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1. Fundamentals of Perturbative QCD 

In this set of lectures we shall describe the use of perturbative methods to inves- 

tigate the behaviour of strong interactions at short distances. Perturbative methods 

are applicable because of the property of asymptotic freedom which will be described 

in the first lecture. Subsequent lectures describe how short distance cross sections are 

calculated, and how the results of these calculations compare with experiment. 

The treatment of perturb&m QCD is developed in analogy with perturbative 

QED, and an understanding of perturbative QED is therefore a prerequisite for this 

colnse. 

1.1 Lagrangian of QCD 

We begin with a brief description of the QCD Lagrangian and the Feynman rules 

which can be derived from it. This is a practical guide which does little more than 

introduce notation and certainly does not do justice to the elegant structure of quan- 

tum field theory. For more details, the reader is referred to the standard texts [1,2]. 

Introductions to perturbative QCD can be found in refs.[3,4,5,6,7]. 

Just as in Quantum Electrodynamics, the perturbative calculation of any process 

requires the use of Feynman rules describing the interactions of quarks and gluons. 

The Feynman rules required for a perturbstive analysis of QCD can be derived from 

an effective Lagrangian density which is given by 

L = -iFGFiP + c G.(i~ - m),sqa + Ig.“se-f&jng + L&& (1.1) &*our, 
This Lagrangian density describes the interaction of spin-l/2 quarks of mass m and 

massless spin-l gluons. F$ is the field strength tensor derived from the glum field 

AA -3 

F$ = 
[ 
&,d; - aad,” -gfABCd:d; 1 (1.2) 

and the indices A,B,C run over the eight colour degrees of freedom of the glum 

field. It is the third ‘non-Abelian’ term on the right-hand-side of Eq.(1.2) which 

distinguishes QCD from QED, giving rise to triplet and quartic glum self-interactions 

and ultimately to the property of asymptotic freedom. 
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The sum over the flavours runs over the nf different flavours of quarks, g is the 

coupling constant which determines the strength of the interaction between coloured 

quanta, and fABC (A, B, C = 1, . . . . 8) are the structure constants of the SU(3) colour 

group. The quark fields qa are in the triplet representation of the colour group, 

(a = 1,2,3) and D is the covariant derivative. Acting on triplet and octet fields the 

covariant derivative takes the form 

(D&, = 8&b + ig (tcd:)ab, (&)AB = arn6AB + iS(T’d:)AB, (1.3) 

where t and T are matrices in the fundamental and adjoint representations of SU(3) 

respectively: 

[tA,tB] = ifABCtC, [TA,TB] = ifABCTC, (TA)BC = -ifABC. (1.4) 

b in Eq.(l.l) is a symbolic notation for r,,D’ and the spinor indices of rP and q. 

have been suppressed. Otherwise we follow the notation of Bjorken and DreII [l] 

with metric given by 9-D = diag(l,-1,-1,-l) and set h. = c = 1. By convention the 

normalisation of the SU(N) matrices is chosen to be, 

Tr tAtB = TR cYAB , TR= ;. 

With this choice the SU( N) colour matrices obey the following relations, 

(1.5) 

c tA tA .b bc 4, (N=3) (1.6) 

TrTCTD - - fABCfABD = CA scD, CA = N = 3. (1.7) 

We cannot perform perturbation theory with the Lagrangian of Eq.(l.l) without the 

gauge fixing term. It is impossible to define the propagator for the gluon field without 

making a choice of gauge. The choice, 

C 8mn.e-firing = -A (-k2)‘, (1.8) 

fixes the class of covariant gauges and X is the gauge parameter. In a non-Abelian 

theory such as QCD this covariant gauge-fixing term must be supplemented by a 

ghost Lagrangian, which is given by 

c ghost = ad + (DZB~B). (1.9) 
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Here qA ’ 1s a complex scalar field which obeys Fermi statistics. The derivation of 

the form of the ghost Lagrangian is best provided by the path integral formalism [a] 

and the procedures due to Fadeev and Popov [9]. The ghost fields cancel unphysical 

degrees of freedom which would otherwise propagate in covariant gauges. For an 

explanation of the physical role played by ghost fields, the reader is referred to ref. [lo]. 

1.2 Feynman rules 

Eqs.(l.l), (1.8) and (1.9) are sufficient to derive the Feynman rules which should be 

used in weak coupling perturbation theory in a covariant gauge. The Feynman rules 

are defined from the action operator ip = i JL d4t rather than from the Lagrangian 

density. We can separate the effective lagrangian into a free piece &, which nor- 

mally contains all the terms bilinear in the fields, and an interaction piece, ~21, which 

contains all the rest: 

@po = i 
J 

d%C:o(r), ‘PI = i 
I 

d’rC:r(z). (1.10) 

The practical recipe to determine the Feynman rules is that the inverse propagator is 

derived from -@o, whereas the Feynman rules for the interacting parts of the theory 

which are treated as perturbations are derived from @I. 

This recipe (including the extra minus sign) can be understood [ll] by considering 

the following two different approaches to the quantisation of a theory. For simplicity, 

consider a theory which contains only a complex scalar field 4 and an action which 

contains only bilinear terms, + = 6 (K + K’) 4. In the first approach, both K and 

K' are included in the free Lagrangian, @o = @ (K + K') 4. Using the above rule 

the propagator A for the I$ field is given by 

A= -’ 
K+K" 

In the second approach K is regarded as the free Lagrangian, Qo = &K& and K' 

as the interaction Lagrangian, @,r = &K'qb. Now ‘PI is included to all orders in 

perturbation theory by inserting the interaction term an infinite number of times: 

A=;+ ($)K’($)+ (s)K’($)K’($)+...= KylK, (1.12) 
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Note that with the choice of signs described above the full propagator of the 4 field 

is the same in both approaches, demonstrating the internal consistency of the recipe. 

Using the free piece to of the QCD Lagrangian given in Eq.( 1.1) one can readily 

obtain the quark and gluon propagators. Thus, for example, the inverse fermion 

propagator in momentum space can be obtained by making the identification a- = 

-ip” for an incoming field. In momentum space the two point function of the quark 

field depends on a single momentum p. It is found to be 

rSJ(p) = 46 b a (j - m), (1.13) 

which is the inverse of the propagator given in Table 1. The ie prescription for the 

pole of the propagator is added to preserve causality, in exactly the same way as in 

QED[l]. Similarly the inverse propagator of the gluon field is found to be 

$B, ,P)(P) = i&AB $‘%a0 - (1 - ;)P,PO 1 (1.14) 

It is straightforward to check that without the gauge fixing term this function would 

have no inverse. The result for the gluon propagator A is as given in Table 1: 

$B, ,p&P) 
A(“, (=C, SY)(~) = s,“~; 

A@) 
(BC,‘&) = s,C; -$+, + (I - #F 

(1.15) 

1 (1.16) 

Replacing derivatives with the appropriate momenta, Eqs.(l.l), (1.6) and (1.9) can 

be used to derive all the rules in Table 1. 

1.3 The running coupling constant 

In order to introduce the concept of the running coupling, consider as an example a 

dimensionless physical observable tl which depends on a single energy scale Q. By 

assumption the scale Q is much bigger than all other dimensionful parameters such as 

masses. We shall therefore set the masses to zero. (This step requires the additional 

assumption that R has a sensible zero mass limit.) Naive scaling would suggest that 

because there is a single large scale, R should have a constant value independent of Q. 

This result is not however true in a renormalisable quantum field theory. When we 



-7- FERMILAB-Conf-90/164-T 

A P B 
----c--- 

a,i P b,j 

B,P 
P 

A P T 
-‘La c,7 
-%a B,P 

x 
CT-7 D76 

‘%a 
k / 

B’ 
lq 
‘c 

sa= 
1 
-p+(1~.A)ppps i 1 pa + i& p’ + ic 

6A= : 
pa + ie 

6”b 
(i-Ltis)ji 

-gfA=C [F (P - 9)’ + g@-r (n - 7)” + gyp (r - Pq 

(aU momenta incoming) 

-;g2fXACfXBD 
b47,s - SPbSST) 

_igZfXADfXBC 
hv776 - !Av%S) 

-igafxABfxcD (g=).%6 - SP6SS-r) 

gf ABcqa 

Table 1: Feynman rules for QCD in a covariant gauge 
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calculate R as a perturbation series in the coupling QS = g2/4n, (defined in analogy 

with the fine structure constant of QED), the perturbation series requires renormal- 

isation to remove ultra-violet divergences. Because this renormalisation procedure 

introduces a second mass scale p - the point at which the subtractions which re- 

move the ultra-violet divergences are performed - R depends in general on the ratio 

Q/p and is not therefore constant. It follows also that the renormalised coupling as 

depends on the choice made for the subtraction point p. 

However ,u is an arbitrary parameter. The Lagrangian of QCD makes no mention 

of the scale p, even though a choice of p is required to define the theory at the 

quantum level. Therefore, if we hold the bare coupling fixed, physical quantities such 

as R cannot depend on the choice made for p. Since R is dimensionless, it can only 

depend on the ratio Q’,/p’ and the renormalised coupling QS. Mathematically, the p 

dependence of R may be quantified by 

+ p2~~ 
acllaa, 1 R= 0. (1.17) 

To rewrite this equation in a more compact form we introduce the notations 

t = l=(s), P(cQ-) = $2, 

and rewrite Eq.(1.17) as 

1 R = 0. (1.19) 

This first order partial differential equation is solved by implicitly defining a new 

function - the running coupling as(Q) - as follows: 

I 4Q) dz 
t= 

as PO’ 
%(PL) = as. 

By differentiating Eq.( 1.20) we can show that 

““;I”’ = p(crs(Q)), “-(;’ = ‘;$)‘. 

(1.20) 

(1.21) 

and hence that R(l, as(Q)) is a solution of Eq.(1.19). The above analysis shows that 

all of the scale dependence in R enters through the running of the coupling constant 
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as(Q). It follows that knowledge of the quantity R(l,as), calculated in fixed order 

perturbation theory, allows us to predict the variation of R with Q if we can solve 

Eq.( 1.20). In the next section, we shall show that QCD is an asymptotically free the- 

ory. This means that as(Q) becomes smaller as the scale Q increases. For sufficiently 

large Q, therefore, we can always solve Eq.(1.20) using perturbation theory. 

1.4 The beta function and the A parameter in QCD 

The running of the coupling constant a.s is determined by the renormalisation group 

equation. In &CD, the p function has the perturbative expansion 

P(w) = -b&l t b’as + O(a;)) 

b = (33 - 2nt 1, b’ = 053 - 19nt) 
12n 2~(33 - 2nf) ’ 

(1.22) 

where nf is the number of active light flavours. An alternative notation which is 

sometimes used is 

P(as) = --as *$ A (z)(n+l) 

p,, = 4xb = 11 - ;nf, p1 = 16r’bb’ = 102 - 2 3nf, ... (1.23) 

The p function coefficients can be extracted from the higher order (loop) corrections 

to the bare vertices of the theory, as in QED. Here we see for the first time the effect 

of the non-Abelian interactions in QCD. In QED (with one fermion flavour) the p 

function is 
1 

&ED(a) = %a2 + . . . (1.24) 

and thus the b coefficients in QED and QCD have the opposite sign. 

From Eq.(1.21) we may write, 

aas = 
at 

-b&Q) [1+ b’as(Q) f C+:(Q))]. 

If both as(p) and as(Q) are in the perturbative region it makes sense to truncate the 

series on the right-hand-side and solve the resulting differential equation for as(Q). 
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For example, neglecting the b’ and higher coefficients in Eq.(1.25) gives the solution 

R-(Q) = ffs(c1) 
1 t w(p)bt’ 

t = I*($). (1.26) 

This gives the relation between us(Q) and a&), if both are in the perturbative 

region. Evidently as t becomes very large, the running coupling as(Q) decreases to 

zero. This is the property of asymptotic freedom. The approach to zero is rather slow 

since as only decreases like an inverse power of 1ogQ’. Notice that the sign of b is 

crucial. With the opposite sign of b the coupling would increase at large Qa, as it 

does in QED. 

It is relatively straightforward to show that including the next-to-leading order 

coefficient b’ yields the solution 

1 1 --~ 
w(Q) 4P) + “ln ( 

-(Q) 
(1 + b’as(Q) 

) - b’ln( as(pL) ) = bt. 
(1+ b’as(p) 

(1.27) 

Note that this is now an implicit equation for as(Q) as a function oft and as(‘). In 

practice, given values for these parameters, as(Q) can easily be obtained numerically 

to any desired accuracy. 

Returning to the physical quantity R, we can now demonstrate the type of terms 

which the renormalisation group resums. Assume that in perturbation theory R has 

the expansion 

R = as + . . . (1.28) 

where . . represents terms of order cxi and higher. The solution R(l,crs(Q)) - for 

the special choice of R given by Eq.(1.28) - can be re-expressed in terms of a&) 

using Eq.(1.26): 

R(l,as(Q)) = as(p) - (-l)j(w(r)bt)j = as(p) [l- as(p)bt + &p)(bt)’ + .] 
z 

(1.29) 

Thus order by order in perturbation theory there are logarithms of Q*//L” which 

are automatically resummed by using the running coupling. Higher order terms in 

R - represented by the dots in Eq.(1.28) - when expanded give terms with fewer 

logarithms per power of (1s. An explicit example of how this works in practice will 

be discussed in the next chapter. 
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Perturbative QCD tells us how the coupling constant varies with the scale, not 

the absolute value itself. The latter has to be obtained from experiment. Thus we 

can choose as ‘the’ fundamental parameter of the theory the value of the coupling 

constant at a convenient reference scale which is large enough to be in the perturbative 

domain, Ma for example. An alternative approach - which was adopted historically 

and is now the de facto standard for specifying the strength of the strong interaction 

- is to introduce a dimensionful parameter directly into the definition of as(Q). By 

convention this parameter is called A and is a constant of integration defined by 

(1.30) 

In effect, A represents the scale at which the coupling as(Q) becomes strong. The 

arbitrariness of the integration constant is reflected in the fact that replacing A by 

Ax constant in Eq.(1.30) still gives a solution to the differential equation for as(Q). 

The introduction of A alkws us to write the correct asymptotic solution for as. 

In leading order (LO), i.e. retaining only the b coefficient in the p function, we can 

perform the integral in Eq.(1.30) to obtain 

Q-(Q) = 
1 

bln(Qa/A’)’ 
(1.31) 

Note that for large Q this solution agrees with Eq.(1.26) as it must. The definition 

of A is extended to next-to-leading order (NLO) by including also the 6’ coefficient in 

the integral: 
1 

- ( as(Q) + “l* 1 + b’czs(Q) 
“=dQ) ) = bin($). (1.32) 

Again, this allows a numerical determination of as(Q) for a given value of A. Al- 

ternatively, we can obtain an approximate solution of Eq.(1.32) in terms of inverse 

powers of log(Q’/A’): 

1 

as(Q) = bln(Q”/h*) 
1- El*l*(Q2/A2) + 

b ln(Q*/Aa) “’ ’ 1 
Note, however, that this expression corresponds to a slightly different definition of 

A to Eq.(1.32). The true expansion of as(Q) in inverse powers of log(Q’/A”) would 

contain a term of order constant/log2. However the freedom to multiply A by a 

constant can be used to remove this term. Specifically, if we call Eqs.(1.32) and 
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Table 2: as(Q) for Q = 5 GeV and A = 200 MeV 

(1.33) definitions 1 and 2 respectively, then for the same value of as(Q) the two A’s 

are related by 

Ar = (;)“A1 m l.l48Ar, (nr = 5). (1.34) 

It will be clear from the above discussion that the use of the parameter A as the 

fundamental parameter of QCD presents a number of traps which can ensnare the 

unwary. First, A can be defined to leading or next-to-leading order and in each case 

multiplying A by a constant gives an equally acceptable definition. The differences 

induced in as(Q) are one order higher in perturbation theory. Nowadays, alI preci- 

sion QCD phenomenology is performed at next-to-leading order. Either Eq.( 1.32) or 

Eq.(1.33) can be used to define A in this case, and both definitions are used in the 

literature. Since in practice it is usually as which is measured experimentally, it is 

important when comparing A values to check that the same equation has been used 

to determine A from the coupling constant. Differences between the results obtained 

using different conventions - although small - can be comparable to present-day mea- 

surement errors. 

