
due to supersymmetry, is only a one-loop effect) is given by

β(g) = −4 −Nf

16π2
g3. (111)

Therefore, to insure asymptotic freedom, we consider only Nf = 0, 1, 2, 3, 4.

In the previous section, from the counting of fermion zero-modes in an instanton background,
we found that U(1)R is broken to a discrete subgroup Z4Nc−2Nf

. This was obtained by requiring
the invariance of the correlation function G given by (87) under U(1)R. For Nc = 2, we have
an extra discrete symmetry group (110) which permutes the fermion zero-modes ψq1

and ψ̃q1
.

This group is anomalous as it changes G to −G. Therefore, now we can also allow U(1)R
transformations which do not keep G invariant, but change it by a sign. This sign can be
compensated for by an anomalous Z2 transformation. Thus, for Nc = 2, U(1)R is broken to
the discrete subgroup Z2(4Nc−2Nf ) = Z4(4−Nf ). This can be combined with the anomalous Z2 to
get a discrete Z4(4−Nf ) anomaly-free subgroup with the action (see (85) and (86)):

Wα → ωWα(ω−1θ)
Φ → ω2Φ(ω−1θ)

Q1 → Q̃1(ω
−1θ)

Q̃1 → Q1(ω−1θ)
Qi → Qi(ω−1θ)

Q̃i → Q̃i(ω
−1θ)

}
i 6= 1 ,

where, ω = exp(2iπ/4(4 −Nf )). For Nf = 0 we do not have the quarks to cancel the anomaly
and only the square of the above transformations is anomaly free. This case was discussed
in the previous section. Furthermore, it can be seen that a subgroup Z2 ⊂ Z4(4−Nf ) is the
same as (−1)F in the Lorentz group. Combining the above transformations with the U(1)J

subgroup of SU(2)R (see (85) and (86)), we find a Z4(4−Nf ) symmetry which commutes N = 1
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supersymmetry
Φ → ω2Φ(θ)

Q1 → ω−1Q̃1(θ)

Q̃1 → ω−1Q1(θ)
Qi → ω−1Qi(θ)

Q̃1 → ω−1Q̃i(θ)

}
i 6= 1 .

(112)

Under this transformation, the gauge invariant order parameter u = Trφ2 has charge 4 and
transforms as u→ exp 2πi/(4−Nf)u. This further breaks Z4(4−Nf ) down to Z4. The remaining
Z4−Nf

acts non-trivially on the u-plane. Note that for Nf = 0, the subgroup which does not
keep u invariant is only a Z2.

As in the Nf = 0 case, the large u-behaviour of aD(u) is determined by the one-loop
β-function (111):

a ∼= 1

2

√
2u+ · · · ,

aD ≃ i
4 −Nf

2π
a(u) ln

u

Λ2
Nf

+ · · · . (113)

Here, the dots represent non-perturbative instanton corrections. The generic form of these
corrections can be obtained by arguments similar to the ones used for the Nf = 0 case in the
previous section. First, a correction coming from a k-instanton configuration is proportional to
the k-instanton factor, which, using the β-function (111), can be written as

e−8π2k/g2

=

(
ΛNf

a

)k(4−Nf )

. (114)

Following Seiberg [38, 39], we can restore the broken part of the U(1)R × Z2(ρ) symmetry
by assigning appropriate charges to u and ΛNf

. Thus we assign charge 4 and even ρ-parity

to u and charge 2(4 − Nf ) and odd ρ-parity to Λ
4−Nf

Nf
. Note that with this assignment, the

one-instanton factor exp(−8π2/g2) will have an odd ρ-parity which compensates for the odd
parity under Z2(ρ) of the correlation function G in (87), thus keeping it invariant . For the
special case of Nf = 4, U(1)R is non-anomalous and u has charge 4. Z2(ρ) in O(8) is still
anomalous, but again, it can be treated as unbroken by assigning odd parity to the instanton
factor exp(−8π2/g2). Invariance under U(1)R with the above charge assignments implies that
each correction term should contain a factor of

√
u. Moreover, since the metric on the u-plane

is invariant under the ρ-parity, configurations with odd instanton numbers cannot contribute
to a and aD. Putting these facts together, we can write the generic form of the corrected a and
aD as

a =
1

2

√
2u


1 +

∞∑

n=1

an(Nf)

(
Λ2

Nf

u

)n(4−Nf )

 ,

aD = i
4 −Nf

2π
a(u) ln

u

Λ2
Nf

+
√
u

∞∑

n=0

aDn(Nf )

(
Λ2

Nf

u

)n(4−Nf )

.
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The difficult part is to compute the coefficients an and aDn.

