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We have seen that the solutions of Schrédinger's equation for a
central field, where the potential depends only on the distance from
the centre of force, are not themselves spherically symmetrical, They
have a dependence on ¢ and ¢ which is given by the Legendre polynomialsg
and are characterized by two quantum numbers, m and ¢, where these have
the meaning that ¢ refers to the total angular momentum and m refers to
the component of the angular momentum in the z direction. Thus the

total angular momontum is
M= (e + 1)n? | (97)

and its z component is

L/% = mh .

Z

I should now like to give a better explanation for this, which
can be done by using operators. From classical physics the angular
momentum in the z direction, for example, is given by

W" = . -— .
by F R S PR (98)
I have already shown you that results can be obtained in quantum
mechanics by replacing the momentum in the clagsical expression by the

corresponding opcrator,

p =22, (73)

_yn8 838
L/I{—Xi ylx (99)

QO
<

or, in spherical polar coordinates,

h 9
b/%é =3 50 ¢ (100)
If we now apply this very simple operator to a wave funotion of the

simple form
Y =RO (101)
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then we obtain*)
My =Biny=nny. (102)

Thus the operator J%; acting on ¢ is equivalent to multiplying ¢ by a
number him. This number gives the value of the physical quantity
corresponding to the operator u%z, and we call this an eigenvalue.

The meaning of that wox: is that if you have the right sort of wave
function, operating on it with a given operator will merely multiply
the wave function by a constant. We interpret this physically to mean
that if the wave function is of the form of Eq. (101) the particle in
the central field carries a component of angular momentum in the

z diféction,‘/%z, oqual to Bm.

This is all very formal, and perhaps I should bring in a little
more physics. Let us consider a charged particle, an electron say, in
a central field, and let us apply a magnetic field H, Strictly
speaking we should rowrite the Schrddinger equation, putting in an extra
term to represent the interaction between the particle and the magnetic
field, and then solve it. Fortunately, this is onc of the cases, of
which there are several in physios, where you can use quantum mechanics
ﬁithout actually applying the mechanism, but where you can use the
classical analogue suitably applied. Classically, if you consider a
charged particle moving in a circular path, then the magnetic moment is

U = current x area

2
or PRy (103)

where Q = the angular momentum of the electron,

-

*) A bad habit quantum mechanicians have is to write operators in a
way indistinguishable from ordinary algebraic quantities, leaving
it to the intelligence of the reader to guess whether he means
that ¢ is multiplied by a number./%%, or operated on by an

operator uq;.
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Now the angular momentum in the z-direction is

A =urta, (104)
so that
e
u o= %Z e (105)

Now we can arguc that sincc we know that the angular momentum is

quantized, wec can obtain the quantum mechanical form of this equation

as

he
U =m <§ﬁé> (106)
and this can indeced be confirmecd by proper quentum mechanieal calcula-
tion. These would then be the values of the magnetic moment of our

particle in the z~direction. The quantity in brackets is a kind of

'universal' magnetic moment and is often called t he Bohr mogneton; it

has a value of
o = 0,9 x 1072° cgsu .
Thus if we havc a magnetic field H, the enorgy can be written as

N = Y
W Wﬁ: o mH P

wherc the componcnt duec to the magnetic field is

Wﬁ =Hep = Hz“z =H pom ,

if we choosc our z-direction in the direction of the magnetic field.,
So if we switch on a magnetic field then the degeneracy between all
these different m-values digsappears and the values will line thémselves
up with certain magnectic energy values, 0, *huo, *2hue and 50 ohv

depending on the wvalue of ¢,

It is somctimes difficult to realize that for whichever axis you

choosc, the angular momentum around that axis will be quantized. One

67/846/5
(5)p/jsh



- 78 =

has the feeling that if you have chogen one particular direction of
angular momentum, then if you change your magnetic field direction
slightly, surely that ought Yo mean a different amount of angular
momentum about the new axis. But the point is similar to that in the
polarization of light. If you take light polarized in a certain direc-
tion (Fig. L42), and pass it through a Polaroid screen aligned in a