A second difficulty with the above definitions is that A depends on the number of 

active flavours. Values of A for different numbers of flavours are defined by imposing 

the continuity of as at the scale p = m, where m is the mass of the heavy quark (121. 

This is illustrated in Table 2 where the LO and NLO couplings are calculated using 

Eqs(l.31) and (1.33) respectively. The correct matching prescription is determined 

by the conditions that for sll values of the momenta the coupling constant must be 

both a solution of the renormalisation group equation and also a continuous function. 

From Eq.(1.33) for p > ms we have, 

os(” 5, = b(5) ln(~~/A(5)r) 
[l-...I. 

For m, < p < ms, the coupling evolves with four active flavours, and the correct form 
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Figure 1: Comparison of A for 4 and 5 light quark flavours, with matching at ms = 5 

GeV. 

to use is 
1 

4% 4) 
= ““l;“l(~i”“’ + constant (1.36) 

where the square bracket is the same as in Eq.(1.35). The constant is fixed by the 

continuity condition, 

as(ms, 4) = (LS(mt., 5). (1.37) 

Using the next-to-leading order form for as(Q) one can show then that 

A(4) x A(5)(%)’ [In($$)]r? (1.38) 

Fig.(l) illustrates the relation between A(4) and A(5) graphically. In summary, it is 
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important when comparing different A values to establish the number of light quark 

flavours assumed and also whether the LO or NLO expressions have been used. This 

is illustrated in Table 2. 

The third troubling property of A is that it depends on the renormalisation scheme. 

Consider two calculations of the renormalised coupling constant which start from the 

same bare parameters. 

0; = .PaO, 

0; = ZWaO, (1.39) 

The two schemes start from the same bare coupling a:. The infinite parts of the 

renormalisation constants ZA and 2’ must be the same in all orders of perturbation 

theory. Therefore the two renormalised coupling constants must be related by a finite 

renormalisation: 

0; = c&l + crcz; + . . .). (1.40) 

Note that the first two coefficients of the /3 function, b and b’, are unchanged by such a 

transformation. They are therefore independent of the renormalisation scheme. From 

Eq.(1.30) we see that the two values of A are related by, 

dx Cl 

ba+(l+...) = zb’ 

The last equality follows from taking the limit Q -+ 00, because the relation must 

be true for all values of Q*. Therefore relations between different definitions of A are 

always determined by the one loop calculation which fixes cr: 

Nowadays, most calculations in fixed order QCD perturbation theory are performed 

in the modified minimal subtraction renormalisation scheme. In this approach, ultra- 

violet loop divergences are regulated by reducing the number of space-time dimensions 

to n < 4: d’-l’k 
(2x)4-” 

(1.43) 

where c = 2 - y. Note that the renormalisation scale p preserves the dimensions of 

the couplings and the fields. Loop integrals of the form d”k/[P t ma]’ then lead to 
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poles at E = 0. The minimal subtraction renormalisation prescription is to subtract 

off these poles and to replace the bare coupling by the renormalised coupling a.+). 

In practice the poles always appear in the combination 

i t ln(4n) -YE, (1.44) 

(7~ is Euler’s constant) and in the modified minimal subtraction scheme these ad- 

ditional constants are subtracted off as well. These two schemes are therefore exam- 

ples of schemes A and B introduced above, and it is straightforward to show using 

Eqs(l.40) and (1.42) that 

Ab = ,&e@=‘(4rhE)~ (1.45) 

Lastly, the expression of the experimentally measured coupling (XS in terms of 

A leads to an error which is both exponentially magnified and asymmetric. This is 

mathematically correct but depressing for an experimenter since most experiments 

actually measure us. A partial compilation of measurements is shown in Fig.(2). The 

errors in Fig.(2) are too large to conclude that as has a logarithmic fall-off with p, 

but analysis of jet data in e+e- annihilation demonstrates that as does decrease with 

scale (see later). 

Guided by Fig.(2), for the phenomenalogical predictions made in the following 

lectures we shall assume 

100 MeV < A&5) < 250 MeV. (1.46) 

This corresponds to about a 20% uncertainty at the mass of the 2: 0.10 < as(Mx) < 

0.12. Lack of knowledge of as directly translates into an uncertainty in the prediction 

of the size of QCD cross sections. Thus we should expect errors in the prediction of 

cross sections which begin in order CYS of about 20%. 
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Figure 2: Measurements of as compared with predictions for various values of A(5). 
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2. QCD in e+e- -+ Hadrons 

Many of the basic ideas and properties of perturbative QCD can be illustrated by 

considering the process e+e- + hadrons. We begin by discussing the total cross sec- 

tion. We show how the order cxs corrections are calculated, and how renormalisation 

scheme dependence enters at order czi. The total hadronic cross section also provides 

one of the most precise measurements of the strong coupling, and we quote the latest 

experimental results. 

Perturbative QCD also predicts a rich ‘jet’ structure for the final state hadrons. 

We show how jet cross sections can be defined, and how the predictions compare with 

experiment. The property of colour coherence is also discussed. 

2.1 The total cross section for e+e- + hadrons 

One of the theoretically cleanest predictions of perturbative QCD is R’+‘-, the ratio 

of the total e+e- hadronic cross section to the muon pair production cross section. 

We begin by considering the high energy 2 -B 2 process efe- --t ff with f a light 

charged fermion, f # e. In lowest order the process is mediated by either a virtual 

photon or a 2” in the s-channel. Denoting the centre-of-mass scattering angle of the 

final state pair by 8, the differential cross section is: 

du 
- = 
dcos9 

g (1+ 
1 

cos’~)(Q; - 2Q/KVfxl(s) t (A: + V:)(A; + v&(a)) 

+ cos +-4QfAeAds) + 8A.V.AfVfx,(s)) 1 (2.1) 

where 

Xl(S) = fi 
s(s - M;) 

(s - A!fp + rl,lvr; 

x2(s) = 2 

K = (fi;-ayfy (2.2) 

and (Vf, Af) are the vector and axial couplings of the fermions to the Z given explicitly 

in Eq.(6.11). The ~2 term comes from the square of the Z-exchange amplitude and the 
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x1 term from the photon-2 interference. Now at centre-of-mass scattering energies 

,/i far below the 2 peak, the ratio s/M; is small and so 1 >> x1 > x2. This means 

that the weak effects - manifest in the terms involving the vector and axial couplings 

- are small and can be neglected. Eq.(2.1) then reduces to 

do 
-= 
dcosB (2.3) 

The Mandelstam variables are denoted as usual by S, t and u. Integrating over B and 

setting Qr = -1 gives the total cross section for e+e- + p+p-: 

where fi is the total centre-of-mass energy. 

When an electron and r~ positron annihilate they can also produce hadrons in the 

final state. Although the formation of the observed final state hadrons is not governed 

by perturbation theory the total cross section for the production of hadrons can be 

calculated using perturbative methods. Why would one expect perturbation theory 

to give an accurate description of the total hadronic production cross section? The 

answer can be understood by visualising the event in space-time. The electron and 

positron form a photon of virtuality Q = fi which fluctuates into a quark and an 

antiquark. By the uncertainty principle this fluctuation occurs in a space time volume 

l/Q, and if Q is large the production rate should be predicted by perturbation theory. 

Subsequently the quarks and gluons form themselves into hadrons. This happens at 

a later time characterised by the scale l/A, where A is the typical mass scale of the 

strong interactions. The interactions which change quarks and gluons into hadrons 

modify the outgoing state, but they occur too late to modify the probability for an 

event to happen. 

In leading order perturbation theory, therefore, the total hadronic cross section is 

obtained by simply summing over all kinematically accessible flavours and colours of 

quarks: 

@PM = mce+e- -+ nq) 
u(e+e- + p+p-) 

= 3xQ;. 
p 

With q = a, d, 8, C, b we obtain RQPM = 1113 = 3.67. At 4 = 34 GeV the measured 

value is about 3.9. Even allowing for the 2 contribution (ARZ N 0.05), this result 
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b) 

Figure 3: Feynman diagrams for the O(as) corrections to the total hadronic cross 

section in e+e- annihilation 

is some 5% higher than the lowest order prediction. It turns out that the difference 

is due to higher order QCD corrections, and in fact the comparison between theory 

and experiment gives one of the most precise determinations of the strong coupling 

constant. 

The O(as) corrections to the total hadronic cross section are calculated from the 

real and virtual gluon diagrams shown in Fig.(3). For the real gluon emission diagrams 

shown in Fig.(3b) it is convenient to write the three-body phase space integration as 

1 6p, d3p, d3k 
diPs = -- --6’(q -ply- p2 - k) 

(2~)~ 2E1 2Ez 2& 

= &d&dcos B,d&adrldzz (2.6) 



-2o- FERMILAB-Conf-90/164-T 

where &,6’1,&a are Euler angles, and 2, = 2E,lJ;; and z1 = 2Ez/J;j are the energy 

fractions of the final state quark and antiquark. Integrating out the Euler angles gives 

a matrix element which depends only on z1 and zz and the contribution to the total 

cross section is 

uqcg = a0 3 -&Q” /dzldzl 2 (1 -zl,‘,;f 21) 

where the integration region is: 0 < +1,+, 5 1, z1 + zz 1 1. Unfortunately, we see 

that the integrals are divergent at Zi = 1. These singularities come from regions of 

phase space where the gluon is collinear with either quark, 0, -P 0, or where the 

gluon is soft, E, + 0. Evidently we require some sort of regularisation procedure - 

to render the integrals finite - before the calculation can be completed. A variety of 

methods are suitable. One can give the gluon a small mass, or take the final state 

quark and antiquark off-mass-shell by a small amount. In each case the singularities 

are then manifest as logarithms of the regulating mass. 

A more elegant procedure is to use dimensional regular&&on, with the number 

of space-time dimensions now R > 4. With the three-body phase space integrals now 

cast in n dimensions, the soft and collinear singularities appear as poles at n = 4. 

Details of how the calculation proceeds can be found for example in ref.(4]. The result 

is that the cross section of Eq.(2.7) becomes 

q- LIZ go 3 
T”‘* q 3a 

H(e) [; - z + y + O(e)], 

where H(e) = 1 + O(c). 

The virtual gluon contributions shown in Fig.(3a) can be calculated in a simi- 

lar fashion, with dimensional regularisation again used to render finite the i&a-red 

divergences in the loops. The result is 

gnw = ~03yQ;2 H(E) [-S + 5 - 8 + O(e)]. 

When the two contributions Eqs.(2.8) and (2.9) are added together the poles exactly 

cancel and the result is finite in the limit E -+ 0: 

Ret’- =3 ‘&Q” {I+ : + O(a:)}. (2.10) 
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Note that the next-to-leading order correction is positive, and with a value for as of 

about 0.15, can accommodate the experimental measurement at fi = 34 GeV. In 

contrast, the corresponding correction is negative for a scalar gluon. 

The cancellation of the soft and collinear singularities between the real and virtual 

gluon diagrams is not accidental. Indeed there are theorems - the Bloch, Nordsieck 

[13] and Kinoshita, Lee, Nauenberg [14] theorems - which state that suitably de- 

fined inclusive quantities will be free of singularities in the massless limit. The total 

hadronic cross section is an example of such B quantity, whereas the cross section for 

the exclusive qp final state, i.e. u(e+e- + q$ is not. 

The O(ai) corrections to Ret’- are also known. At this order we encounter the 

ultra-violet divergences associated with the renormalisation of the strong coupling. 

After renormalisation, in the MS scheme for example, the O(czi) coefficient depends 

on the renormalisation scale p: 

R e+e- = 3CQ; {I+++ [33;22nfIn$+?$ 

(2.11) 

and C(3) = 1.2021. Note that the p-dependence of the second order coefficient is 

exactly as specified by the renormalisation group equation, i.e. the coefficient of 

ln(p’/s) is exactly blr, where b is the p function coefficient defined in Eq.(1.22). 

Specialising to the case of p = 4 and nf = 5, Eq.(2.11) becomes 

Ret’- = 3 TQ’ { 1+ “s’,fi) + 1.411 (“s;fi))’ + . . . }. (2.12) 

What can one say of the higher order terms in this perturbation series? Before 

performing an explicit calculation all we can say is that they will be of O(ai). A 

calculation of the third order coefficient in this perturbation series has been performed 

[15], but the results are now known to be in error [16]. 

In general the coefficients of any QCD perturb&iv= expansion depend on the choice 

made for the renormalisation scale /.J. As p is varied, the change in the coefficients 

exactly compensates the change in the coupling a.+) in such a way that the physical 

predictions are independent of p. However this p-independence breaks down whenever 
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Deviation from QPM result in QCD 

A”’ (two loop) = 230 MeV. 

4- 

3-“““““““““’ 
0 20 40 60 80 100 

P [GeVl 

Figure 4: The quantity x = [R(j)/RQPM - l] as a function of the s&e /L, where R(j) 

denotes the QCD prediction for Ret’- truncated at O(ai) 

the series is truncated. One can show in fact that changing the scale in a physical 

quantity such 88 Re+e- - which has been calculated to O(cr”,) - induces changes of 

O( a;“). 

The dependence of R’+‘- on the scale p retaining only the first or second terms 

is shown in Fig.4. As expected, the inclusion of higher order terms leads to a more 

definite prediction. In the absence of higher order corrections, one can try to guess 

the ‘best’ choice of scale, defined as the scale which makes the truncated and aII- 

orders predictions equal. In the literature, two such choices have been advocated in 

particular. In the fastest apparent convergence approach [17], one chooses the scale 
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Figure 5: Combined QCD-electroweak fit to Ii’+‘-, from reference[lg] 

P = PFAC,wh=r= 

R(')(PFK) = R@$+~~). (2.13) 

On the other hand, the principle of minimal sensitivity [18] suggests a scale choice 

P = PPMS, wh=r= 

P-$R%)I,,~, = 0. (2.14) 

These two special scales can be identified in Fig.4. It is important to remember that 

there are no theorems that prove that any of these schemes are correct. All one can 

say is that the theoretical error on a quantity calculated to O(a;) is O(atfl). Varying 

the scale is simply one way of quantifying this uncertainty. 

Finally, Fig.5 shows a recent fit [I91 to data on R’+“- over a broad energy range. 

The weak and QCD contributions are displayed. The fitted value of as, in the MS 

scheme and using the second order QCD prediction, is 

a~(34 GeV) = 0.158 & 0.020 (2.15) 
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which corresponds to 

Am- = 440 $320 
MS -220 MeV. (2.16) 

2.2 Jet cross sections 

The expression given for the total hadronic cross section in the previous section is 

very concise, but it tells us nothing about the kinematic distrihtion of hadrons in the 

final state. If the hadronic fragments of a fast moving quark have limited transverse 

momentum relative to the quark momentum, then the lowest order contribution, 

( e+e- -+ qq), can naively be interpreted as the production of two back-to-back jets. 

In this section we investigate how higher order perturbative corrections modify this 

picture. 