Since the gauge group SU(2) breaks to U(1), the theory will have massive charged states
and we want to know how the unbroken global symmetry acts on them. The unbroken part
of the global symmetry, which is the part that keeps u invariant, is obtained by raising the
transformations (112) to the power 4 − Nf . This unbroken transformation changes the sign
of φ and therefore acts as charge conjugation on the charged fields. For Nf = 1, 3; 4 − Nf

is odd and the unbroken transformation contains odd powers of ρ. It, therefore, acts as the
parity in O(2Nf). Hence, in this case, the parity (110) is realized on the spectrum but it
reverses the signs of electric and magnetic charges. States of given charge belong to SO(2) (for
Nf = 1) or SO(6) (for Nf = 3) multiplets. For Nf = 2, 4; 4 − Nf is even and the unbroken
transformation contains only even powers of ρ. All the odd powers of ρ, which amount to the
parity transformation, are part of the broken transformations. Thus, in this case, the parity
symmetry is broken and the states are only in SO(4) (for Nf = 2) or SO(8) (for Nf = 4)
representations.

4.3 BPS Saturated States

On the Higgs branch SU(2), is completely broken and there are no electric or magnetic charges.
Thus the central charge of the N = 2 algebra only contains contributions from the U(1) charges
of the hypermultiplets. We will not discuss this in any detail.

On the Coulomb branch, the simplest BPS saturated states are the quarks with zero bare
mass and which acquire masses M =

√
2|a| after the spontaneous breaking of the gauge sym-

metry. These form a set of BPS states which transform as a vector of SO(2Nf). Besides these,
there are BPS states which transform as a spinor of SO(2Nf) arising as follows: Since the gauge
symmetry is broken to U(1), the theory contains monopoles. In the presence of a monopole
each SU(2) doublet of fermions has one zero-mode. Since there are Nf hypermultiplets, there
are 2Nf fermion doublets and, therefore, 2Nf fermion zero-modes. After quantization, these
zero-modes give rise to a 2Nf -dimensional Dirac algebra which provides a spinor representation
of SO(2Nf). Thus the fermion zero-modes turn the monopole into a spinor of SO(2Nf). This
is very similar to the quantization of the Ramond sector of the Superstring theory. The pres-
ence of spinors indicate that, at the quantum level, the symmetry group is a universal cover of
SO(2Nf), or Spin(2Nf ).

One of the monopole’s collective coordinates is a charge rotation. Upon quantization this
leads to a spectrum of electrically charged states for the monopole. A 2π rotation by the electric
charge operator, however, is not the identity. Using the Witten effect, such a rotation gives a
topologically non-trivial gauge transformation with eigenvalue eiθ(−1)H for a monopole with
nm = 1. Here, (−1)H is the centre of SU(2) which is odd for states in the hypermultiplet and
even for states in the vector multipler. In this section we normalize the charge operator so
that elementary quarks have charges ±1 and massive gauge bosons have charges ±2. With this
normalization, the above mentioned gauge rotation can be written as an operator statement

eiπQ = eiθnm(−1)H .
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where, Q = ne + nmθ/π. Since, ne ∈ Z, this relation implies that states of even ne have
(−1)H = 1 and states of odd ne have (−1)H = −1. The factor (−1)H can be identified with the
chirality operator for the spinor representation of SO(2Nf). For Nf = 1, 3, the SO(2Nf) parity
transformation acts on the spectrum and it guarantees that a dyon transforming as a positive
chirality spinor of SO(2Nf) is degenerate with a particle of opposite electric and magnetic
charges and opposite SO(2Nf) chirality. No such relation exists for Nf = 2, 4.

For Nf > 0 we will see that the spectrum contains states with nm > 1. A convenient way
of labelling states is in terms of their behaviour under the centre of Spin(2Nf ).