different direction, the transmitted beam will be weakened by a certain

. factor, cos® a. DBut what does this mean to a single photon? A single
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photon either goes through or it does not; what is affected is the pro-
bability that it should go through. If the Polaroid is parallel to the
plane of polarization of the light, and if it is an ideal Polaroid, then
every photon will go through, and the probability of transmission is
unity. If there is an angle between Polaroid and light then the pro-
bability becomes smaller, You can express this by saying that if you
take light polarized in any direction and you determine with the aid of
a Polaroid screen the polarization in that direction you will always
again find that the light is either polarized in that direction or it
iépolarizéd érossWise. The second type does not go through, the first
does. This problem should really be discussed with the nature of
measurements, how they arec performed and what they do to wave functions,
but for the moment I shall “just urge you to remember this simiiarity
with a photon and say that if you ohoose'any given ‘axis then your wave
function can be decomposed, in the same way as polarized light can be
decomposed according to a chosen system of axes, into different wave

functions corresponding to the different values of m, from -¢ to +£,
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One way of' making this whole thing more clearly visible is to
draw the go-called vector model (Fig. 435). Here we represent the angu-
lar momenta as vectors, as one oftcn does, and there we have the parti-
cular casge vhen ¢ = 2, In this casc the total angular momentum is of

coursc /¢ (¢ +“TjA: 244, s0 I have drawn a scmicircle with a radius of

Figure 43

2.4 units, On the other hand I have marked on the z-axis those points
Whicﬁvcorréspond to 0, ih and *Zh, Now how do you combine total angu-
lar momentum of 2.4 with a momentum component of, shall we say, =27

You can draw an arrow out Lo the semicircle and ybu might imagine that
if the particle is in the state -2k for its z-componcnt of angular
momentum, then the vector representing it will be pointing in approxi-
mately that direction given by the diagram. Strictly speaking, of
course, the semicircle of Fig. 43 is only a section of a sphere and the
vector can lie anywhere on the cone. This is a way of visualizing
angular momentum, but as is usual with such models one has to be careful
not to take it too literally. If one ascribes a precisely defined
direction to an angular momentum then difficulties arise and ong has to
remind oneself that the only quantities which really have meaning in a
given situation are the total angular momentum 4 and the component in

one arbitrarily chosen direction z.
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So much at present for the angular momentum. Now I have already
indicated how the SchrBdinger equation can be solved with respect to
its variation along the radius, and here I shall write down the answers
which you get if you carry out this solution for what I call the
'hydrogenic atom'. Now the difference between a hydrogenic atom and a
hydrogen atom is that in a hydrogenic atom I do not assume that the
charge of the nueleus is unity, nor do I assume that the masses of all
the particles are the same as in hydrogen., In fact anything is a
hydrogenic atom if it consists ‘ef two opposite charges which attract
each other more or less according to a Coulomb field and which may
have any mass and charge whatsoever. Let us consider first a nucleus
with charge +Ze, and an electron with charge -e, which then at a dis-

tance r will have a potential

-Ze2
Ve L - Gon

In this case the calculation gives the following simple result. Since
for great distances V approaches the value zero, obviously for a par-
ticle energy greater than zero all values are permitted because the

particle is not held in the field, but remains essentially free, with

a wave function only temporarily modified as it runs through the field,

Thus we have

for W s 0, all values

(108)
for W<0, W=—TW,

where

2)2
Wo = - MB_L. (109)
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This is exactly the same formula which Bohr gave in 1913, on the
basis of a totally different model ) This is certalnly striking,
because Bohr had assumed that the particle runs in circles, whereas
here no such limiting assumption is made. In fact all these values
come out with £ = 0, where if you want to make any kind of model you
would have to imagine the electron making a straight dive at the
nucleus, missing it by a small distance, being flung back and flying
out agoin, tracing infinitely narrow ellipses around the nucleus.

Yet the encrgies come out the same and I have sketched here (Fig. Ldy)

S S d /’/ #
/2 CorRon 7/ //}/ CONTINVOM, ////

///‘//// //////

Figure 44

what the wove functions look like., The interesting thing is that if
you now look for other values, for instance with & = 1, then you get

quite different wave functions.

T ————— A g | e Tt

*) This is Schrédinger's result of 1926, In 1928 Dirac wrote down
what scemed a very different wave eguation from Schrddinger's
and agein the same values came out, at least in a first approxi-~
mation. At that time I think it was Weisskopf who said that
"the hydrogen atom is invariant against theories",
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For the case £ = 0, as one might. expect, the wave function is a
maximum at the centre, and has-in fact the unique property of hitting
the ‘centre ot an angle. (No other wave function does that, no sensible
wave function, that is!) .This one-does so because the potential drops
to minus infinity.: This of course - is not strictly true; one ought to
ascribe o finite size to the nucleus, thus 'rounding off' the lower end
of the trough so that it bechaves in a normal wy. At any rate it becomes

largest near the centre.