Consider first the next-to-leading process e+e- + qqg. From Eq.(2.7) in the 

previous section, we have 

1 dau 2as --=- z: t z; 

Q dr,dxl 3n (1 - r1)(1- za)’ 
(2.17) 

Recall that the cross section becomes infinitely large when either (a) the gluon is 

collinear with one of the outgoing quarks, or (b) the gluon momentum goes to eero. 

This corresponds to (a) only one and (b) both of the Ei approaching 1 respectively. 

In other words the gluon prefers to be soft and/or collinear with the quarks. If the 

gluon is required to be well-separated in phase space from the quarks - a configura- 

tion corresponding to a ‘three jet event’ - then the cross section is suppressed relative 

to lowest order by one power of as. It would appear, therefore, that the two jet 

nature of the final state is maintained to next-to-leading order, since both the pre- 

ferred configurations give a final state indistinguishable (after parton fragmentation 

to hadrons) from that at lowest order. This qualitative result holds in fact to all 

orders of perturbation theory. Multigluon emission leads to a final state which is 

predominantly ‘two-jet-like’, with a smaller probability (determined by as) for three 

or more distinguishable jets. A more complete discussion can be found in reference 

PO1 
To quantify this statement we need to introduce the concept of a jet measure, i.e. a 

procedure for classifying a final state of hadrons (experimentally) or quarks and gluons 
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(theoretically) according to the number of jets. To be useful, a jet measure should 

be free of soft and collinear singularities when calculated in perturbative &CD, and 

should also be relatively insensitive to the non-perturbative fragmentation of quarks 

and gluons into hadrons. 

One of the most widely used jet measures is the ‘minimum invariant mass’ algo- 

rithm. Consider a @g final state. A three jet event is defined as one in which the 

invariant masses of the parton pairs are all larger than some fixed fraction y of the 

overall centre-of-mass energy: 

(Pi + Pj)’ > Yst i,j = q,P,s. (2.16) 

It is immediately clear that this region of phase space avoids the soft and collinear 

singularities of the matrix element. In fact in terms of the energy fractions, Eq.(2.18) 

is equivalent to 

0 < Zl,ZZ < 1 - y, 21 + 22 > 1+ y. (2.19) 

If we define R2 and R3 to be the two and three jet fractions then to O(aS) we obtain 

+ 4Lizi&)-G], Lig(y)=-[&In(*). 

R1 = 1- R3 (2.20) 

Note that the soft and collinear singularities reappear as large logarithms in the limit 

y -+ 0. Clearly the result only makes sense for y values large enough such that 

RI1 > R,, so that the O(crs) correction to RZ is perturbatively small. 

The generalisation to multi-jet fractions is straightforward. Starting from an n- 

parton final state, identify the pair with the lowest invariant mass squared. If this 

is greater than ya then the number of jets is n. If not, combine the lowest pair into 

a single ‘cluster’. Then repeat for the (n - 1).parton/cluster final state, and so on 

until all parton/clusters have a relative invariant mass squared greater than ys. The 

number of clusters remaining is then by definition the number of jets in the final 

state. Note that an n-parton final state can give any number of jets between 7~ (all 
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partons well-separated) and 2 (f or example, two hard quarks accompanied by soft 

and collinear gluons). 

Since a soft or collinear gluon emitted from a quark line does not change the 

multiplicity of jets, the cancellation of soft and collinear singularities that was evident 

in the total cross section calculation can still take place, and the jet fractions defined 

this way are free of such singularities to all orders in perturbation theory. 

Now in general we have 

R;+2(VGY) = (“sLG’)i ~ij(y)(os~+))j, i 2 0, 

Note that since the jet fraction criterion y is dimensionless all the energy dependence 

of the jet fractions is contained in the coupling as(&). One can therefore exhibit, 

at least in principle, the running of the strong coupling by measuring a decrease in 

RJ as J;; increases. The effect is clearly visible in Fig.(G). Note that experimentally 

the algorithm is applied to final state hadrons rather than partons. However studies 

using parton shower/fragmentation Monte Carlos have shown that - at least at high 

energy - the fragmentation corrections are small and therefore the QCD pa&on-level 

predictions can be reliably compared with the experimental data [Zl]. An example 

of such a comparison is shown in Fig.(7). 

2.3 Colour coherence 

For the case of three jet events in e+e- annihilation the coherence of the radiation from 

the hard partons leads to the string effect [23,24]. In the language of perturbative 

QCD, the string effect is a result of constructive and destructive interference. Of 

cowse, it is entirely unremarkable that such interference effects should be observed 

in quantum field theory. However, it is interesting to note that the experimental 

evidence indicates that such interference effects survive the hadronisation process, a 

phenomenon which the authors of ref.(24] call local parton-hadron duality. 

At sufficiently high energy, the colour structure of the hard final state partons will 

determine the pattern of associated radiation. Because the distribution of this radia- 
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Figure 6: The energy dependence of three jet production[ZZ] 

tion is not significantly altered by hadronisation the observed pattern cf the hadrons 

which lie between the jets will depend on the colour of the partons participating in 

the hard scatter. 

We illustrate the derivation of the angle ordered approximation in the process 

e+e- --t qqg. Soft gluons are emitted only inside certain angular regions around 

the directions of the hard partons q, Q and g. We introduce the angular variables 

(; = 1 - cosB;, where Bi is the angle between the soft gluon and the hard parton i, 

and (;j = 1 - cos Bij where Bij is the angle between hard partons i and j. In terms of 

these variables the eikonal factor which describes the emission of soft radiation may 

be written, 

($${$+i-i})+(i++j) (2.22) 
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Figure 7: Jet fractions from the OPAL collaboration at LEP [ZZ]. Perturbative QCD 

fits with different choices for the renormalisation scale ti are shown 

where lkj represents the energy of the soft gluon. The lines i and j are colour con- 

nected. The eikonal factor in Eq.(2.22) is the same as the factor obtained in the soft 

photon approximation in QED[l]. The expression in braces contains the collinear pole 

at [; = 0 but not that at [j = 0. Furthermore, when averaged over the azimuthal 

angle & around the direction of hard parton i, it vanishes outside the ccme c; = [id. 

In fact [25,24], 

J { 

$f $ + i - k = :O((ij - (ii). 

I 
3 I 

(2.23) 

Hence, averaging each term with respect to azimuth around its direction of singularity, 

we mav write. I , 
M = &@(fij - Ci) + &O(b - cj). f 

(2.24) 

Eq.(2.24) has the same form as the incoherent radiation emission result but with a 

dynamically imposed angular constraint on the phase space. 

An elegant way to examine the pattern of soft radiation associated with a hard 

scattering event is to compare e+e- annihilation into three jets with annihilation into 



-29- FERMILAB-Conf-90/164-T 

Figure 8: Particle flow as a function of angle in the plane of the event 

two jets and a photon. The parton final states are nqg and qq7. From Eq.(2.24) we 

deduce that the soft radiation (and hence the particle flow) is dynamically constrained 

by angular ordering to lie between the colour connected lines. For the purposes 

of this argument the colour degrees of freedom of the gluon can be approximately 

regarded as a qp system, with the quark part connected to the outgoing antiquark 

line and the antiquark part connected to the outgoing quark line. The soft radiation 

in the qqg event is then expected to lie predominantly between the gluon and the 

quark and the gluon and the antiquark. In contrast for the qijy event the radiation 

occurs predominantly between the quark and the antiquark. Data from the TPC 

collaboration [27] are shown in Fig.(S). The jets are ordered in energy Et > Es > Es 

and the third jet is assumed to be the gluon. In the angular regions near the cores 

of jets 1 and 2, the distributions of the qqg and qe events agree very well. In the 

region between jets 1 and 2, opposite the gluon jet or the photon, the data show a 
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depletion in particle production in qqg compared to qQ^/. 

A heuristic explanation of the reason for angular ordering can be obtained [26] 

using a simple uncertainty principle argument. Consider an incoming virtual photon 

which decays into a.n electron-positron pair. An additional soft photon of momentum 

k is subsequently radiated from the electron-positron pair. The virtual state consisting 

of an electron and a positron differs in energy from the final state containing an 

electron, a positron and a soft photon by an energy AE, 

AE = (Ei + Ej + Eb) - (Ei+r, + Ej) 

= @iG-z+ Ii1 - J(p7. (2.25) 

In the limit of very large P; and small B;k this becomes, 

AE N Irc’l0:. (2.26) 

By the uncertainty principle the virtual electron state lives for a time At which is 

approximately given by 

At-=!-+?, 
IklS,?, &k 

(2.27) 

where XT N l/kT N l/(koik) is the transverse wavelength of the emitted soft photon. 

In this interval of time At the electron and positron separate a transverse distance 

given by 

Ad = &eij z 2. (2.28) 

If &, > 8ij, the separation of the electron and positron is less than the transverse wave- 

length of the emitted soft photon. The emitted soft photon perceives the electron- 

positron pair as an unresolved charge neutral object and no radiation occurs. If, on 

the other hand, the emitted photon lies within the cone described by the electron 

positron pair, &k < Bij, the radiation is uninhibited. 

This example indicates the reason for angular ordering in QED. The generalisation 

of this argument to QCD is complicated by the fact that the gluons themselves carry 

colour charge, but the angular ordering result persists. 

It is an interesting property of the theory that the emission of gluons in the 

final state can, to a good approximation, be represented by a semi-classical parton 
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‘branching’ or ‘cascade’ picture, i.e. the quarks emit gluons which in turn emit more 

gluons etc. This property is evident for example in Eq.(2.24) where it is shown 

that the eikonal factor obtained from the interference of Feynman diagrams can be 

approximately represented as a sum of probabilities. The quarks produced at the 

photon vertex after an e+e- annihilation have ‘virtuality’ (i.e. are off mass shell) of the 

order of the total centre-of-mass energy. Parton branching then takes place, reducing 

the virtualities, until all the final state partons have virtualities of the order of the 

hadronic mass scale (0(1 GeV)). This part of the fragmentation can be described 

in terms of QCD perturbation theory. Finally, the partons ‘hadronise’ to give final 

states made up of pions, kaons and other hadrons. The hadronisation of the partons 

cannot be described perturbatively, but instead can be mod&d, the parameters being 

determined by fitting to the data. In this way jet fragmentation Monte Carlos are 

constructed. Different ways of performing the non-perturbative hadronisation lead to 

different models [28] which can be compared with experimental data. 
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3. Deep Inelastic Scattering and Parton Distributions 

The original, and still the most powerful, test of perturbative QCD is the breaking 

of Bjorken scaling in deep inelastic lepton-hadron scattering. Nowadays, deep inelastic 

structure function analyses not only provide some of the most precise tests of the 

theory but also determine the momentum distributions of partons in hadrons for use 

as input in predicting cross sections in high energy hadron collisions. In this lecture we 

begin by discussing deep inelastic scattering and the ‘naive’ parton model. We then 

show how QCD modifies the simple Bjorken scaling property of the parton model, 

and discuss how these ‘scaling violations’ can be calculated in perturbation theory. 

We compare the theoretical predictions with experimental data, and calculate the 

asymptotic behaviour of the parton distributions at small +. Finally, we describe the 

generalisation of the parton picture for general hard scattering processes involving 

quarks and gluons. 

3.1 Deep inelastic scattering and the parton model 

Consider the scattering of a high energy charged lepton off a hadron target. If we 

label the incoming and outgoing lepton four-momenta by kp and k’g respectively, the 

momentum of the target hadron (assumed hereafter to be a proton) by pi’ and the 

momentum transfer by q’ = kp - k’p, th en the standard deep inelastic variables are 

defined by: 

Q' = mq2, pz = Ma 

Q" Q2 
z = 2p=2M(E-E’) 

cl.P 
’ = k.p 

- = 1 - E’IE , 

where the energy variables refer to the target rest frame. If the lepton is an electron 

or muon, then the scattering is mediated by the exchange of a virtual photon, Fig.(S). 

The structure functions Fi(t, Q’) - which parametrise the structure of the target 

as ‘seen’ by the virtual photon - are then defined in terms of the lepton scattering 
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--I k 

Figure 9: Deep inelastic charged lepton-proton scattering 

cross sections. For charged lepton scattering, lp + IX, 

+(1 - Y)(r - 2rF;m) - (M/2E)zyF;m , 1 
and for neutrino (antineutrino) scattering, vp -+ IX, 

#,y’W 
__ = 
dzdy 

+yW,‘(“) + (-) y( 1 - y/2)4*‘) 1 

(3.2) 

The Bjorken limit is defined as Q’,p . q -+ 00 with + fixed. In this limit the 

structure functions obey an approximate scaling law, i.e. they depend only on the 

dimensionless variable z: 

Fi(z, Q’) - E(z). (3.4) 

This is illustrated in Fig.(lO), where data on the electromagnetic structure function 
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Figure 10: The FZ structure function from the SLAC-MIT and BCDMS collaborations 

Fz, measured with a proton target, are displayed. The data span nearly two decades 

of experiments, from the original SLAC-MIT measurements [29] to the most recent 

measurements from the BCDMS collaboration [30]. Only a representative sample of 

data points is shown. Note that even though the Q’ values vary by two orders of 

magnitude, to a good approximation the data lie on a universal curve. 

Bjorken scaling implies that the virtual photon scatters off pointlike constituents, 

since otherwise the dimensionless structure functions would depend on the ratio Q/Q,,, 

with l/Q0 some length scale characterizing the size of the constituents. The ‘parton 

model’ picture of deep inelastic scattering is most easily formulated in a frame in 

which the proton is moving very fast - the infinite momentum frame. In this frame, 

we consider a simple model where the photon scatters off a pointlike quark which 

carries a fraction < of the proton’s momentum. Setting M” = 0, we can rewrite 

Eq.(3.2) as 

1 . (3.5) 

Now the spin-averaged matrix element squared for massless eq -t eq scattering is 
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obtained simply by crossing the corresponding matrix element for e+e- + qq consid- 

ered in the previous lecture, cf.Eq.(2.3). In terms of the usual Mandelstam variables 

i. i. fi we have 

ElMI” = 2eg ; Y 

The notation Cdenotes the average (sum) over initial (final) colours and spins. Using 

Eq.(3.1) we can substitute for the deep inelastic variables: 1^ = -Q’, G = i(y - 1) and 

i = Qz/xy. The differential cross section for the quark scattering process is therefore 

Comparing Eqs.(3.5) and (3.7) g’ Ives us the structure functions in this simple model: 

kg = +eib(r - () = 2zil. (34 

This result suggests that the structure function Fs(r) ‘probes’ a quark constituent 

with momentum fraction z. Now clearly the measured structure function is a distri- 

bution in + rather than a delta function, suggesting that the quark constituents carry 

a range of momentum fractions. 

The above ideas are incorporated in what is now known as the ‘naive parton 

model’ [31]: 

l q([)d< represents the probability that a quark q carries momentum fraction 

between < and t + d( 

l the virtual photon scatters incoherently off the quark constituents 

Thus 

J’dz) = C 4 dt n(E) z=i6(* - 0 

= $:“p(x). 

and so for the scattering of a charged lepton off a proton target, 

(3.9) 

F;‘-(z) = + ;u(x) + id(+) + $(z) + ;a(~) + . . . . 1 (3.10) 
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For neutrino scattering - vp + IX - the virtual W+ probe measures the quark 

distributions weighted by the weak charge: 

F,‘(x) = 2x 
1 
d(x) + z(x) + a(+) + E(X) f . . . 1 . (3.11) 

A complete list of the most commonly encountered structure functions is given below. 

F; = 2x[d+s+ti+E] 

ZF3y = 2x[d + s - ii -E] 

F.f = 2++ c+d+a] 

ZF3” = 2r[u+c--d-z] 

F;” = x[;(u+u+c+z)+$(d+d+s+s)] 

22F, = Fs. (3.12) 

This last result evident in Eq.(3.8) follows from the spin-i property of the quarks. 