• Nf = 2: Spin(4) = SU(2) × SU(2) with centre Z2 × Z2. The representations of the
center can be labeled by (ǫ, ǫ′), where ǫ = 0 for vector-like irreducible representation
and ǫ = 1 for spinor-like irreducible representations. An elementary quark transforms
as (ǫ, ǫ′) = (1, 1). Multiple quark states then transform as (ne mod 2, ne mod 2). Since
monopoles behave like spinors, we have

(ǫ, ǫ′) = ((ne + nm) mod 2, ne mod 2) for Nf = 2 .

• Nf = 3: Spin(6) = SU(4) with centre Z4. The elementary quarks are in the 6 of
Spin(6), thus they have charge 2 with respect to the centre. Since monopoles behave like
spinors, we conclude that Z4 acts as:

exp
iπ

4
(nm + 2ne) for Nf = 3 .

• Nf = 4: Spin(8) has centre Z2 × Z2. Hence, using similar arguments as above, we get,
(ǫ, ǫ′)=(nm mod 2, ne mod 2). The four representations of the center are labeled by the
representations of of Spin(8) which realize them: (0, 1) ≡ v, (1, 0) ≡ s, (1, 1) ≡ c and
(0, 0) ≡ o. Here, v refers to the vector representation, s and c to two spinor representatios
and o to the trivial representation. Spin(8) has a triality group of outer automorphisms
which is isomorphic to the permutation group S3 acting on v, s and c.

If an N = 2 invariant mass is turned on, say mNf
6= 0, then SO(2Nf) explicitly breaks to

SO(2Nf − 2) × SO(2), and the global Abelian charge associated with SO(2) appears in the
central charge

Z = nea+ nmaD + SNf

mNf√
2
, M =

√
2|Z| .

Hence for a = ±mNf
/
√

2 one of the elementary quarks becomes massless. This will be crucial
later in determining the global structure of the quantum moduli space on the Coulomb branch.

4.4 Duality

As in the Nf = 0 case, there is an SL(2, Z) duality group which acts on the fields and the
couplings. In the presence of matter, some new issues appear which will be discussed below.
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As before, we can compute the monodromy matrices for (aD, a) around the singular points
on the moduli space. The simplest case corresponds to having a single quark with non-zero
bare mass, and investigating what happens as a ≈ a0 ≡ mNf

/
√

2. From the QED analysis we
know that there is a logarithmic singularity at a0 where this quark becomes massless. Near the
singularity we have

a ≈ a0 ,
aD ≈ − i

2π
(a− a0) ln(a− a0) + c .

The monodromy can now be easily computed to be

a → a ,

aD → aD + a− mNf√
2
.

Unlike the Nf = 0 case, now we have an inhomogeneous transformation as the column vector
(aD, a)

T picks up a shift under the monodromy (besides the usual SL(2, Z) transformation).
The possibility of such a shift was also noticed for the pure gauge theory case in the previous
section. There, however, the shift was not part of the monodromy group and, furthermore, it
was not compatible with the symmetries of the BPS mass formula. In the presence of matter,
this shift is allowed since the BPS mass formula is modified. Moreover, now the shift naturally
appears as a part of the monodromy group. To write a monodromy matrix, we construct a
column vector (m/

√
2, aD, a)

T . The monodromy can now be written as



m/

√
2

aD

a


→ M



m/

√
2

aD

a


 ,

with the monodromy matrix M given by

M =




1 0 0
−1 1 1
0 0 1


 , M−1 =




1 0 0
1 1 −1
0 1 1


 .

If we arrange the charges as a row vector W = (S, nm, ne), then invariance of Z (or of M)
implies that, under the monodromy, W → WM−1. In general the matrix M can be of the
form

M =




1 0 0
r k l
q n p


 , M−1 =




1 0 0
lq − pr p −l
nr − kq −n k


 ,

with detM = 1.

Note that under the monodromy, the electric and magnetic charges can mix with each other
but will not pick up contributions proportional to S which is a global symmetry charge. On
the other hand, S can pick up contributions proportional to ne and nm which are related to
the local gauge symmetry. For the example considered above,

(S, nm, ne) → (S + nm, nm,−nm + ne) .
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This leads once again to issues of marginal stability: For large values ofmNf
, the singularity is in

the weak-coupling region of large u where a semi-classical treatment of monopole is reliable. In
the semi-classical quantization, the global U(1) charge is carried only by fermionic zero-modes.
Since there is only a finite number of these modes, one cannot construct states with arbitrarily
large values of S. This means that, although, by acting with M−1 we can increase the value
of S at will, what might have started as a one-particle state comes back as a multiparticle
state. This is possible if at some point, when going around the singularity, the single-particle
state becomes unstable and decays into a multi-particle state. Thus, although the formalism is
SL(2, Z) covariant, the spectrum is not.