If you go to the case ¢ = 1, then you have orbits which do go
around the nucleus in some fashion, rather than head straight for it.
Therefore, since classically they always miss the nucleus by a con-
siderable margin, you would expect the wave function to decrease in the
viecinity of the nucleus. The reason that it does so is that, os you
remember, when ¢ differs from O then we have to add to the potential a
term containing r? in the denominator, which increases very rapidly,
more than compensating the Coulomb function, when you approach closely
to the centre. The electron thus finds itself in a field containing a
minimum at a certain definite value of r, and as a result the wave

functions are small near the centre,

The oddity of the Coulomb field is that for this field alone, and
only in the non-relativistic approximation, the two energies n = 2
indicated in Fig.44 are exactly alike, and the same is true of higher
levels not shown., You get in fact a spectrum of levels as shown at the
right of the diagram. For £ = O you have levels given by Eq. (109) for
all values of n. For £ = 1 you have a similar pattern, but with the
lowest level missing. TFor £ = 2, the two bottom ones are missing and
so on. In the ideal Schrédinger Coulomb field solution the values of
energy are all represented in the so-called s-states (& = 0); the
p(e6=1), d (¢=2), etc. states do not produce any new energy levels,
but merely reprodice the old ones. ' -

e
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Now this is in the first place not true, as I have already
stressed, in the relativistic case. (Of course. the §chr§@ingqr _
equation just is not relativistic.) One obtains excelienf agree-
ment with the measurements in the equation by Dirac, which I cannot
speak about at the moment, except to say that this takes account
of the increase of mass of the electron as it travels very fast

near the nucleus, and the correction to the hydrogen spectrum is

6 - G
w) =\t

For that reason this constant within the brackets is usually called

then of the order of

b
the fine structure constant ).

This constant is a useful thing to remember., TFor instance, once

you have obtained the formula for the energy states of the hydrogenic

" atom

M(Ze?)?2
Wa = = *‘g'z-hjl“' ) (109)
if you require to know this guantity in energy units, you ¢an of
course slog it out, insertirgknown values for the constants, and if
you do not lose any powers of ten on the way, which is very,unl;kely,

then you will obtain the answer., -But it is often possible to change

*) There has been a great deal of thought about why the constant
* should have this value,: which is non-dimensional and does not
depend on the system of units employed, but so far no theory
exists that produces that value at all well, - There was a
theory by Eddington, but unfortunately nobody understood it.
There is now, I am told, a new theory by Heisenberg which gives
at least a rough value, and which at least Heisenberg understands,
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the formula in such a way that you do not have to put quite so many

constents in. Here, for instance, we can write:

= 2.1- gizn 2
Wo = = 2%+ 3 (hc Mc
= - 2z2+3. (s5)2. 511 keV
2" M3T
= = 2722 x 13,6 eV ,
where )
Mc? = 511 keV

is the rest mass of the electron, (fhié is another quantity which

it is worth learning by heart.) If you ¢arry out this much simpler

i cgloulation:you are much more likely to. arrive at the correct

‘angwer., The value of 13,6 eV is simply then the energy value of

the lowest state, or in other words it is the energy which you heve
to give to a hydrogen atom in the ground state in order to take the
eleotron to the edge of the continuume. It is, in other words, the

ienization energy. : i =

As I said, this equality of the levels with'different £ is ho

" donger true in the relativistic case, People sometimes cell it’'an

accidental' degeneracy, one which happens to octur in a particular
approximation (which is not really valid). But there are other
reasons why it should not be a genuine degeneracy, one of them being
that in many atoms you can apply this sort of calculafioh aﬁﬁfdxi—
mately, For instance, if you consider a sodium atom this can be’
regaorded as containing a nucleus Suprbﬁhded by many electrons
fairly close by, Then the wave function of the last electron is much
more widely spread out, and can be represented fairly well by an orbit

lying outside the main electron cloud. This is of course not true,
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because it is an s orbit and an s-wave funciion is always densest
near the centre, Much of it, however, lies outside the others.
Therefore, since the ten inner electrons surround the nucleus
tightly, the outer electron.sees only a single nuclear charge.