With sufficient number of measured structure functions, the above relations can be 

inverted to give the quark distribution functions themselves. From such an analysis, 

the following picture emerges. The proton consists of three valence quarks (uud) 

which carry the electric charge and baryon quantum numbers of the proton, and an 

infinite sea of light qij pairs. When probed at scale Q, the sea contains all quark 

flavours with m, < Q. Thus at a scale of O(1 GeV) we have 

u(x) =. w(x) + S(z) 

d(z) = &(+)+S(x) 

ii(r) = J(c) = S(x). 

with the sum rules 

dzuv(r) = 2, 
4 

dx dv(r) = 1 

dz z(q(z) + q(i)) N 0.5. 

(3.13) 

The last of these is an experimental result. It indicates that the quarks only carry 

about 50% of the proton’s momentum. The rest is attributed to glvon constituents. 
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Figure 11: Quark and gluon distribution functions at Q’ = 10 GeV’ 

Although the gluons are not directly measured in deep inelastic lepton hadron scatter- 

ing, their presence is evident in other hard scattering processes such as large transverse 

momentum jet and prompt photon production (see later). Fig.(U) shows a typical 

set of quark and gluon distributions extracted from fits to deep inelastic data, at 

p2 = 10 GeV’. 

Closer examination of Fig.(lO) reveals a systematic deviation from exact Bjorken 

scaling: the structure function decreases with increasing Q’ at large z and has the 

opposite hehsviour at small +. In the following section, we discuss how these scaling 

violations are understood in perturb&v= QCD. 

3.2 Scaling violations and the Altarelli-Parisi equations 

In the ‘naive’ parton model the structure functions scale, i.e. F(z, Q’) --t F(r) in 

the asymptotic (Bjorken) limit: Q* -+ co, x fixed. In QCD, this scaling is broken by 

logarithms of Q. To see how this Q’ dependence arises, consider the O(as) corrections 

to the eq -+ eq scattering process considered in the previous section. An explicit 
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calculation gives 

+,Q’) = 

(3.15) 

where P, C are calculable functions and n is a regulator (for example, the quark 

virtuality 2 = -pi) which is introduced to control the collinear divergence which 

arises when the gluon is emitted parallel to the incoming quark. This divergence is 

not subject to the theorems for cancellation of singularities discussed in the second 

lecture, because the virtual photon can resolve a quark and a collinear quark-gluon 

pair carrying the same overall momentum. 

If we again integrate the above result with the quark distribution function q(t) 

and choose to define Q’-dependent quark distributions by 

Fz(l, Q’) = ~;+q(=,Q), 
P 

(3.16) 

then we find to O(as), 

n(z,~)=n(.)+~[~n(O{fi;)ln$+C(;)}+.... (3.17) 

How can we interpret the limit 2 -+ O? Exactly as for the renormalisation of 

the coupling constant, we can regard n( ) z as an unmeasureable, bare distribution. 

The collinear singularities are absorbed into this bare distribution at a ‘factorisation 

scale’ ~0, which plays a similar role to the renormalisation scale. There is therefore no 

absolute prediction for the ‘renormalised’ distribution n(z, p). What the theory does 

tell us, however, is how the distribution varies with p2. Thus if we define t = ln(p*/&) 

and take the t-derivative of Eq.(3.17) we obtain 

ffs(t) $n(d = 271. % $&WY;). (3.18) 

This equation - known as the Altarelli-Parisi equation - is the analogue of the p 

function equation describing the variation of as(t) with t. 

The above derivation is rather heuristic, but a more complete treatment confirms 

and extends the result. The full prediction of the theory is most easily cast in terms 
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of the moments (Mellin transforms) of the distributions: 

1 q(i,t) = 
j 

d+ zj-1 q(z,Q (3.19) 

In terms of these moments, the t dependence of the quark distribution function is 

given by 
ddj, t) 
- = -hq (i as(t)) q (i t) . 

dt 

We next define P,, as the inverse Mellin transform of m,, 

(3.20) 

gf pw ( Z,QS) = & J 4 2-j -&,as), (3.21) 

where the integration contour in the complex j plane is parallel to the imaginary 

axis and to the right of all singularities of the integrand. Taking the inverse M&n 

transform of Eq.(3.20), we obtain in I space, 

dq(z, t) 
dt 

dz 6(~ - b)P,,(z, as(t))q(L t) 

(3.22) 

P,, has a perturbative expansion in the running coupling, 

PdZ,W) = P;;)(z) + SP(l)(,) + . . . 2K ‘I’l 
(3.23) 

Retaining only the first term in this expansion gives precisely the result in Eq.(3.18), 

with P = Pi:). 

In fact the above derivations are strictly only correct for di&wzces between quark 

distributions, q = q; - qj. In general, the Altarelli-Parisi (AP) equation is a matrix 

equation, 

The AP kernels P&?“‘(z) have an attractive physical interpretation as the probability of 

finding parton i in a parton of type j with a fraction I of the longitudinal momentum 

of the parent parton and a transverse momentum much less than p. The interpretation 
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as probabilities implies that the AP kernels are positive definite for z < 1. They 

satisfy the following relations: 

4 dxPg’(x) = 0 

% [ dx E P$‘(x) + P;,“‘(x)] = 0 

4 dx 2 [ znfP$(z) + P;;‘(z)] = 0. (3.25) 

These equations correspond to quark number conservation and momentum conserva- 

tion in the splittings of quarks and gluons. 

The kernels of the AP equations are calculable as a power series in the strong 

coupling as. Both the lowest order terms [32] and the first correction [33] to the evo- 

lution kernels have been calculated. The lowest order approximations to the evolution 

kernels are: 

P;;‘(x) = 

P;;‘(x) = 

Po’p”‘(x) = 

J’:;‘(x) = 
1-X 

x +x(1-x) +6(1-r) 1 (11N - 4n,TA) 6 . 

(3.26) 

The ‘plus prescription’ on the singular parts of the kernels is defined as 

4 ffx f(~M~)l+ = J dz (f(x) - f(l)) s(x). 

In terms of moments these four evolution kernels take the form 

(3.27) 
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(3.28) 

In general the AP equation is a (2nt + 1) dimensional matrix equation in the space 

of quarks, antiquarks and gluons. However not all of the evolution kernels are distinct 

so the matrix equation can be considerably simplified. Because of charge conjugation 

we have that, 

p,, = pa, ppo = pm. (3.29) 

At lowest order we have in addition the following relations, 

P$=O, P&lj=O (i#j). (3.30) 

The solution of the AP equation is simplified by considering combinations which are 

non-singlet (in flavour space) such as Qi - qi or qi - Qj. In this combination the mixing 

with the flavour singlet gluons drops out and we have, (V = q; - gj), 

$x,t) = f$ P*,(t) @ V(z, t11 9 

where 8 is a shorthand notation for the convolution integral of Eq.(3.22). Taking 

moments, this equation becomes 

dV(j, t) as(t) (0) , 
dt 

= Tjpq (3) w, t), 

Inserting the lowest order form for the running coupling, we find the solution 

(3.32) 

(3.33) 

It is straightforward to show that &(l) = 0 and that d,,(j) < 0 for j 2 2. 

This in turn implies that as p increases the distribution function decreases at large 

I and increases at small I. Physically, this can be understood as an increase in the 
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Figure 12: The structure function Fz measured in high energy muon-proton scattering 

by the EMC 

phase space for gluon emission by the quarks as p increases, with a corresponding 

degradation in momentum. The trend is clearly visible in the data. Fig.(l2) shows 

data on the structure function F;’ measured by the EMC [34]. 

We now turn to the flavour singlet combination of moments. Define the sum over 

all quark flavours to be given by C, 

c = CC% + a). I 
(3.34) 

From Eq.(3.24), which holds for all flavours of quarks, we derive the equation for the 
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flavour singlet combination of parton distributions, 

(3.35) 

This equation is most easily solved by direct numerical integration in I space starting 

with an input distribution obtained from data. 

We can illustrate some simple properties of the distributions using the moments. 

Taking the second (j = 2) moment of Eq.(3.35) we find that 

The eigenvectors and corresponding eigenvalues of this system of equations are 

o+(2) = C(2) +g(2) Eigenvalue : 0 

o-(2) = C(2) - Zs(2) Eigenvalue : - 
F 

(gcF + y) (3.37) 

Note that the combination Of, which corresponds to the total momentum carried by 

the quarks and gluons, is independent oft. The eigenvector O- vanishes at asymptotic 

t: 

d-(2) + 0, d-(2) = 
-( $F + 7~) 

2zrb 
(3.38) 

So that asymptotically we have ’ 

w nf -= Nnf 
g(2) 4cF - = 2(Na - 1)’ 

(3.39) 

The momentum fractions carried by the quarks and gluons in the p + 00 limit 

are therefore 

qt=_ = (40::,,) 3 g(2Jit=_ = (4czf)~ 
(3.40) 

Note, however, that the approach to the asymptotic limit is controlled by t N lnFa 

and is therefore quite slow. For a tabulation of the eigenvectors and eigenvalues of 
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Figure 17: Momentum fractions carried by the quarks and gluons as functions of the 

scale 

the moments of Eq.(3.35) we refer the reader to reference [S]. Figs.(l3) - (17) show 

the scale dependence of the quark and gluon distributions. 

3.3 QCD fits to deep inelastic data 

In the the previous section we saw that perturbative QCD predicts the Q’ evolution 

of the structure functions, rather than the size and shape of the functions themselves. 

Quantitatively, the variation with Q’ is controlled by as(Q) and hence by the QCD 

s&e parameter A. Deep inelastic scattering data of the type shown in Fig.(l2), 

therefore, provide one of the ‘precision’ tests of QCD and, arguably, the most accurate 

determination of Am 



-47- FERMILAB-Conf-90/164-T 

Although the theoretical predictions appear simplest when expressed in terms of 

structure function moments, it is very difficult to extract such moments from the data. 

This is because the measurements do not extend to very large and very small I, and 

some form of ad hoc extrapolation is required to construct the moment integrals. A 

more practical and accurate method is to choose a reference value Q0 and parametrise 

the parton distributions at that value, e.g. n(t, QO) = Az”(l-z)~. These distributions 

are then evolved numerically, using the AltarelIi-Parisi equations, to obtain values for 

the F&,Q1) in the kinematic regions where they are measured. Note that in this 

approach the rate of change with Q’ of the structure function at a given z depends 

only on the structure function evaluated at < > +, c.f. Eq.(3.24). Finally, a global 

numerical fit is performed to determine the ‘best’ values for the parameters, including 

A. The extent to which the measured value of A depends on the other parameters 

can also be quantified and used to derive a systematic error. 

The above procedure is not, however, without problems. The most serious of these 

are: 

l In QCD, the structure functions have ‘higher twist’ power corrections, which 

are much more difficult to estimate quantitatively: 

F(z,Q’) = F(‘)(z,Q’) + F0;;Q2) + _. , (3.41) 

where the superscripts on the right-hand-side refer to the ‘twist’ = (dimen- 

sion - spin) of the contributing operators. To avoid these complications, the 

analysis must be performed at large Q’ where the power suppressed terms are 

negligible. 

. The structure function J’s can be decomposed into singlet and non-singlet (‘sea 

quark’ and ‘valence quark’) parts, which dominate at small and large z respec- 

tively. Hence, except at large z, the Q’ dependence of Fz is sensitive to the 

a p&vi unknown gluon distribution and there is potentially a strong A-gluon 

correlation. 

. Non-singlet structure functions do not suffer from the gluon correlation problem 

(see Eq.(3.31)), but these are only measurable experimentally by constructing 

differences between cross sections, e.g. c+‘p - a’“. This inevitably introduces 

additional systematic and statistical uncertainties. 
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Figure 18: Data on the structure function Fz in muon-hydrogen scattering, from 

BCDMS 

The most recent generation of deep inelastic experiments partially solve these 

problems by collecting high statistics data at large + and Q”. In fact the precision of 

contemporary data demands that the next-to-leading order QCD predictions are used 

in the fits. Beyond leading order a specific renormalisation scheme must be chosen, 

and in practice this is usually the MS scheme. For this reason the results quoted in 

the literature almost always refer to Am 

Some of the most precise recent data comes from the BCDMS collaboration [30,35]. 

As an example, Fig.(l8) shows the structure function Fz measured in deep inelastic 

muon-hydrogen scattering. The measurements extend up to + values of 0.75 and 

Q” values of several hundred GeV’. Fig.(lS) h s ows the corresponding logarithmic 

Q2 derivative of logF2 as a function of z. Note that the derivatives in this region 

are negative, consistent with a structure function which decreases with increasing Q”. 

Also shown are the predictions of next-to-leading order QCD for three different values 
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figure with QCD fits, from BCDMS 

of Am A detailed iit gives [35] 

A$ = 220 + 15 rt 50 MeV (3.42) 

This result for Am is compared with determinations from other processes in Fig.(2). 

Deep inelastic experiments measure quark densities over a broad range in z up to 

about Q = 15 GeV. Knowing A=, these can then be evolved to higher p and used for 

hadron collider phenomenology. Instead of laboriously integrating the Altarelli-Parisi 

equations each time a parton distribution is required, it is useful to have an analytic 

approximation, valid to a sufficient accuracy over a prescribed (2, p) range. Several 

such parametrisations are available. 

The widely used Duke and Owens parametrisations 1361, for example, are of the 

form 

q(z, Q) = Az”(l + cz)(l - z)* 

A = Ao+A,s+ Ad etc. 
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s = ln(t~{$~~~) > 0, (3.43) 

with the parameters Ao, Al, . . . fitted to an exact leading order evolution to give 

an accuracy of a few per cent. Because deep inelastic scattering does not signifi- 

cantly constrain the gluon distribution, it was usual - in the past - to include in 

the parametrisations a choice of gluon distributions, typically a ‘hard gluon’ and a 

‘soft gluon’, each with its own A value. Nowadays, high precision fixed-target prompt 

photon experiments are able to constrain the gluon, particularly in the medium z 

range, and ‘hard gluon’ parametrisations are ruled out [37]. The most recent gener- 

ation of parton distributions - for example the HMRS sets [38] - are obtained from 

next-to-leading order QCD fits to a wide variety of deep inelastic data, as well as 

data from prompt photon and lepton pair production. The distributions cover a wide 

range in + and p, and are ideal for making quantitative predictions for present and 

future hadron-hadron and lepton-hadron colliders. 

3.4 Small x behaviour of the parton distributions 

From Fig.(l3), we see that the gluon distribution grows rapidly at small z. In the 

asymptotic limit where z -+ 0 and p --t 00 it is possible to determine the behaviour 

of the distributions directly from the Altarelli-Parisi equations. 

The z + 0 limit of the parton distributions is controlled by the behaviour of the 

anomalous dimensions r(j) near j = 1. Considering the gluon only we have 

$4i 4 = $4~~)(j)g(j, t) 
where from Eq.(3.28), 

$(j) x Jff-. 
j-l 

In this limit the solution for the moments of the gluon distribution is, 

s(i, t) = s(i to)exp (,$ l))f 

and f is defined by, 
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To return to + space we perform the inverse Mellin transform as given by Eq.(3.21) 

G(r,t) z zg(z,t) = & dj z-(j-l)g(j,t) 
I 

(3.48) 

1 - 
= 2xi J 4 s(j, to) exp [f(j)] dj, to) (3.49) 

where the exponent f is, 

f(i) = [(j - 1)141/z) + Tb(yy l)]. (3.50) 

In the limit in which both ln(l/z) and f tend to infinity we can estimate this integral 

by expanding about the saddle point of the exponential: 

f(j) = $G+ O(i - joI’, i0 = 1 t z $ +, y = zln(l/r). (3.51) 

We therefore find for the asymptotic solution 

G(*, t) = s(h 4 =xp $6, 

which expressed in the original variables yields 

(3.52) 

1 
s(z) - - exp 

4N lnpa/Al 

+ 2” 
lni N=3, b= (33l-;f). 