Seiberg and Witten provide many compelling arguments to suggest that the theory with
Nf = 4, like the theory with N = 4, is SL(2, Z) invariant, though the details are quite dif-
ferent. In the Nf = 4 theory, the global symmetry group is Spin(8) which is the universal
cover of SO(8). The states (nm, ne) = (0, 1) are the elementary hypermultiplets in the vector
representation v of Spin(8). The states (nm, ne) = (1, 0) are in a spinor representaion s, and
(nm, ne) = (1, 1) are in a spinor representation c of Spin(8). While SL(2, Z) alone cannot keep
this spectrum unchanged, a combination of SL(2, Z) and the Spin(8) triality group (which per-
mutes the representations v, s and c) could do so. This is provided one is willing to assume that
there are monopole bound states for every pair of relatively prime integers (p, q), analoguous to
the situation discussed by Sen for the N = 4 theory [20]. For each such pair, there should exist
eight states transforming in a representation 8v, 8s or 8c of Spin(8), depending on the mod 2
reduction of (p, q). SL(2, Z) mixed with triality will then keep the spectrum invariant. The
solution Seiberg and Witten provided for this model gives strong support to this possibility.
The global symmetry group is then a semi-direct product of Spin(8) and SL(2, Z).

4.5 A First Look at Singularities

As in the pure N = 2, we first try to locate the singularities on the moduli space before
computing their monodromies. We recall that, with the standard normalization of the gauge
coupling constant g, the one-loop β-function which is given by (111), can be integrated to give

1

αNf
(µ)

=
4 −Nf

2π
ln

µ

ΛNf

,

where, α = 4π/g2. Now, if some (say Nf − N ′
f ) of the quarks have masses mi = m, and we

are looking at the theory at some scale µ < m, then the low energy theory contains only N ′
f

hypermultiplets as the degrees of freedom. The coupling α(N ′
f) is then given by an expression

similar to the above one with Nf and ΛNf
replaced by N ′

f and ΛN ′
f
. The scales of the theories

can be related by the matching condition αNf
(m) = αN ′

f
(m), which implies

Λ
4−N ′

f

N ′
f

= mNf−N ′
f Λ

4−Nf

Nf
.

For instance,
Nf = 3 , N ′

f = 0 ⇒ Λ4
0 = m3Λ3 ,

Nf = 1 , N ′
f = 0 ⇒ Λ4

0 = mΛ3
1 .
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To determine the singularity structure on the moduli space, we first consider theories with
Nf ≤ 3, and with hypermultiplet bare masses very large as compared to Λ. The singularities
which arise from hypermultiplets becoming massless are now in the semi-classical (large u)
region of the moduli space and can be easily identified. In the small u region, one is effectively
left with an Nf = 0 theory with two singularities corresponding to massless monopoles and
dyons. Then we slowly decrease the bare masses to zero and follow the movement of the
sigularities on the moduli space.

Nf = 3: Let us start with equal masses mi = m >> Λ. In this case, the global symmetry
Spin(6) ≈ SU(4) of the massless theory is broken to SU(3) × U(1). Classically, there is a
singularity at a = m/

√
2 where the three quarks become massless. These electrically charged

massless fields form a 3 representation of SU(3). For m >> Λ the singularity is in the semi-
classical region, u ∼ 2a2 >> Λ2. For u << m2 the three massive quarks can be integrated out
giving a Nf = 0 theory with scale Λ4

0 = m3Λ3. Hence, for small u the moduli space is that of a
pure N = 2 theory with scale Λ0 which has two singularities with (nm, ne) = (1, 0) and (1, 1).
These are the points where monopoles and dyons become massless. Clearly the massless states
at these singularities are SU(3) invariant.