Thus it moves in a field that is very steep at the centre, but
flattens out where the screening effect of the other electrons come

into play (Fig. 45). The result is that if the electron is in a

%::éLDED "
POTENTIAL
FINMTE S1ZE
OF NUCLEU S M= ‘%
! s P ol
Figure 45 £=0 | 2

p or d or £ state, with a high value of £ thenmos: of its wave func=~
‘tion is in the shielded region and the electron 'knows' nothing of
the strong nuclear charge., But when it is in an s~state then it
experiences the effect of that charge, at least for those shgrt
periods when it finds itself near the centre, and therefore its
energy is‘loweredc The result is that the p-states are slightly
higher in energy than the s-states (Fig. 45).

There is an opposite effect in principle, due to the finite
size of the nucleus, rounding off the lower end of the Coulomb poten=~
tial curve (Fig. 45), This effect is extremely small in the case of
ordinary electron spectra, and it is only by the extraordinary.
accuracy\of which spectroscopists are capable that it has in fact
been observed, It can be used to give an estimate of the nuclear

size, but not very much more. On the other hand, we have today a
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variety of other hydrogenic atoms available, for instance one con-
sisting of a nucleus with charge +Ze around which circulates a muon,
instead of &n electron. Now a muon is really a 'heavy' electronm,
which has 206,7 times the electron mass, but otherwise its properties
are identicael, Thus, considering Eq. (109) you will see that it is
bound with energies two hundred times greater, of the order of
kilo-electron volts rather than a few electron volts, partioularly

if Z is large. The other point is that a nuon will on the whole spend
its time much closer to the nucleus, the characteristic distance (the
so~called Bohr electron radius) being

ity - o
I Yo = 7Me? ° / (110)

Thus for large Z (heavy nuclei) and large M (muons) the particle
approaches very much closer to the nucleus and the fact that the

latter is not a point charge beccmes significantl).

Perhaps I should just mention the relation between all this and
spectroscopy. In spectroscopy you teke something like sodium vapour
end excite it, for instance by passing an electric current through it,
causipglgéliisions'befween atoms and electrons, Thus you produce atoms
in excited étgteéo Such an atom will return to the ground state either
directly or possibly via an intermediate state. In these transitions
lighﬁ is emitted with a frequency following from Planck's relation.
Thié;is all fery elemensary atomic physics, and I am sure that you
already kmow all about it, What we really do is to measure these
frequencies and from them réconstruoct (quite a laborious process) the

1evei§'5y which we can'acoount for the observed frequencies.

*) Measurements are being carried out on this and similar systems in
order to determine the sizes of nuclei. The circulating particle
mey also.be a —-meson or a K-meson, having a still larger mass but
these are very shori-lived, thus making the measurements more diffi-
cult and less accurate.
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One interesting fact which was discovered experimentally is that

you only get transitions between levels in adjacent rows (Fig. 46);

o
4
3
2 _._I_Q_
FORBIDDEN |
(at=0) !
Vo
R
S P 4
Figure 46

that 1is,between states whose £-values differ by one. Other transitions
do not occur., An electron that is in the lowest excited s-level is
trapped. We say that the atom is in a metastable state. It cannot
emit light, and it usually hangs around for quite a while until it can
lose its energy as kinetic energy in a collision with another atom.

The reason for this so-called selecticn ruie comes out in the solution

of the time-dependent Schrddinger equation, but at the moment I shall
merely remind you of the diagrams of the wave function of an oscilla-
tor, superimposing two wave functions of adjacent quantum number, and
pointing out that the result is a wave function which alternates from
side to side. Such a system would be liable to emit light if the par-
ticle in question was charged. Translated into proper quantum mechanical
language this means that if you emit light by going from one quantum
state to another there exists temporarily a state where both quantum
states are present together, and this superposition must have the
necessary property of emitting light. This condition ié fulfilled in
the case where you superimpose on s and a p wave function, or else a

p and a d function, but any such oscillation dipole would be absent if
you superimposed two s wave functions, which have the same angular dis-
tribution, Similarly a transition from a d to an s state would give a
quadrupole radiation, and would therefore be a very unlikely transition,
although not completely forbidden.

67/8L6/5
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| SPIN

We now come to consider the role of spin. One of the puzzlés,
historically speaking, was that all levels in this sort of alkali
system are double, with the exception of the s levels (Fig. 45).
This was not understood, and people made a variety of theories, but
in the meantime other clues accumulated. One of the best clues was

the Stern-Gerlach experiment (1921), illustrated in Fig. 47.

N
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Figure L7

This experiment was performed before the formulation of quantum
mechanics in 1926, and at the time the result was still pretty:
mysterious, although it had been foreseen by some forms of the old
quantum theory and in fact the whole experiment was done in order

to check this.