In&$/As 2’ 
(3.53) 

Notice that the dependence on the starting distribution enters via the j,,th moment 

of g. Therefore at fixed f/y the initial information enters only as an overall factor. 

A topic which is presently under active investigation [39] is the mechanism which 

limits the growth of the gluon distribution. In the infinite momentum frame the gluon 

momentum distribution G(r, t) gives the number of gluons per unit of rapidity with 

a transverse size greater than l/p. If the number of gluons grows so large that the 

partons start to overlap inside the nucleon new effects will come into play. A crude 

estimate of when this begins to happen is provided by, 

G(r, t) = 
Area of hadron 

Area of parton 
- /A - pa 25 GeV-‘, (3.54) 

where T N l/m= is the radius of the hadron. At presently attainable values of I 

the value of G(z,t) does not exceed 3 or 4, so, if the above estimate is correct, the 

saturation limit is beyond the range of the present colliders. 
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4. The QCD Parton Model in Hadron-Hadron Collisions 

In this lecture we shall consider the application of the parton model to processes 

involving two hadrons in the initial state. 

4.1 The QCD improved parton model 

The high energy interactions of hadrons are described by the QCD improved parton 

model. In this model a hard scattering process between two hadrons is the result of an 

interaction between the quarks and gluons which are the constituents of the incoming 

hadrons. The incoming hadrons provide broad band beams of partons which possess 

varying fractions of the momenta of their parent hadrons, as described in the previous 

lecture. 

The cross section for a hard scattering process initiated by two hadrons with 

four-momenta PI and PZ can be written as 

u(f’~lp~) = C 
J 

dzldzl fi(zl,P)fj(+l,P) *~j(p~~p~t~s(/t),Q). (4.1) 
w 

The parton model for hard scattering events is depicted in Fig.(20). The momenta of 

the partons which participate in the hard interaction are pl = z,P, and pa = z2P2. 

The characteristic scale of the hard scattering is denoted by Q. This could be, for 

example, the mass of a weak boson or heavy quark, or the transverse momentum 

of a jet. The functions fi(c,p) are the usual QCD quark or gluon distributions, 

defined at factorisation scale p. The short distance cross section for the scattering 

of partons of type i and j is denoted by >;j. Since the coupling is small at high 

energy, the short distance cross section can be calculated as a perturbation series in 

the running coupling as. Therefore the nth order approximation to the short distance 

cross section is given by 

k= c%:(l+&Y%+ (4.2) 

where the c(j) are functions of the kinematic variables. 

In the leading approximation (n = 0) the short distance cross section is identical 

to the normal parton scattering cross section calculated in exactly the same way 

as the cross section for a QED process. In higher orders, the short distance cross 
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Figure 20: Schematic of the parton model description of a hard scattering process 

section is derived from the parton scattering cross section by removing long distance 

pieces and factoring them into the parton distribution functions. The remaining cross 

section involves only high momentum transfers and is insensitive to the physics of low 

momentum scales. In particular, the short distance cross section does not depend on 

the details of the hadron wave function or the type of the incoming hadron. It is a 

purely short-distance construct and is calculable in perturbation theory because of 

asymptotic freedom. This factorisation property of the cross section can be proved to 

all orders in perturbation theory. For more details, see for example reference [40]. A 

heuristic argument for the validity of factorisation is given in the next section. It is 

a fundamental property of the theory which turns QCD into a reliable calculational 

tool with controllable approximations, distinguishing it from the ‘naive’ parton model 

of Feynman [31]. 

The scale p in Eq.(4.1) is an arbitrary parameter. It should be chosen to be of 

the order of the hard scale Q which characterises the parton-parton interaction. The 

more terms are included in the perturbative expansion, the weaker the dependence 

on p. 

Finally, it should be emphasised that Eq.(4.1) is not a description of the bulk of 
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the events which occur at a hadron-hadron collider, but as we shall see, it can be used 

to describe the most interesting classes of events which involve a hard interaction. 

4.2 Factorisation of the cross section 

The property of factorisation allows us to use the QCD parton model to describe 

inelastic processes. In this section we shall present a simple classical model that 

illustrates why the factorisation property holds and when it should fail. As an example 

of a hard process we consider the production of a massive vector boson V - in practice 

a massive photon, W or 2 - in the collision of two hadrons, 

&(Pl) + &(Ps) + v +x. (4.3) 

This is in many respects the simplest hard process involving two hadrons, since the 

observed vector boson in the final state carries no colour and its leptonic decay prod- 

ucts are observed directly. It is therefore the easiest to analyse theoretically and 

consequently has received the most theoretical attention. 

A very important theoretical issue in this process is whether the partons in hadron 

HI, through the influence of their colour fields, change the distribution of partons in 

hadron H, before the hard scattering occurs, thus spoiling the simple parton picture. 

Soft gluons which are created long before the collision are potentially troublesome in 

this respect. 

We shall argue that soft gluons do not in fact spoil the parton picture, using 

a simple model [41] from classical electrodynamics. The vector potential due to a 

current density J is given by [42] 

A’(t,lc) = dt’dZ’ ;;(y$) J qt + 12 - $1 - t), e = 1, 

where the delta function provides the retarded behaviour required by causality. Con- 

sider a particle with charge e travelling in the positive z direction with constant 

velocity p. The non-zero components of the current density are 

J’(t,i?) = e6(Z- F(t)) 

J=(t,q = q?6(z’- T(t)), F(t) = pi, (4.5) 
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where i is a unit vector in the z direction. The charge passes through the origin 

at time t = 0. At an observation point (the position of hadron Hz) described by 

coordinates z,y and z, the vector potential at time t due to the passage of the fast 

moving charge is obtained by performing the integrations in Eq.(4.4) using the current 

density of Eq.(4.5). The result is 

A’(t,5’) = +a + Y2 _“;ypt _ *)‘I 
A-(&5) = 0 

A’(t,S) = 0 

A’(6 5) = &’ + ys y;ypt _ z)‘] ’ 

where 7’ = l/(1 - pa). The observation point can be taken to be the target hadron 

Hz which is at rest near the origin, so that -y x a/m2. Note that for large 7 and fixed 

non-zero (Pt - .z) some components of the potential tend to a constant independent 

of 7, suggesting that there will be non-zero fields which are not in coincidence with 

the arrival of the particle, even at high energy. However at large +y the potential is a 

pure gauge piece and hence does not lead to E or B fields. The implication of this 

result is that a covariant formulation which uses the vector potential A will not be 

the most efficient method to handle this problem, since we will have large fields which 

ultimately have no physical effect. 

To show that these large terms in the vector potential have no effect we compute 

the field strengths from Eq.(4.6). The leading terms in 7 cancel and the field strengths 

are of order l/y’ and hence of order ml/s ‘. For example, the electric field along the 

z direction is 

E’(t.$) = p s i?g + !g = er(Pt - 2) 
[z’ + y2 + rypt - .)‘I+ * 

(4.7) 

Thus the force experienced by a charge in the hadron H,, at any fixed time before the 

arrival of the quark, decreases as ml/s ‘. There are residual interactions which distort 

the distribution of quarks in hadron H,, but their effects vanish at high energies. A 

breakdown of factorisation at order l/s2 is therefore to be expected in perturbation 

theory and has been demonstrated explicitly in ref. [43]. Note that these effects are 

due to the long range nature of the vector field. In the realistic case of an incoming 
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colour neutral hadron there are no long-range colour fields. It is therefore possible 

that the factorisation property is even better in the full theory than in perturbation 

theory. In the next lecture we will consider vector boson production, dropping all 

terms suppressed by powers of s. The QCD improved parton model will provide a 

valid description of this process. 

4.3 Parton luminosities 

Since partons only carry a fraction of their parent hadron’s momentum the available 

centre of mass energy of a parton-parton collision is less than the overall hadron- 

hadron collision energy. A convenient way to quantify this is to define pm-ton lumi- 

nosities. Consider a generic hard process initiated by two hadrons of momenta P1 

and P2 and s = (PI + Pz)‘, 

O(8) = c 
J 4 

d+1 ‘d~z fi(Zl,p)fj(zsvr) ~~j(~lP~,zaPZl,S(P)). (4.8) 
w 

We may define the parton luminosity as follows: 

dLij 1 

YF=- 1 + &j 
dxldzs [(L~~~(xI,P) XJj(zg,P)) + (1 * 2)IS(T - XI’S). (4.9) 

If b depends only on the product 21~s the parton cross section can be written as, 

(4.10) 

where i = z1zs8 and the sum now runs over all pairs of partons {ij}. The first 

object in square brackets has the dimensions of a cross section. The second object in 

square brackets is dimensionless and is approximately determined by couplings. Hence 

knowing the luminosities we can roughly estimate cross sections. As an example we 

can estimate the cross section for the production of two gluon jets with pi > 1 TeV 

at 4 = 40 TeV. We assume that 4 = 2 TeV and from Fig.(21) we find 

The gluon jet cross section can be calculated to be approximately 10 pb after including 

two powers of as x 0.1. 
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5. Large pT Jet Production in Hadron-Hadron Collisions 

The scattering processes e+e- -+ e+e-, e+e- -+ 77, . . . provide fundamental tests 

of QED. The analog processes for &CD, qp -+ qq, qP -+ gg, . . . can be studied in 

the production of large transverse momentum jets in hadron-hadron collisions. After 

defining some kinematics, we show how the jet inclusive cross section is calculated 

in the QCD improved parton model. We study the pi and angular distributions, 

and compare the theoretical predictions with the experimental data. We extend the 

discussion to include multijet cross sections, and finally describe the related process 

of direct photon production. 

5.1 Kinematics and jet definition 

As described in the previous lecture, the scattering of two hadrons provides two 

broad band beams of incoming partons. These incoming beams have a spectrum of 

longitudinal momenta determined by the parton distribution functions. The centre of 

mass of the parton-parton scattering is normally boosted with respect to the centre 

of mass of the two incoming hadrons. It is therefore useful to classify the final state in 

terms of variables which transform simply under longitudinal boosts. For this purpose 

we introduce the rapidity y, the transverse momentum pr and the azimuthal angle 

4. In terms of these variables, the four components of momenta of a particle of mass 

m may be written as 

p” = (dpccosh(y),pT sin 4,pT cos 4, $wsinh(y)) 

The rapidity y is therefore defined by 

(5.1) 

y= ~ln(~), (5.2) 

and is additive under the restrictive class of Lorentz transformations corresponding 

to a boost along the .z direction. Rapidity differences are boost invariant. 

In practice the rapidity is normally replaced by the pseudorapidity 7, 

7 = -Intan( (5.3) 
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which coincides with the rapidity in the m -+ 0 limit. It is a more convenient variable 

experimentally, since the angle 6’ from the beam direction is measured directly in the 

detector. It is also standard to use the transverse energy rather than the transverse 

momentum for similar reasons. Many methods can be used to define what is meant 

by a jet. There is no best definition, but one must be sure that both theoretical and 

experimental analyses use the same definition. A commonly used definition of a jet 

is a cluster of transverse energy ET in a cone of size AR, where 

AR = JNAY)’ + (W)al. 

In the two-dimensional y, 4 plane, lines of constant AR describe a circle around the 

axis of the jet. The cone size can be chosen at the experiment&t’s convenience, and 

the measured jet cross-section will depend on the value chosen. 

5.2 Two-jet cross sections 

In QCD, two-jet events result when an incoming parton from one hadron scatters off 

an incoming parton from the other hadron to produce two high transverse momentum 

partons which are observed as jets. From momentum conservation the two final state 

partons are produced with equal and opposite momenta in the subprocess centre- 

of-mass frame. If only two partons are produced, and the relatively small intrinsic 

transverse momentum of the incoming partons is neglected, then the two jets will 

be back-to-back in azimuth and balanced in transverse momentum in the laboratory 

frame. 

For a 2 -+ 2 parton scattering process 

p**toni(pl) + P**tonj(Pz) -+ p**tonk(P3) + p&rton,(P& 

described by a matrix element M, the parton cross section is 

(5.5) 

(5.6) 

All parton processes which contribute in lowest order can be derived from the dia- 

grams shown in Fig.(28) by including other diagrams which are related by crossing. 

Expressions for the leading order matrix elements squared CIMI’, averaged and 
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lb) 

Figure 28: Diagrams for jet production 

summed over initial and final state spins and colours are given in Table 3 in the 

notation i = (pl + pz)*, i = (~1 - p3)a and fi = (pa - P~)~. 

The two-jet cross section may be written as a sum of terms each representing the 

contribution to the cross section due to a particular combination of incoming (;, j) 

and outgoing (k,Z) partons. Using Eq.(5.6) the result for the two jet inclusive cross 

section is, 

d% 
dYsdYrdP$ =ik+g 

fi(~~ll))(~j(~~))CIM(ij + hl)j2 & (5.7) 
3 I 

where the fi(z,,u) represent the number distributions for partons of type i (i = 

u,c,d,&g I... etc.), evaluated at momentum scale p, and ys and ya represent the 

laboratory rapidities of the outgoing partons. For massless partons the rapidities 
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Process CIW/d em = nl2 

I I 
4 2 + 2 
--p-- 9 

3.26 

0.22 

nP-‘qP 

qq+99 

2.59 

32 i2 + 6’ 8 i’ + GiL) 
z---Jg--iyr 

1.04 

99 +clq 

gq-+!-Jq 

1 i’ + 7? 3P+51 --~ 
-i; 8 i1 6 

4 P+tP 72 + ia 
-- 

9 iti 
+ 

9 

99-99 ;(3-g-;-i!) 30.4 

1 

Table 3: The invariant matrix elements squared CIiVI” for two-to-two parton sub- 

processes with massless partons. The colour and spin indices are averaged (summed) 

over initial (final) states. 

and pseudorapidities may be used interchangeably. The Kronecker delta function 

introduces the statistical factor necessary for identical final state partons. If we 

assume that the detector and jet algorithm are 100% efficient, the rapidities and pi 

of the outgoing jets may be identified with those of the outgoing partons. 

We now consider the kinematics of the two produced jets in detail. The laboratory 

rapidity (aooSt) of the two-parton system and the equal and opposite rapidities (&y’) 

of the two jets in the parton-parton centre-of-mass system are given in terms of the 

observed rapidities by: 

nooat = (YS + Y,)/2, Y’ = (Ys - yr)/2. (5.8) 
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For a massless parton the centre of mass scattering angle 0’ is given by, 

cos 8’ = g = fo;;;,, = tanh(Y3 ; y’), 

where y’ = ys - yb,,,,,,. The measurement of the rapidity difference of the two jets in 

the laboratory frame determines the subprocess centre of mass scattering angle 0’. 