As m is decreased, the singularity at large u moves, and although the charges of the as-
sociated states can change (through monodromy matrices), their non-Abelian charges cannot
change. Hence, for any m, the massless fields at the various singularities transform as 3, 1 and
1 of SU(3). In the m = 0 limit, the original global symmetry is restored and the massless states
must combine into representations of SU(4). The only possibility is to have two singularities
combining into a 4 of SU(4) and the other sigularity moves somewhere else remaining a singlet.
Thus, we conclude that the massless Nf = 3 theory has two singularities with massless particles
in the 4 and 1 of SU(4). From our study of how different states transform under the centre,
the smallest charges for the massless particles at the singularities are (nm, ne) = (1, 0) for the
4, and (nm, ne) = (2, 1) for the 1. Semiclassically the first state exists, but it is not known
whether the monopole-monopole bound state implied by the second also exists or not.

Nf = 2: In this case, with two equal masses mi = m >> Λ, the Spin(4) global symmetry of

the massless theory is broken to SO(2) × SO(2). There is a singularity at a = m/
√

2 and
the massless states there transform under one or the other of the two SO(2)’s. In the region
u << m2, we can again integrate out the quarks, leading to a Nf = 0 theory with Λ4

0 = m2Λ2
2,

and two singularities with (nm, ne) = (1, 0), (1, 1). The massless fields at these singularities
are singlets under SO(2) × SO(2). In all, we have four massless states associated with three
singularities. As m → 0, we recover the full global symmetry group of the massless theory
with two flavours which is Spin(4) ≈ SU(2) × SU(2). The singularities have to combine in
such a way that the massless states form a representation of this unbroken group. Since each
SO(2) is contained in a different SU(2), the only way to combine the massless states into
representations of SU(2) × SU(2) is as (2, 1) and (1, 2). Hence, for m = 0, there are two
singularities, and the simplest charge assignments are (nm, ne) = (1, 0) in one spinor of SO(4),
and (nm, ne) = (1, 1) in the other spinor. Recall that the transformation under the centre is
(ǫ, ǫ′) = ((nm + ne)mod 2, ne mod 2).
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Nf = 1: Now the massive theory has the same SO(2) symmetry as the massless theory, however,
the same arguments as before imply the presence of three singularities for large m. This number
does not change as m → 0 due to the Z3 symmetry acting on the u-plane. We recall that this
symmetry is the subgroup Z4−Nf

= Z3 of Z4(4−Nf ) in (112) which is broken by a non-zero u.
From

aD = i
4 −Nf

2π
a(u) ln

u

Λ2
Nf

+ ... ,

we see that as a transforms homogeneously under (112), aD is shifted by a, i.e., a→ ω2a, aD →
ω2(aD + a) with ω = eiπ/6. Therefore, if one of the singularities in the m = 0 limit corresponds
to massless states with (nm, ne) = (1, 0), then the Z3 symmetry implies the existance of two
other singularities characterized by (nm, ne) = (1, 1) and (1, 2). Hence, even for m = 0, the
moduli space of the Nf = 1 theory has three singularities corresponding to massless states
(nm, ne) = (1, 0), (1, 1) and (1, 2).

4.6 Monodromies and the Determination of the Metric

As in the case of N = 2 theory without matter, a solution to the theory can be found by
regarding the u-plane as the moduli space of a family Eu of elliptic curves parametrized by u.
The quantities aD(u) and a(u) can then be related to the periods of these curves. A curve in
Eu becomes singular when one of the cycles on it shrinks to zero size. This corresponds to a
singularity on the u-plane with a non-trivial monodromy around it. If we know the singularities
and the associated monodromies on the u-plane (which are associated with the appearence of
massless particles in the spectrum), then we can work backwords and determine the families
of the elliptic curves from which the periods aD and a could be computed. In this subsection,
we sketch the physical arguments used by Seiberg and Witten in [32] to find the curves for
Nf = 1, 2, 3 theories exploiting the general features of the curve for the Nf = 0 theory (This
reference also contains a more rigorous treatment of this problem which we will not reproduce
here).