The experlment is most simply explained if you assume that we
flre a beam of hydrogen atoms (for technical reasons Stern and’

Gerlach used silver atoms, but the propertles involved are thé ‘Same)

llnto a’ magnetlc field formed by the pole pleces of a spec1ally

designed magnet, in which the lineés of force are strongly divergent
in a plane perpendicular to the atomic beam. It is Pfound that two
beams emerge from the field. If we look at ‘this result in the light
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of what we have done so far, we would certainly expect a deflection,
because in a magnetic field, depending on the orientation of the
system we can have different energy values. Those values which are
positive will be the more positive the more the atoms are in the
strong field, and therefore these will be repulsed from the knife-
edge down towards the groove, where the field is weaker. Conversely

those having a negative energy will be deflected towards the knife

edge.

There are two things that are wrong with this result. One is
that the hydrogen atom in its ground state is supposed to have
¢ = 0, and no angular momentum, therefore no magnetic moment and
no force from the magnetic field. The other point, which is perhaps
more serious, is that even if we were wrong, and the hydrogen atom
for some reason did have an angular momentum with ¢ # 0, the number
of’ possible orientations and therefore the number of beams emerging
should always be odd, being equal to 2¢{ + 1, where ¢ is an integer.
So the observed result could not be explained at all on the basis
of the theory of angular momentum as I have presented it, which,
however, did not exist at the time. This result was just one more
puzzle, among many. But it was at least a very important clue and
when the idea of angular momentum and its quantization wes properly
formulated it became clear that in order to get an even number of
beams, and in particular two, you must have something like

AN (111)

Nf—

This of course does not make sense in connection with spatial wave
functions and spherical harmonics, which are described by integral
values of {. On the other hand it turns out that the kind of
operator description we have already used can be generalized in such
a way that we no longer use the differential symbol, but only the
algebraic properties of such an operator, the so-called commutation

relations. ‘/hen that is done it turns out that values of a half
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guantum number are possible. This was a belated justification of

the proposal made in 1925 by Goudsmit and Uhlenbeck that the electron
should possess an angular momentum of one half a quantum unit,
irrespective of its spatial wave function. It would therefore also

possess it in the ground state of the hydrogen atom.

If you place such an clectron in a magnetic field it would then
be capable of possessing only two energy values. The proposal of
Goudsmit and Uhlenbeck amounted to saying that the z-oomponent of

spin should be capable only of the values
1 *
s,i=tsHh ). (112)
The energy, however, is given by
= + i
Wy =%*ts, u Hg (113)

The factor g, called the gyromagnetic ratio, Goudsmit and Uhlenbeck

assumed to have the value 2, simply beecause that accounted for a number

of spectroscopic observations existing at the time.

The next development was that Dirac two years later formulated a
relativistic wave cquation for the electron and to everybody's
amazement, including I am sure his own, when he worked out the con-
sequences one of them was that such an electron would possess an angular
momentum and a magnctic momentum exactly as Goudsmit and Uhlenbeck
had deduced from the experimental facts. TFrom 1928 onwards it was in
principle possible to ignorc all that we have discussed above and say

that the electron must have a spin because it obeys Dirac's equation.

*) This fulfils the condition that we had previously, namely that the
step between successive values of angular momentum is always
unity. It turns out that this is an essential condition and it
just allows values of one half. There is no fear that one day we
shall be faced with yet finer subdivisions of the angular momentum.




On the other hand, if the experiments had not alrecady existed Dirac's
equation probably would not have been seized on with so much Jjoy.
This equation was later improved and carried to a further approxima-
tion, and it turms out that the factor g takes the slightly greater
value of 2,0023, the difference being of the order of the fine
structure constant. There has been very great interest in these re-
finements, because naturally one always wants to know how accurate a
given theory is, and therefore this quantity has been measured with
very great carc both for the electron and particularly here in CIRN
for the muon. It turns out that the value is exactly what Dirac's
theory demands, so it can be said to have been verified to an

accuracy of about one part in & million.

One more thing which I want to discuss is the way in which we

can describe this spin phenomenon. ifc obviously cannot describe it,
in the way of spherical harmonics, as something that comes ogt of a
wave cquation, exccpt in a much more abstract way out of Dir&é's
cquation. Vhat we say rather is that the electron has not only the
three degrees of freedom characterized by its spatial coordinates, but
also a fourth, in that it can point up or down. (As I said before,
we can arbitrarily choose our direction, but once we have chosen it
there are only these two states possible.) So if you want to describe

an electron completely you would have to write something of the form

§(x,5,2)%(s.).