The longitudinal momentum fractions of the incoming partons zr and za in 

Eq.(5.7) are given in terms of p~,ys and y, by momentum conservation: 

z1 = zTe-*- cosh(y’), ra = xre-**s’ cosh(y’), y,,oo,r = 2 n + 1, 21 , (5.10) 
1 

where zr = 2p~/Js. Lastly, the invariant mass of the jet-jet system can be written 

as, 

Mj, = i = 4~; cosh”(y’). (5.11) 

Given a knowledge of the parton distributions from deep inelastic scattering ex- 

periments, Eq.(5.7) may be used to make leading order QCD predictions for jet pro- 

duction in hadron-hadron collisions. For example, the inclusive jet cross section at 

the parton level may be obtained by integrating Eq.(5.6) over the momentum of one 

of the jets. 
Ed35 d%f 
- E - = $&~lIlq’6(i + i + Ii), 

d=p dyd=pr 
(5.12) 

where t and c are fixed by i and the centre of mass scattering angle, 

i = --i (I -case*) 

ij 2 -; (l$ COSP). (5.13) 

Again assuming that the detector and jet algorithm are 100% efficient, so that p,:, = 

p&,,,,, the single jet inclusive cross section is obtained from Eq.(5.12) by folding in 

the parton distribution functions: 

E,d=& 1 
-=- 

d% 167Gs i,j, 2x 
d+ldzl fi(zl*P)fj(zlvP) 

, =p,g Xl =a 

xIM(ij -+ kl)l’ &6(2 + i + 6). (5.14) 
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Note that this result corresponds to massless quarks and gluons and that no distinc- 

tion is made between quark and gluon jets. 

5.3 Comparison with experiment 

Although large pi jet production has been studied at different machines over a period 

of many years, the definitive data are from the high energy pp colliders, i.e. from the 

UAl and UA2 collaborations at the CERN pp collider (4 = 546 GeV and 630 GeV) 

and from the CDF collaboration at the FNAL Tevatron collider (& = 1.8 TeV). 

It appears that only at these very high collision energies does the identification and 

measurement of large pT jets become relatively unambiguous. At lower energies it is 

difficult to separate the jets from the other ‘underlying’ hadrons in the event. 

Two quantities are particularly useful for comparing theory with experiment. The 

first is the jet pr distribution, obtained from the inclusive cross section by 

Ed=0 d=a 1 (ru 
-q-= 

-4-- 
d=pdy 2~8~ dETdq 

(5.15) 

where the third term follows if we assume that the jets are approximately massless. 

Fig.(29) shows the jet ET distribution in pp collisions at fi = 1.8 TeV, from the 

CDF collaboration. The curve is the QCD prediction, calculated in next-to-leading 

order (i.e. O(ai)) by S. D. Ellis et al. [44] and using the HMRSB parton distributions 

from reference [38]. The next-to-leading order contributions considerably reduce the 

dependence on the scale parameter ~1, and allow a more precise treatment of effects 

due to the finite width of the jet. The agreement is excellent, especially considering 

that there are essentially no free parameters in the theoretical prediction. Note that at 

this energy about half the cross section comes from quark-gluon scattering, the other 

half coming from gluon-gluon scattering at the lower ET end, and quark-(anti)quark 

scattering at the high ET end. 

The second quantity of interest is the jet angular distribution. In the psrton- 

parton centre of mass, the angular distribution is sensitive to the form of the 2 + 2 

matrix elements. The differential cross section for a jet pair of mass MJJ produced at 

an angle 0’ to the beam direction in the jet-jet centre of mass can readily be obtained 
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Figure 29: Jet ET distribution from the CDF collaboration, compared with a 

next-to-leading order QCD prediction from [44] 

from Eq.(5.7) using the transformation 

dp$dysdyr E ;drldzldcos 8’ (5.16) 

to give 

ba 

dMj,d CO8 8’ 
dzld+l fi(zl,P)fj(z~,P) ~(ZIZZS - #J) dtf:e. 

TJ dlij(rJ,p) dk’j 
z.7 - 

9 dn dcose” 
(5.17) 



-68- FERMILAB-Conf-90/164-T 

with 7~ = Mj,/s and 

dg ‘j “I 
= 

d COS 8’ 32,hj, ClWG --t kUl’& 

Note that for each subprocess the d+/dcos 6” is symmetrised in t^ and 6 (unless k E I). 

Thus, for example, 

d@ na; 4 = -- 
dcos6” 2Mj, 9 

4 + (1 + cose*)~ + 4 + (1 - cose*)~ 
(1 - co8 e*)l (I + cose*)l 1 . 

(5.19) 

Numerically the most important subprocesses are gg + gg, gq --t gq and qq --t qp. For 

each of these, the B’ distributions have the familiar Rutherford scattering behaviour 

at small angle, characteristic of the exchange of a vector boson in the t-channel: 

d+ 1 

d cos 8’ N sin’($)’ 
(5.20) 

It is convenient to plot the data in terms of the variable x, which removes the Ruther- 

ford singularity [48], 
I + case* 

x= l-case-’ (5.21) 

In the small angle limit (x + co) the cross section differential in x is then 

Data on the angular distribution from the CDF collaboration are shown in Fig.(30), 

with the leading order QCD prediction. Again, there is excellent agreement. Note 

that these data automatically rule out certain other quark scattering mechanisms. 

For example, a model in which quarks scatter by exchanging a scalar gluon would 

give a less singular behaviour (sin-r(P/2)) at small angle. 

It is also interesting to note that the angular dependences of the dominant sub- 

processes are very similar. Fig.(31) shows the cos 0’ dependence of the qg -t qg and 

qij -+ qcj subprocesses normalised to gg -+ gg. These ratios are evidently rather con- 

stant at the numerical values 4/9 and (4/g)’ respectively. This can be understood 

in terms of the colour structure of the Feynman diagrams. Thus to a good approx- 

imation the gg + gg subprocess can be used as the ‘universal’ subprocess in the 

result given in Eq.(5.17), i.e. the angular dependence effectively factors out leaving 
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Figure 30: x distribution from the CDF collaboration compared with the leading 

order QCD prediction 

a convolution of parton distributions. This is called the single eflectiue subprocess 

appmcimation [48]. 

5.4 Multijet production 

As long as the jets are required to be well separated in phase space, multijet cross 

sections can be calculated from scattering processes involving many quarks and gluons 

in the final state. In this way one defines an n-jet crms section u” for producing n 

jets which satisfy, say, p$ > pi@“, /q’] < qmaa and ARij > A&i,, for i, j = 1, . . ..n. 

In leading order QCD, these cross sections are calculated at the parton level from 

‘tree-level’ Feynman diagrams, i.e. diagrams without any internal loops. The general 
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expression is again obtained from Eq.(4.8): 

q” = 
z % 

dzldz* fi(zl, ~)fj(~1, p) cij-k-k=. (5.23) 
iAh,..., ~=P,P 

The matrix elements for all the 2 + 2,3,4,5 QCD processes are known exactly [45]. 

Since each n-jet cross section is proportional to a;, the cross sections fall roughly 

geometrically with increasing n. 

Events with three jets at large transverse energy are described in QCD by ampli- 

tudes with two incoming partons and three outgoing partons. Very elegant results for 

the two-to-three parton scattering processes have been given by Berends et al. [46]. 
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For a complete description it is sufficient to consider the following four processes. 

(A) qh) + d(n) + q(m) + q’(pr) + s(k) 

(W q(pd + q(n) -+ q(m) + n(n) + g(k) 

cc) ‘?(P.) + hb) -+ dP1) + !7(P2) + dP3) 

cm dP1) + !dPz) + dP3) + dP4) + dPS). (5.24) 

The momentum assignments for the partons are given in brackets. AU other matrix 

elements for two-to-three parton amplitudes may be obtained by crossing from the 

above four processes. 

The matrix elements squared for the processes (A - D), averaged (summed) over 

the initial (final) colours and spins are given below. We have set the masses of 

the quarks equal to zero. With the momentum assignments of Eq.(5.24) the matrix 

element [47] for process (A) is, 

~(@)I’ = ‘$ (“’ + “‘;+$ + “‘s) (2C+4] + [23]) + $2; 341). (5.25) 

The kinematic variables are defined as follows, 

9 = (Pl + Pl)“, t = (PI - pay, ‘11 = (PI - pa)?, 

Q’ = (P3 + PJ, t’ = (pa - p,)“, 11’ = (p2 - pg. (5.26) 

For compactness of notation we have introduced the eikonal factor [ij] which is defined 

as, 

(5.27) 

We have also defined the following sum of eikonal terms, 

[12;34] = 21121 + 2[34] - [13] - [14] - [23] - [24]. (5.28) 

Note that this combination is free from collinear singularities. In Eq.(5.25) the de- 

pendence on the SU(N) colour group is shown explicitly, (CA = N = ~,CF = 4/3). 
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In the same notation the result for process (B) with four identical quarks [47] may 

be written, 

g’cF xlM(B)l’ = N 2 + 8’1 + 211 + 21’1 

( 
2tv 

>( 

2C~([14] + [23]) + -$12;34] 

> 

+ g*cF 2 

N 
( 

+ d2 + t2 + t’l 
22121’ 

I( 

2&([13] + [24]) + $[12;34] 

> 
_ 2g’cF (8’ + 8”)(88’ - tt’ - d) 

N1 4tvuu 
)( 

2cF( [12] + [34]) + $12; 341 

> 

. 

(5.29) 

To write the results for the remaining two processes we introduce a compact 

notation for the dot product of two momenta, 

{ij} Z pi ’ pj. (5.30) 

Using the momentum assignments of EqJ5.24) the result for process (C) may be 

written as [46], 

~pq = m-; 1) 3 
(z; 

{ai)(bi}({ai}~ + {bi}y 
,= {al}{a2}{43}{al}{b2}{~3} 

x lab] + N1 tab} - ~‘u1”a2~;;42”a1’) 

~4W~(~~lHb2~ + {WbllJ 

{23)(311 )I. (5.31) 

The sums run over the three cyclic permutations P of the momentum labels of the 

final state gluons. 

Using the momentum labels of Eq.(5.24) the result for process (D) is [46], 

(5.32) 

The sums run over the 120 permutations of the momentum labels. 

These matrix elements display the typical bremsstrahlung structure with the emis- 

sion of soft and collinear gluons predominating. This is particularly clear from the 
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form of the result given in Eqs.(5.25,5.29) w h em the dominant contributions come 

from the region in which the eikonal factors are large. From the tree graph results one 

can also show that the same effective structure function which is relevant for two-jet 

production is also to a very good approximation valid for three-jet production [49]. 

For three final-state (massless) partons the final-state parton configuration, at 

fixed centre of mass energy, is specified by five independent variables. Two variables 

are required to specify how the available energy is shared between the three final-state 

partons, and two variables serve to fix the orientation of the three-jet system with 

respect to the axis defined by the colliding partons. The last variable is an overall 

azimuthal angle. If zs, L,, and zs are the energies of the outgoing partons scaled such 

that +s + z, + 2s = 2 and ordered such that zs > +* > zs and Bi is the angle between 

parton i and the beam direction, then the subprocess differential cross section can be 

written using the three particle massless phase space of Eq.(2.6): 

d’& 

drsdx4d cm Bldpb = (10;4,r)CIM12~ 

In EqJ5.33) the variable 11, is the angle between the plane containing jet-2 and jet-3 

and the plane containing jet-l and the axis defined by the incoming partons. 

There is again excellent agreement between the above theoretical predictions and 

the experimental data. As an example, Fig.(32) h s ows the distribution in the variable 

zs measured by the CDF collaboration. The solid line is the prediction from QCD, 

based on the 2 -+ 3 parton scattering amplitudes, and the dashed line is the prediction 

from phase space alone. The data clearly favour the former. 

5.5 Direct photon production 

High transverse momentum direct photon production and high transverse momentum 

jet production are two closely related phenomena. From an experimental point of 

view, the study of direct photon production has several advantages with respect to 

the study of jets: the energy resolution of the electromagnetic calorimeter is generally 

better for photons than it is for hadrons, and systematic uncertainties on the photon 

energy scale are smaller. Furthermore, since photons do not fragment, the direction 

and energy of photons is straightforwardly measured in the calorimeter without the 

need for a jet algorithm which is required to reconstruct a jet. Only the relatively 
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Figure 32: Distribution in the variable zs and +, in a sample of three jet events, as 

measured by the CDF collaboration. The solid, dashed lines are the predictions from 

QCD, phase space respectively 

low rate for the production of direct photons and the non-negligible background from 

jet production processes have limited the usefulness of the direct photons for making 

quantitative QCD tests. 

The leading order subprocesses are (a) the annihilation process qcj -+ rg and (b) 

the Compton process qg -t yq shown in Fig.(33) The invariant matrix elements 

squared are given in Table 4. Depending on the nature of the colliding hadrons and 

on the values of 4 and p~(s pg), either of these two subprocesses can dominate. For 

example, in proton-proton or proton-nucleus collisions at medium pr the Compton 

process dominates while in proton-antiproton collisions at high pi the annihilation 

process is more important. 
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b) 

Figure 33: Diagrams for direct photon or vector boson production at large PT. 

Process 

nq+r*s 

r gq+-r*‘I 

(N2 - 1) t’ + IL’ + 2s(s + t + n) 

N1 tu 

1 81 + us + 2t(a + t + u) -- 
N *u 

Table 4: Lowest order processes for virtual photon production. The colour and 

spin indices are averaged (summed) over initial (final) states. For a real photon 

(s + t + u) = 0. 
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;ure 34: Direct photon pi distribution measured by the WA70 collaboration. The 

rves are next-to-leading order QCD calculations, as described in the text 

All direct photon data show good agreement with QCD over a large energy range. 

he most precise data is from the WA70 collaboration [50]. Fig(34) shows WA70 

zta on pp -+ yX at J;; = 23 GeV. Th e curves are the fully-corrected QCD cross 

:ctions, based on the next-to-leading order calculation of Aurenche et al. [51], using 

he latest HMRS(E,B) parton distributions 1381. In fact the gluon distributions in 

hese two sets are chosen to fit the WA70 data. 
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6. The Production of Vector Bosons in Hadronic Collisions 

In this lecture we review the physics of vector boson production in hadron-hadron 

collisions. We begin by discussing the production of lepton pairs by quark-antiquark 

annihilation into a virtual photon - the Drell-Yan process. After a brief review of the 

standard electroweak model, we next discuss the phenomenology of W, 2 production 

in pp collisions, with special emphasis on perturbative QCD effects. 

6.1 The Drell-Yan mechanism 

The cross section for quark-antiquark annihilation to a lepton pair via an intermediate 

massive photon is easily obtained from the e+e- -+ 49 cross section presented in the 

second lecture, Eq.(2.3): 

4naa 1 
c(qcj + efe-) = TNQ:. 

Note that the time-reversed process, qq --t e+e- is smaller by a colour factor of l/N’ 

because of the averaging over the colours of the initial quarks. The differential cross 

section for the production of a lepton pair of mass M is therefore given by 

d& - = ??Q:S(j - MS), k-0 = g. 
dM= 

The overall colour factor of l/N is due to the fact that only when the colour of the 

quark matches with the colour of the antiquark can the annihilation into a colour 

singlet final state take place. In the centre-of-mass frame of the two hadrons the 

components of momenta of the incoming partons may be written as 

Pl = ~(21,0,0,21) 

Pa = ~(22,0,0,-+d 

The square of the parton centre-of-mass energy i is related to the corresponding 

hadronic quantity by 6 = zlzzs. Using Eq.(4.1), the parton model cross section for 

this process can be written as 

du us 
dM= = 3 % 

dzldr~S(rp~s - Ma) [T Q:(s7k(Q,f‘)&(Q,P) + 11 * 21) (‘3.4) 
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Apart from the mild logarithmic behaviour in the distribution functions, the lepton 

pair cross section exhibits scaling in the variable 7 = Ml/s: 

M3da 8m+r -=- 
dM 3N % 

dwM(wr~)[-& Q:(crd~~,~)%(=z,~) + [1 t+ 21) 1 = F(r). 