For Nf = 0, the solution was given by a family of elliptic curves described by the equation

y2 = (x− Λ2)(x+ Λ2)(x− u) ,

with the monodromy in Γ(2). In the present section we have changed our conventions so
that (nm, ne) are both integers even in the presence of matter fields. This was achieved by
multiplying ne by 2 and dividing a by 2 so that Z = aDnm + ane is unchanged. This change of
convention can be implemented as a transformation

(
aD

a

)
→
(
aD

a′

)
=

(
1 0
0 1/2

)(
aD

a

)
,

which also changes the monodromy matrix as
(
m n
p q

)
→
(

1 0
0 1/2

)(
m n
p q

)(
1 0
0 2

)
=

(
m 2n
p/2 q

)
.
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Since p and n are integers modulo 2, the new monodromy matrix contains the entry 2n which
is an integer modulo 4, while all other entries are integers. These martices form the subgroup
Γ0(4) of SL(2, Z). In the new convention, the monodromies in (104) take the form

M∞ =

(
−1 4
0 −1

)
, M1 =

(
1 0
−1 1

)
, M−1 =

(
−1 4
−1 3

)
, (115)

and the solution is given by a family of curves described by

y2 = x3 − ux2 +
1

4
Λ4x . (116)

As discussed in the previous section, any genus-one curve can be represented by a cubic

y2 = F (x) = (x− e1)(x− e2)(x− e3) .

This describes a space x as a double cover of the complex plane branched over e1, e2, e3 and ∞.
The curve becomes singular when two branch points coincide (e.g., e1 = e2 6= e3 or e3 → ∞).
In this case the singularity is called stable. If more than two branch points coincide, then the
singularity is not stable, but a u-dependent reparametrization of x and y can always convert
this into a stable singularity. For the curve (116) the branch points are at

x = 0,
1

2
(u±

√
u2 − Λ4), ∞ .

For u = ±Λ2 we have two stable singularities, but the u→ ∞ singularity is not stable.

To understand the properties of this curve better, let us first consider a generic situation:
For a stable singularity at, for instance, u = 0, the family of curves near u = 0 can be written
in the form

y2 = (x− 1)(x2 − un) ,

for some integer n. The monodromy around u = 0 is then conjugate to T n where the matrix
T is defined in (95). This can be understood as follows: Consider the holomorphic Abelian
differential ω = dx/y on a curve y2 = (x − 1)(x2 − λ), where λ = un. The periods can be
written as

ω1 =
∫

Γ1

dx

y
, ω2 =

∫

Γ2

dx

y
,

where Γ1 is a path from u = −λ1/2 to u = λ1/2, and Γ2 is a path from u = λ1/2 to u = 1
(Fig. 6(a)). As λ → e2πiλ, λ1/2 → −λ1/2 and the cut Γ1 moves as in Fig. 6(b). This simply
exchanges the branches of the integrand and therefore ω1 → ω1.

As for ω2, the path Γ2 is transformed as in Fig. 7.

Thus, ω2 → ω2 + ω1. Since λ = un, when u → e2πiu, λ makes n turns and we obtain the n-th
power of the monodromy. Thus, in terms of λ, the monodromy is conjugate to T while in terms
of u, it is conjugate to T n as we wanted to show.
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(a)

1 ∞

(b)

–λ1/2
–λ1/2 λ1/2

λ1/2

Γ1 Γ2

Figure 6

(a)
1 ∞–λ1/2 λ1/2

Γ2

(b)

Γ2

(c)

–λ1/2λ1/2

Γ2

Figure 7

Given any polynomial, a useful quantity is its discriminant defined as

∆ =
∏

i<j

(ei − ej)
2,

where the ei’s are the roots. ∆ can be expressed in terms of the coefficients of the polynomial.
Clearly, at a singularity when two branch points coincide, ∆ = 0 (except for a singularity at
∞). For the example y2 = (x − 1)(x2 − un), ∆ ∼ un near u = 0 where the monodromy is
conjugate to T n. Hence, in the stable case, the exponent of the monodromy is the order of
zero of ∆. For instance, for the family of curves described by (116), ∆ has first-order zeros at
u = ±Λ2, and the monodromies around these points are conjugate to T . Let us now look at
u → ∞. For large u the branch points are approximately at x = 0, Λ4/4u, u, ∞. Thus the
singularity at u = ∞ is not stable as more than two branch points coincide in this limit. This
is cured by a change of variables

x = x′u , y = y′u3/2 ,

which shifts the branch points to 0, Λ4/4u2, 1, ∞. The discriminant now behaves like ∆ ∼ u−4

corresponding to a monodromy conjugate to T−4. Due to the presence of
√
u in y → y′, the

monodromy in terms of the original varialbles (x, y) has an extra minus sign and is conjugate
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to PT−4. Thus we see that the curve (116) produces the correct monodromies of the Nf = 0
theory.