The function X simply stands for a pair of numbers, one value belong-

ing to the direction 'up' and another to the direction'down's This

is of'ten written as

where you have to fix some convention that, shall we say, a corresponds

to the amplitude of the wave function Tfor’the 'upward-pointing' electron

67/846/5
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and b for the 'downward-pointing' one, and further we demand

that, since the electron must be in either one state i ~ the other,
lal? + [b]? = 1. (114)

In Fig. 48 I have shown how this sort of quantity can be written
dovn. with a little algebra, and in particular how such a two-number
symbol, which is called a spinor, transforms when you change the
coordinate system. |

Vectorn V- seivor S
LZ 1\2
O~
TV

,a, =cdS/;_

[ &l = ‘45“"%.

a = e'é%mg{"’
e ottt g

Figure 48

You all know how a vector is commonly described in a coordinate

system by its three projections Vi, V& aend Vé. Since for a unit

vector

v+ vya + V2 =1, (115)

67/846/5
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onc of these is rcdundant, and can be obtained from the other two.
Now if you want to rcpresent that same oriented quantity as a spinor,
you want to describe it by only two componcnts. The prescription
for that, which I give you without derivation, is the following.

You takc half the angle betweon it and the z-axis, giving, for a

unit spinor/vector,

lal = cos % 5 W
and X (116)

|b| = gin

ST RS

This guarantees that the condition
la]® + |p]? = 4 (1)

is fulfilleds If a and b arc given, then you know ¢, end oon
determine what angle the spinor mekes with the axis. loreover the
reason for the choice of the half-angles can also be explained as
follows. If you have an ordinary vector, as for examplc polarized
light, pointing at 450, shall wc say, then its projections on two
perpendicular axes arc cqual, corresponding to the fact that if

such light is passcd through a Nicol prism we find half the intcnsity
in onec or, if we turn the prism through 90°, half the intensity in
thc other becam. e could in principlec do the same expecriment on a
becam cmerging from the Stern~ Gerlach cxperiment. Let us assume that
the electron comcs out of the magnotic ficld with its spin pointing
upwards in the upper beam and downwards in the lower beam (Fig. 49).
Now stop onc of thosc beams and let the other pass through a sccond
Stern=- Gorlach cxperiment which has beeﬁ rototed by 90° with respect

to the first.



67/846/5
(5)hsi/p

- 88 =

Figure 49

We are trying to decompose a beam, all of whose clectrons are
spinning vertically upwards, into two components with spins in a
horizontal direction. Then,, simply for reasons of symmetry the
two must be equal, so that w@ have the completely analogous behaviour
here, if we turn the field through 90°, -s we have with polarized
light if we turn our original direction by 45°, because the two
relevant directions for polarized light arec perpendicular to one
another and thereforec a rotation of 45° bisects that anglc. The
bisector of 180° is 90°, and that shows why we have used half-
angles in the.definition of the spinor, in order to get this be-
haviour. If wec turn the beam at right angles to the z-axis then a

end b both become equal to cos 45°.

This much gives us no information about ¢, but since the
quantities woe write down can be complex, analogous to the complex
wave function which we used in the Schrodinger oquation, we can

squeeze the information in by writing

3w/ a8
a =8 ig/? cos 5 , 1
> (117)
b = e+j'q)/2 sin % .

It turns out that if you put it into this form, then any rotation of
the coordinate system does not upset the correlation which we had
established. I am afraid that I have not found any wey of making this
sound plausible with the aid of simple mathematics, so I must just

request you to believe me.
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So what we have found is that the electron has a fourth degree
of freedom, but a freedom limited to cither pointing parallel to a
given direcction or anti-parallel, and that this is associated again
with a magnetic moment, but that this magnetic moment is twice as
much per angular momentum (the gyromagnctic ratio is bwice that
associated with ordinary motion). If this hypothesis is adopted we
first of all can account for the Stern= Gerlach effect on hydrogen
and similar atoms in the ground state, for thce doubling of all the
states with £ > 0, and various other things. You may ask why do not
the s-states split? The point is that the doubling consists of an
interaction betwecen the clectron spin and the magnetic field caused
by the orbital motion. In the s-statc there is no angular momentum
and hence no orbital motion that can causc a magnetic field to which

the spin could orient itself.

67/846/5
(5)hsi/p



ot
ST I el 'ﬂ u

g e nln'-'n e L .I'ﬂ'