(6.5) 
From Eq.(6.3) the rapidity of the produced lepton pair is found to be y = l/2 ln(zJzx), 

and hence 

z1 = &e”, 22 = &e-“. (6.6) 

The double differential cross section is therefore 

du all 

dM=dy = N, 
Q:(qk(“l,/‘)&(%/‘) + [l t-t 21) 

I 

with z1 and ~2 given by Eq.(6.6). By measuring the distribution in rapidity and 

mass of the produced lepton pair one can in principle measure the quark distribution 

functions of the incoming hadrons. 

In QCD there exists a systematic procedure for calculating the perturbative cor- 

rections to all orders. The next-to-leading order corrections are obtained from the 

graphs shown in Fig.(35): 

do (rr, -=- 
dM2 Ns 4 

drld+2dzS(zlr~r - 7) 

‘?:(Pk(“~ti‘)s%k(%P) + [1 ++ 21) Ii s(l - 2) + 

Q:(g(%P)(Qk(=%P) + f?kk(%f‘)) + [I ++ 21) ] ~$fAz)] , (‘5.8) > 
where the correction terms are [52,53] 

f,(z) = ; (2 + (1 - z)l)ln(l - 2) + ; - 52 + ;*a 1 ) (6.9) 
and the plus distributions are defined as in Eq.(3.27). 

The size of the O(as) correction depends on the lepton pair mass and on the 

overall center-of-mass energy. At fixed-target energies and masses the correction is 
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>+P-+Y-+k”- 

Figure 35: The leading and next-to-leading order diagrams for the Drell-Yan process 

large and positive, of order 50% or more. In this regime of relatively large r, the 

(negative) contribution from the quark-gluon scattering term is quite small. However 

at pp collider energies, where T is much smaller, the f, term is more important and the 

overall correction is smaller. For W and 2 production the O(as) correction increases 

the lowest order cross section by about 25% - 30%. 

Several important pieces of information can be obtained from Drell-Yan data. 

Low mass lepton pair production in high energy hadron collisions is sensitive to the 

small 2: behaviour of the parton distributions. In pp or pN collisions the cross section 

is proportional to the sea quark distribution, ~(z,P). This provides complementary 

information to deep inelastic data, and in fact Drell-Yan data is used to constrain the 

sea quark distributions in the latest MRS fits [38]. Fig.(36) shows data from the E605 

collaboration [54], compared with the next-to-leading order QCD calculation using 



-8O- FERMILAB-Conf-90/164-T 

,()3 ~~,~7~~~ 

1 

.,. , ‘FT’i~ /~~I~~ r-,-~,-r~r7-rrrn-mrim~~~-- 

E 
01 

u 
z 

N- 1' 

>, 
w 

f 

2 1 
:: 

E 
‘\\ 

x 
\\ 

j_ 
hj 

j\ 

\ 

‘~\. 
\~ 

‘1~ 

\ 
‘1 

E605 pN---+k-X \ 
-x 

- HMRS(B1 
‘F, 

" 
----- HMRStE) 

1 ~, 

o., -.l. 

Figure 36: Drell-Yan data from the E605 collaborstion with next-to-leading order 

theoretical predictions 

the HMRS(E,B) distributions. Equally important is the fact that the distr!.butions 

of quarks in pions can be extracted from Drell-Yan data in =p and TN collisions. 

A comprehensive review of Drell-Yan phenomenology can be found in reference [55]. 

Fig.(37) shows the predictions for lepton pair production at collider energies, includ- 

ing the effects of the 2 pole. Fig.(37) al so illustrates the influence of higher order 

corrections. 

6.2 W and 2 production 

The discovery in 1983 of the W and 2 weak bosons provided dramatic confirmation 

of the Glashow-S&m-Weinberg electroweak model. In the remainder of this lecture 

we discuss the physics of W and 2 production in pp collisions, starting with an 
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Figure 37: The predicted e+e- pair production cross section in pp collisions 

elementary introduction to the electroweak model. 

The Lagrangian for the Glashow-Weinberg-S&m model of the electroweak inter- 

actions is 

&WS = -z xqi-yP(l - r”)(T+WL + T-W;)& - e ~Q$&&d,, 

- 2 capon x$ir’( vi - Ad)$~Zp, 

t 

, 
(6.10) 

where l?w is the Weinberg angle and gw = e/sin Bw. T+ and T- are the isospin 

raising and lowering operators and the vector and axial couplings of the Z are given 

by 

vi = t&i) - 2Qi sin”(Bw), Ai = k&(i), (6.11) 
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where ts~(i) is the weak isospin of the fermion (+i for ‘Al; and Vi, -i for di and ei), 

and Q; is the charge of the fermion in units of the positron charge. At tree-graph 

level the Fermi constant can be written in terms of the coupling SW: 

& GF 

0M& =x 
(6.12) 

The electromagnetic and Fermi coupling constants are measured to high precision 

using the Josephson effect and the muon lifetime respectively: 

a-’ = 137.03604(11) 

GF = 1.16637(Z) x lo-’ GeV-‘. (6.13) 

Using the value for the Weinberg angle derived from charged and neutral deep inelastic 

neutrino-nucleon total cross sections, sina Bw = 0.23 [56], we obtain the leading order 

predictions for the masses: 

MW = 

Mz = - 
cm ew 

a~ 89 GeV. 

The most recent measured values [57,58,59] for the masses are 

(6.14) 

Mw = 79.91 i 0.35(stat) f 0.24(sys) f O.lS(scale) : CDF(ev) 

Mw = 79.90 f 0.53(stat) f 0.32(sys) f O.OE$scaIe) : CDF(pv) 

Mw = 80.79 & 0.3l(stat) f O.Zl(sys) f 0.8l(scaIe) : UAZ(ev) 

Mz = 91.49 5 0.35(stat) + O.lZ(sys) & 0.92(scale) : UAZ(e+e-) 

Mz = 91.150 f 0.032 : LEP + SLC (6.15) 

The differences between the predictions in Eq.(6.14) and the experimental measure- 

ments are due to higher order electroweak perturbative corrections. When these are 

taken into account [60], the agreement between theory and experiment is excellent. 

In analogy with the Drell-Yan cross section in the previous section, the subprocess 
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cross sections for W and 2 production are readily calculated to be 

>d-.W = i4iiGFM& IV,q~I” a(; - M$) 

&.P+~ = :fiGFMi(V,’ + A:)&(; - Mi), (6.16) 

where V,, is the appropriate Kobayashi-Maskawa matrix element. 

The O(crs) perturbative QCD correction to the W and 2 cross sections is the same 

as the Drell-Yan correction (for a photon of the same mass) discussed in the previous 

section - the gluon is ‘flavour blind’ and couples in the same way to the annihilat- 

ing quark and antiquark. Fig.(38) h s ows the theoretical predictions for the W and 

2 cross sections (times leptonic branching ratios - see next section) compared with 

measurements from the pp collider experiments [61,62,63]. Note that the systematic 

and statistical errors on the measurements have been combined in quadrature. The 

values of the masses of the vector bosons have been chosen to be Mw = 80 GeV, 

Mz = 91.16 GeV. The parton distributions are the HMRS(B) set, with the scale 

choice p = Mw,z. We have included a ilO% error band on the theoretical predic- 

tion to allow for the uncertainties due to the parton distributions, to higher order 

electroweak corrections, and - most significantly - to the only partially known O(ai) 

QCD corrections [64]. Evidently the agreement is very good. Note that this consti- 

tutes a non-trivial check on the evolution of the parton distributions, since in this 

calculation they are being evaluated at much higher p values than the deep inelastic 

scattering data. 

6.3 W and Z decay properties 

At leading order in electroweak perturbation theory the partial widths of the W and 

2 bosom are given (in the standard model) by 

GF%$ 
W’+ + ff”) = N 6Jzs 

I-(2’ --+ ff) = N s(V; + A;), (6.17) 

where N is a normalisation factor which is 1 for leptons and 3 for quarks. For the 

latter, the W+ decay rate refers to the sum of the decays to a given quark of charge 
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Figure 38: Comparison of W and 2 cross section measurements with theoretical 

predictions 

i and all antiquarks of charge 5, e.g. W+ --) ud + US + ~6. For any individual mode 

there is an additional factor from the Kobayashi-Maskawa mixing matrix. 

Using these relations we can calculate the branching ratios for the observed decay 

modes. By counting decay modes we obtain for the W (if the top quark is heavy: 

mr > mw - ms), 

BR(W+ --te+fi,/~+~,r+o) = 3+;+3 z 11.1% 

BR(W+ --, ud + US + &) x 33.3% 

BR(W+ --. cd+ c.? + ca) x 33.3%. (6.18) 
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For the 2 we obtain 

e+e- w& ufi dd 

[l + (1 - 4 sin’ ~9,)~] I I [2] [l + (1 - t sin’ Bw)‘] [l + (1 - i sin’ 0w)‘] 
(6.19) 

Choosing sin’ Bw = 0.23 gives 

BR(Z’ -+ e’e-,p+p-,r+r-) x 3.4% 

BR(Z’-+ p#<) x 20.4% 

BR(Z’ + u&cz) ss 11.8% 

BR(Z’ + da&.$ b&) EZ 15.2%. (6.20) 

Note the large branching fraction of the 2 boson into neutrinos and bottom quarks. 

Although the hadronic decay modes are enhanced relative to the leptonic modes, 

at hadronic colliders there is B very serious background from normal QCD two-jet 

production. A statistically significant signal has been reported by the UA2 collabora- 

tion [65]. The W decay mode into t6 is of great interest since it offers the possibility of 

observing the top quark. Taking the mass of the top quark into account, (but setting 

the mass of the bottom quark equal to zero), the partial width of the W into top and 

bottom quarks is reduced from the expression given for qiqj above. The correct result 

is 
Iyw+ + tq 

qw+ -+ e’u.) 
= 3(v,&l - TW)(l - ?(1+ TW)), 

where TW = m:/M&. Counting up all modes we see that the branching ratio into a 

given leptonic channel, such as e+v., is 

depending on the mass of the top quark. The larger value holds when the decay to 

the top quark is forbidden. A massive top quark can also affect the 2 branching 

ratios if rnt < Mz/2. Including the effect of the top quark in both the matrix element 

and the phase space we find 

qz” + tq 

l?(ZO 4 ZLTq 
=,/~[1+(1-~sin’t?~)‘+2r~((l-~sin’Bw)’-2)] (6.23) 
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where TZ = m:/rn%. 

Because the total widths (and hence the branching ratios) of the W and 2 depend 

on mt and (for the 2) on the number of light neutrino species, measurements of 

the production and leptonic decay rates can provide information on these quantities. 

Nowadays we know from precision measurements of the 2 width at LEP that N, = 3, 

and from direct searches by the CDF collaboration at the Tevatron p&i collider that 

rnt > 89 GeV [66]. It is important nevertheless to check that the collider W and 

2 measurements are consistent with these results. It is not impossible, for example, 

that a light top quark with non-standard decays could evade direct discovery while 

still contributing to the total W decay width. 

At a hadron collider the widths of the W and 2 are hard to measure directly, and 

so we consider instead an indirect method, which however requires a certain amount 

of theoretical input [67]. The idea is to express the ratio R of the number of observed 

W and 2 decays in terms of the ratio of production cross sections and branching 

fractions: 

R = Number of decays W + TV ow BR(W --+ ev) 

Number of decays 2 + ee = z ’ BR(Z + ee) 
= R, RBR 

R 
B(W -+ Iv) qw + rv) r(z -+ d) 

BR = B(Z + z+z-) = r(w -+ d) r(z -+ i+k)’ (6.24) 

The ratio 12, is calculable theoretically, with a certain error due to ignorance of the 

input parton distributions. In Fig.(39) theory is compared with experiment. The 

theoretical predictions are shown as functions of mt, for N, = 3,4,5. The band on 

each prediction is indicative of the theoretical uncertainty from parton distributions 

[38]. The most recent experimental measurements for R are [62,68]: 

R = 9.38+;:;‘:(stat) f 0.25(sys) : UA2 

R = 10.2 f O.B(stat) f 0.4(sys) : CDF. (6.25) 

The results are evidently consistent with the N, = 3, mt > 90 GeV hypothesis. 
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Figure 39: Theoretical values of the R ratio compared with data. 

6.4 Lepton angular distribution in W and Z decay 

Another important test of the theory concerns the V-A structure of the weak charged 

current, Eq(6.10). For the process 

d(m) + a(~4 --t e-(~4 + o(pv), (6.26) 

where the momentum labels are shown in brackets, we obtain (using the couplings 

derived from the electroweak Lagrangian), 

ClM(da + WI2 = 64(G~)‘lVLd2 L((pu +,,:‘-$& + Mgr2l. (‘5.27) 
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Likewise, for the charge conjugate process, we have 

CIWud--, e+vf = 64(G321V~12 [(CPU +,,~:$;, + Mgrzl’ (6.28) 

where now p, is the momentum of the incoming u quark etc. If we define 0’ to be the 

e+(e-) angle of emission in the W rest frame, measured with respect to the direction 

of the incident p(p), and if we assume that all incoming quarks (antiqusrks) are 

constituents of the proton (antiproton), then for both of the above matrix elements 

we have 

(P” . p.)l - (1 + CO8 0.)2. (6.29) 

Thus the cross section is maximal when the outgoing electron (positron) moves in 

the direction of the incoming proton (antiproton). There is a simple angular momen- 

tum argument for this. In the standard model, the W couples to negative helicity 

fermions and positive helicity antifermions. Angular momentum conservation there- 

fore requires the outgoing fermion (electron) to follow the direction of the incoming 

fermion (quark), which is usually the direction of the incoming proton. 

The lepton asymmetry is clearly visiblein the data. Fig.(40) shows 8’ distributions 

from the UAl and UA2 collaborations [61,69]. Th e d t a a are consistent with the V-A 

hypothesis. Note, however, that since there are two W-fermion-fermion vertices in 

the scattering amplitude, the arguments are unchanged if the (1 - 75) coupling is 

replaced by (1 + 75). 

The situation is more complicated for 2 decay. Because the coupling of the Z to 

fermions is a combination of left- and right-handed pieces, the lepton angular distri- 

bution is an admixture of (1 f cos 8*)1 terms, the relative amounts being determined 

by sinBw. Fig.(41) shows the angular distribution from the CDF collaboration [70]. 

The curve shows the standard model prediction with sin’ 0~ = 0.231. 

6.5 W and 2 transverse momentum distributions 

Most W and 2 bosons are produced with relatively little transverse momentum. How- 

ever, part of the total cross section corresponds to the production of large transverse 

momentum bosons. The relevant mechanisms are the 2 + 2 processes 44 -+ Vg and 

qg -a Vq. The diagrams are identical to those for large pi direct photon production, 
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Figure 40: Angular distribution of leptons from W-boson decay. 

Fig.(33), and the annihilation and Compton matrix elements are (Table 4) 

~I~+V#l’ = Tas&GFM:, ; t2 +u2;2M’s 

~I~rH”~2 = nas&q+M& i ” + u~-u2”M’, (6.30) 

with similar results for the 2 obtained by changing the overall couplings. The W 

transverse momentum distribution is then obtained by convoluting these matrix ele- 

ments with parton distributions in the usual way. 

Data on the pi distribution of the W from the CDF collaboration [72] are shown 

in Fig.(42). The curve is a next-to-leading order QCD prediction from Arnold and 

Reno [71], using HMRS(B) parton distributions. The agreement is very reasonable 

over the complete pi range, although it is clearly not possible yet to use such data for 
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Figure 41: Angular distribution of leptons from Z-boson decay, from CDF 

a precision hgfg measurement. The UA2 collaboration have, however, derived a value 

for cz.s to leading order by comparing the relative rstes of W + 1 jet and W + 0 jet 

events 1731: 

- 
as(MS,@ = Mw) = 0.13 h 0.03 (stat) & 0.03 (expsys) f 0.02 (th.sys). (6.31) 

From Fig.(2) we see that the result is consistent with measurements from other pro- 

cesses. 