To obtain the curves for theories with non-zero Nf , we should know the monodromies which
arise in these theories. This can be easily worked out (as in the Nf = 0 case) since we already
know the charge spectrum of the particles which become massless at the singularities on the
u-plane. First note that, as in the Nf = 0 theory, the monodromy at u = ∞ can be obtained
form the perturbative β-function (111), or equivalently (113), and is given by

M∞ = PTNf−4.

The singularities at finite points in the u-plane, in general, correspond to massless magnetic
monopoles with one unit of magnetic charge and ne units of magnetic charge. To calculate
the corresponding monodromy, we have to go to a dual description of the theory in which
the monopole couples to the dual gauge field the way an electron couples to the usual gauge
field. In this frame, the monodromy is determined by the one-loop QED β-function (109) with
k hypermultiplets and is given by T k. This has to be conjugated with T neS which converts
a hypermultiplet of charge (0, 1) into a monopole of charge (1, ne). Hence the monodromy
around a point with k magnetic monopoles with (nm = 1, ne) is (T neS)T k(T neS)−1. Similar
arguments can be applied to calculate the monodromy for the (2, 1) state in the Nf = 3 theory.
In the following we list all the monodromies around the singularities described in the previous
subsection:

Nf = 0 : STS−1, (T 2S)T (T 2S)−1 →M∞ = PT−4 ,
Nf = 1 : STS−1, (TS)T (TS)−1, (T 2S)T (T 2S)−1 →M∞ = PT−3 ,
Nf = 2 : ST 2S−1, (TS)T 2(TS)−1 →M∞ = PT−2 ,
Nf = 3 : (ST 2S)T (ST 2S)−1, ST 4S−1 →M∞ = PT−1 .

Using S2 = −1 and (ST )3 = 1, it is easy to check that, for each Nf , the product of the
monodromy matrices at finite u yields M∞. Note that in the first three cases (Nf = 0, 1, 2) the
electric charges assigned to the singularities differ in sign from those determined by our previous
arguments. This is consistent with the inherent ambiguities in relating the universal charges
with the transformation properties under the centre of the group. Based on the knowledge
obtained so far, in the following we sketch the arguments of Seiberg and Witten to obtain the
explicit form of the curves for theories with non-zero Nf .

Properties of the Nf = 0 Curve: Before proceeding further, it is very useful to enumerate some
properties of the Nf = 0 curve which are expected to remain valid even for non-zero Nf :

1. The equation describing the family of curves is of the generic form y2 = F (x, u,Λ), where
F is a polynomial at most cubic in x and u.

2. The part of F cubic in x and u is F0 = x2(x− u).

3. If we assign U(1)R charge 4 to u and x and charge 2 to Λ, then F has charge 12. If y is
assigned charge 6, then the curve is invariant under U(1)R transformations.
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4. F can be written as F = F0 + Λ4F1 where F1 = x/4.

The property (1) remains an ansatz for Nf > 0. It will lead to the correct monodromy
matrices, and it can also be justified in part when considering the Nf = 4 theory. Property
(2) is a consequence of the fact that as u → ∞, we must obtain the monodromy at infinity
associated with a logarithm in aD coming from the one-loop β-function. This means that one of
the branch points at finite x should move to infinity as u→ ∞. For large u, the cubic part can
be written as (x− e1u)(x− e2u)(x− e3u). Then the desired behaviour can be obtained if two
ei’s coincide and the other is different, say e1 = e2 6= e3. In this case, by a redefinition of x, we
can bring F0 to the form x2(x− u). Property (4) in the Nf = 0 theory is a consequence of the
U(1)R charge assignments. Note that F has only a classical contribution plus a one-instanton
term : Λ4x/4. Now we use these properties to determine the curves for Nf = 1, 2, 3.

The Curves for Massless Nf = 1 Theory: In this theory, from equation (114), the instanton

amplitude is proportional to Λ3
1. However, for Nf ≥ 1, the instanton factor is odd under the

ρ parity and, therefore, only even powers of it can appear in F . Since Λ1 has U(1)R charge 2
and F has charge 12, the only possibility is

y2 = x2(x− u) + tΛ6
1 .

The constant t can be absorbed in a redefinition of Λ1: tΛ
6
1 = Λ̃6. The discriminant of this

family of curves is
∆ = Λ̃6

1(4u
3 − 27Λ̃6

1) .

This has three zeros which are interchanged under the Z3 transformation acting on the u-plane
and the associated monodromies are conjugate to T . Similarly, the monodromy at large u can
be worked out to be PT−3. This is consistent with what we should have for the Nf = 1 theory.

The Curves for Massless Nf = 2 Theory: In this case the instanton factor is Λ2
2 and, again, in

the absence of bare masses, only even powers of it can appear in F . Since Λ2 has U(1)R charge
2, the general form of the curve is

y2 = x2(x− u) + (ax+ bu)Λ4
2 .

From our discussion of the Nf = 2 theory, we expect two singularities, each with two massless
monopoles. Hence the monodromy at each singularity is conjugate to T 2 which means that the
discriminant at each finite singularity should have a double zero. This condition determines a
and b. After a rescaling of Λ2, the family of Nf = 2 curves can be written as

y2 = (x2 − Λ̃4
2)(x− u) ,

which has the expected Z2 symmetry.

The curves for Massless Nf = 3 Theory: In this case, there are two singularities on the u-plane

with monodromies conjugate to T 4 and T respectively, and there is no symmetry acting on the
u-plane. Take the T 4 singularity to be at u = 0. The discriminant then should have a fourth-
order zero at u = 0. This, together with the usual U(1)R charge and ρ parity assignments,
leads to

F = aΛ2
3x

2 + bu2x+ cux2 + x3 .
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Here, b 6= 0 since otherwise the curve is singular for all u. Requiring that the cubic part of F
have the expected classical behaviour, and after some rescaling, one gets

y2 = x2(x− u) + Λ̃2
3(x− u)2 .

Note that in the above we have only considered theories without a bare mass term. Since a
mass term has odd ρ-parity, in a theory with non-zero bare masses, odd powers of the instanton
factor can also contribute to the equation for the curve. We will not discuss these cases here,
but for the sake of completeness, will simply reproduce the final results:

Nf = 1 : y2 = x2(x− u) +
1

4
mΛ3

1x−
1

64
Λ6

1 ,

Nf = 2 : y2 = (x2 − 1

64
Λ4

2)(x− u) +m1m2Λ
2
2x−

1

64
(m2

1 +m2
2)Λ

4
2 ,

Nf = 3 : y2 = x2(x− u) − 1

64
Λ2

3(x− u)2 − 1

64
(m2

1 +m2
2 +m2

3)Λ
2
3(x− u)

+
1

4
m1m2m3Λ3x−

1

64
(m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3)Λ

2
3 .

For more details and discussions (including the Nf = 4 case), as well as a more rigorous method
of obtaining the equations for the curves, the reader is referred to the original work of Seiberg
and Witten [32].

Once the curves are determined, the rest of the procedure is very similar to the Nf = 0
case. We define the quantities a and aD by the contour integrals

a =
∫

γ1

λ , aD =
∫

γ2

λ ,

and the metric is given by Im(τ) with τ = daD

du
/ da

du
. Here λ is a holomorphic one-form such that

dλ

du
=

√
2

8π

dx

y
.

The difference with the Nf = 0 case is that now λ can have poles with non-zero residue,
however, the residues should be u independent. If this is the case, then τ still undergoes an
SL(2, Z) transformation while (aD, a) undergoes an SL(2, Z) transformation plus a shift. As
we saw in the case of QED with quarks of non-zero bare masses, this shift is actually needed
and is consistent with the modified form of the BPS mass formula (84). From this it follows
that the residues of λ, which are responsible for the shifts, should be proportional to the bare
quark masses. This was checked in [32] for the Nf = 2 curve and found to be the case. In
fact, the existence of residues is very restrictive and this information was used by Seiberg and
Witten to drive the curve for the Nf = 4 theory in a rigorous way. The curves for other theories
can then be determined by renormalization group flow and the results agree with what is listed
above.
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