At small transverse momentum, the theoretical cross section in Fig.(42) diverges. 

This is s reflection of the i&a-red singularity in the matrix element (i.e. the poles at 

t = 0 and u = 0 in the expressions given in Eq.(6.30)). As the transverse momentum 

becomes smaller, the emission of multiple soft gluons becomes important. The generic 
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Figure 42: W transverse momentum distribution from the CDF collaboration, with 

next-to-leading order QCD predictions 

expression for the cross section in this limit is: 

1 du Q(P;) Ma 4(P$) 
-- N Ar-+ogg + AaT 
0 44 PT PT 

logs $ + . . . , (6.32) 

where the A; are coefficients of O(1). The higher order terms are evidently important 

when 
Ml 

w(P;) w x - 1. (6.33) 

In practice, this corresponds to pr values less than about 10 - 15 GeV/c. Fortunately, 

the large logarithms in Eq.(6.32) crm be resummedto all orders in perturbation theory. 

For more details see reference [40]. The result is B ‘Sudakov’ form factor which 

regulates the cross section at small PT. The small pT QCD cross section is most 
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naturally expressed as a Fourier transform. Introducing the two-dimensional ‘impact 

parameter’ vector g, which is the Fourier conjugate of p;, the cross section is given, 

schematically, by 

1 du -- p 
00 dp$ 

db b J&v) exp( -S(b, M)) 

dzl dz~6(zlza - $) q(zlrb-‘) q(z2, b-l). (6.34) 

To the extent that the exponent S in Eq.(6.34) d p e en d s on as and hence on Am, 

the small pi distribution can in principle be used as a test of QCD. In practice, 

however, there are some difficulties - for example, some non-perturbative cut-off or 

smearing must be included to make the b integral in Eq.(6.34) converge at large b. 

This introduces some theoretical uncertainty. It is also difficult to make an accurate 

experimental measurement when the transverse momentum is of the same order as the 

missing transverse energy resolution. Fig.(43) h s ows an example of a comparison [74] 

of theory with data from the CDF collaboration [72]. The solid line is the resummed 

QCD prediction and the dashed line is the O(ai) fixed order prediction. Note that 

the latter is singular at pi = 0, in accordance with Eq.(6.32). Experiment and theory 

evidently agree quite well. 

6.6 Multijet production with W and 2 

One of the most important standard model processes in high energy hadron-hadron 

collisions is the production of a W or 2 with accompanying hadron (quark or gluon) 

jets. Essentially any new physics process (heavy quarks, SUSY,...) can be mimicked 

by the production of vector bosom in association with jets. It is therefore important 

to be able to estimate these backgrounds accurately. In addition quantitative tests of 

QCD are possible - we have already mentioned in an earlier section the measurement 

by the UA2 collaboration of the strong coupling as from the relative rate of W + 1 

jet and W + 0 jet production. 

As long as the jets are required to be well-separated from each other and from the 

beam, the cross sections can be calculated from the matrix elements for the tree-level 

parton processes: ij + V + kl . . . k,,, where V = W, Z and i, j, k = q,g. Details’of 

how the matrix element calculations are performed, together with references to earlier 
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Figure 43: W transverse momentum distribution at small pr, from the CDF collab- 

oration, with resummed QCD predictions from ref. 1741 

work, can be found in reference [45]. As an illustration, Fig.(44) shows the standard 

model predictions for the jet fractious f,, defined by 

f 
n 

= u(pp -+ W + n jets) 
c%,(ti -+ w + w (6.35) 

at J;; = 1.8 TeV, using a representative set of pi, 11 and AR cuts for the final state 

leptons and jets. The predictions combine the V+O, 1,2,3 jet calculations of reference 

[75] with the recent V + 4 jet calculation from reference [76]. It is interesting to note 

the almost exact geometric relation between the jet fractions, i.e. with this choice 

of cuts, the 0,. . . , 4 jet fractions are well-parametrised by f,, = fo(0.19)“. Given the 

complexity of the multijet calculations, it is surprising that the final predictions are 

related in this simple way. 
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Figure 44: Predictions for the jet fractions in W production 
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7. The Production of Heavy Quarks 

The production of heavy quarks is an important issue. One of the motivations 

for collider experiments is to discover new heavy objects, such as the top quark. 

It is therefore important to test our understanding of such production processes by 

predicting the production rates for the known heavy objects, such &s the bottom 

quark. Because the cross sections are large, hadronic interactions offer the potential 

to produce the large number of bottom quarks necessary to study their decays in 

detail. For example, with sufficient b’s it may be possible to observe CP violation in 

the b system. The disadvantage of hadronically produced b’s is that they have to be 

distinguished from a large background of other hadrons. It is therefore necessary to 

find an efficient way to isolate the bottom events from the background. This is done 

by using the special properties of their decay products. 

7.1 The decays of heavy quarks 

The existence of hadrons containing heavy quarks is deduced by observation of their 

decays. Therefore any experiment which measures the cross section for the production 

of hadrons containing heavy quarks makes assumptions concerning the branching 

fraction to the observed mode. 

We shall start by considering the decays of a free top quark in the standard model. 

We shall consider the case mt > rnw as well as the experimentally less favoured case 

mt < mw. Consider the decay of a very massive top quark which decays into an 

on-shell W boson and a b quark. This process has a semi-weak decay rate involving 

only one power of the Fermi constant. In the limit in which mt >> mry the total t 

width is given by, 

I‘(t --t bW) = 2 IV&l’ x 170 MeV 

When the top quark is so heavy that the width becomes bigger than a typical hadronic 

scale the top quark decays before it hadronises. Hadrons containing the top quark 

are never formed. 

This should be compared with the top quark decay for mt < mw - mb which is a 
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Figure 45: The total width of the top quark 

scaled-up version of Jo decay. In this case the partial width into e3 is given by, 

r(t --t befi) = - G-4 lKbla 
192+’ 

x 2.3 keV 

Fig.(45) shows the width of the top quark for general values of the top mass. The 

dashed lines show the asymptotes derived from Eq.(i’.l) and Eq.(7.2). 

In both cases the top branching ratio to leptons is given in the simplest approx- 

imation by counting modes for the W decay. Assuming the decay channel to t6 is 

forbidden because mr > mw - mb, the branching ratio is given by counting the decay 

modes e&., PO,,, r& and three colours of uH and CS. 

BR(W+ + e+ti) = 
1 

3+3t3 
!% 11% 
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All direct searches for the top quark make assumptions about the branching ratio 

into leptons. It is important to investigate unconventional decays of the top quark, 

especially if they alter the branching ratio into the leptonic decay mode. As an 

example, we consider a simple extension of the standard model which involves the 

introduction of a second Higgs doublet. Top quark decay in this model has been 

investigated in ref. [77]. In order to avoid strangeness changing neutral currents 

[78] one must couple all quarks of a given charge to only one Higgs doublet. After 

spontaneous symmetry breaking we are left with one charged physical Higgs 7 and 

three neutral Higgs particles. If mt > m, + rnb the dominant decay mode of the top 

quark is not to a leptonic mode, but rather to the charged Higgs, 

qt --+ bq+) > &$bJ: + 77%; - m; $2m~ms)Xf(m:, m;, m3 (7-4) 

InthisequationX(a,b,c) = ((a-b-c)‘-4b ) c an d v is the normal vacuum expectation 

value. As an extreme example, for mt = 30 GeV, m, = 25 GeV and rnb = 4.7 GeV 

it is found [77] that r 2 0.4MeV. It is clear that for a large range of parameters, 

the semi-weak width Eq.(7.4) greatly exceeds the weak width as determined from 

Eq.(7.2). The decay modes of the q+ determine the signature of the light top quark 

in this model. The T+ decays predominantly to ci and ?v,. If the vacuum expectation 

values of the two Higgs fields are taken to be equal the branching fraction into cz is 

64% and into fv, is 31% for m, = 25 GeV [77]. 

We may also treat the decays of the B-meson in analogy with the decay of a free 

muon. This is called the spectator model, since the quarks which accompany the b 

quark in the B-meson play no role in the decay. However in this case the finite masses 

of the u and c quarks, to which the b decays, must be taken into account. In addition 

strong interaction corrections can be appreciable because as(mb) is large. For further 

details and references to the original papers see ref. [79]. 

7.2 The theory of heavy quark production 

The leading order processes for the production of a heavy quark Q of mass m are, 

(a) n(pd + u(n) -+ Q(n) + G(n) 
(7.5) 

(b) g(n) + g(n) + Q(Ps) + Tj(,,) , 
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b) 

Figure 46: Lowest order Feynman diagrams for heavy quark production 

where the four momenta of the partons are given in brackets. The Feynman diagrams 

which contribute to the matrix elements squared in O(g’) are shown in Fig.(46). The 

invariant matrix elements squared [80,81] w ‘C result from the diagrams in Fig. (46) h h 

are given in Table 5. The matrix elements squared have been averaged (summed) 

over initial (final) colours and spins, (as indicated by C). In order to express the 

matrix elements in a compact form, we have introduced the following notation for the 

ratios of scalar products, 

2Pl .P3 2Pl.P3 4ma 
7-l = -, rz=-, p=---, 

h i 5 
i=(PltP2)1. 

In leading order the short distance cross section is obtained from the invariant 
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Table 5: Lowest order processes for heavy quark production. cjq’ is the invariant 

matrix element squared. The colour and spin indices are averaged (summed) cwer 

initial (final) states. 

matrix element in the normal fashion [l]: 

1 @P3 
d3p4 

d+ii = ii (2*)32.& (27r)32& (2r)‘b’(p1 + pa -pa - pr) CIMijl,. (7.7) 

The first factor is the flux factor for massless incoming particles. The other terms 

come from the phase space for two-to-two scattering. 

We shall now illustrate why it is plausible that heavy quark production is described 

by perturbation theory [82]. Consider first the differential cross section. Let us denote 

the momenta of the incoming hadrons, which are moving in the z direction, by PI 

and Pa and the square of the total centre of mass energy by s where s = (PI + 4)‘. 

The short distance cross section in Eq(4.1) is to be evaluated for parton momenta 

pl = zIPI, pa = rsP2 and hence the square of the total parton centre of mass energy 

is i = ~1~8, if we ignore the masses of the incoming particles. The rapidity variable 

for the two final state partons is defined in terms of their energies and longitudinal 

momenta as. 

Using Eqs.(4.1) and (7.7) the result for the invariant cross section may be written as, 

do 
dy,&d% 

The energy momentum delta function in Eq.(7.7) fixes the values of z1 and za if we 
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know the value of the pi and rapidity of the outgoing heavy quarks. In the centre 

of mass system of the incoming hadrons we may write the components of the parton 

four momenta as (E p p p ) , I, II, 7. 

Pl = ~/2(%O,O,ZI) 

pa = J;;l2(Z%O, 0, -4 

~3 = (fm coshy,,pTr O,mT sinhys) 

P4 = (W-h?/,, -PnO,WSinhY,). (7.10) 

Applying energy and momentum conservation we obtain, 

(7.11) 

The transverse mass of the heavy quarks is denoted by rn~ = J(mz + p$) and 

Ay = ys - yd is the rapidity difference between the two heavy quarks. 

Using Eqs.(7.9) and (7.11), we may write the CIOSB section for the production of 

two massive quarks calculated in lowest order perturbation theory as, 

dc 1 

dy&&w = 64?r%# 1 + cosh(Ay))2 ,, 
C Zlfi(zl,P) z2fj(z2tP) )J”Glz ’ t7’12) 

Expressed in terms of m,mT and Ay the matrix elements for the two processes in 

Table 5 are, 

~I-%d = F(, + co;h(Ay)) (coahhd + $) (7.13) 

~IM,,1’ = $(6;;;($A;;)(cosh(Ay) +2$ - 2s). (7.14) 

Note that, because of the specific form of the matrix elements squared, the cross 

section, Eq.(7.12), is strongly damped as the rapidity separation Ay between the 

two heavy quarks becomes large. It is therefore to be expected that the dominant 

contribution to the total cross section comes from the region Ay 5 1. Heavy quarks 

produced by qq annihilation are more closely correlated those produced by gluon- 

gluon fusion. 
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We now consider the propagators in the diagrams shown in Fig.(46). In terms of 

the above variables they can be written as, 

(?‘I + Pa )’ = 2p1 .pr = 2m;( 1 + co& Ay) 

(PI - ~3)’ - ma = -2pl.ps = --n&l + .-Au) 

(Pa - ~3)~ -ma = -2pl.p3 = -n&l + &‘). (7.15) 

Note that the denominators are all off-shell by a quantity of least of order m’. It is 

this fact which distinguishes the production of a light quark from the production of 

a heavy quark. When a light quark is produced by these diagrams the lower cut-off 

on the virtuality of the propagators is provided by the light quark mass, which is less 

than the QCD scale A. Since propagators with small virtualities give the dominant 

contribution, the production of a light quark will not be calculable in perturbative 

QCD. In the production of a heavy quark, the lower cut-off is provided by the mass 

m. It is therefore plausible that heavy quark production is controlled by QS evaluated 

at the heavy quark scale. 

Note also that the contribution to the cross section from values of pr which are 

much greater than the quark mass is also suppressed. The differential cross section 

falls like l/m% and as mr increases, the parton flux decreases because of the increase of 

zr and zr according to Eq(7.11). S ince all dependence on the transverse momentum 

appears m the transverse mass combination, the dominant contribution to the cross 

section comes from transverse momenta of the order of the mass of the heavy quark. 

Thus for a sufficiently heavy quark we expect the methods of perturbation theory 

to be applicable. It is the mass of the heavy quark which provides the large scale 

in heavy quark production. The heavy quarks have transverse momenta of the or- 

der of the heavy quark mass and are produced close in rapidity. The production is 

predominantly central, because of the rapidly falling parton fluxes. Final state inter- 

actions which transform the heavy quarks into the observed hadrons will not change 

the size of the cross section. A possible mechanism which might spoil this simple 

picture would be the interaction of the produced heavy quark with the debris of the 

incoming hadrons. However these interactions with spectator partons are suppressed 

by powers of the heavy quark mass [83]. F or a sufficiently heavy quark they can be 

ignored. 
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The theoretical arguments summarized above do not address the issue of whether 

the charmed quark is sufficiently heavy that the hadroproduction of charmed hadrons 

in all regions of phase space is well described by only processes (a) and (b) and their 

perturbative corrections. 

7.3 Higher order corrections to heavy quark production 

The lowest order terms presented above are the beginning of a systematic expansion 

in the running coupling, 

+ij(S, ma) = F.Fij (p, it) (7.16) 

Eq.(7.16) completely describes the short distance cross-section for the production of 

a heavy quark of mass m in terms of the functions 7;j, where the indices i and j 

specify the types of the annihilating partons. The dimensionless functions ~;j have 

the following perturbative expansion, 

Ej(P,$) = @J’(P) +4nas(P)[C$)(p) +$~‘(p)ln($)] + O(g’) (7.17) 

where p is defined in Eq.(7.6). The functions J$’ are completely known [84,85]. 

Examples of the types of diagrams which contribute to 6:’ are shown in Fig.(47). 

The full calculation involves both real and virtual corrections. For full details we 

refer the reader to ref. [84]. In order to calculate the 7<j in perturbation theory 

we must perform both renormalisation and factorisation of mass singularities. The 

subtractions required for renormalisation and factorisation are done at mass scale 

p. The dependence on p of the non-leading order term is displayed explicitly in 

Eq.(7.17). 

As discussed in previous lectures p is an unphysical parameter. The physical 

predictions should be invariant under changes of n at the appropriate order in per- 

turbation theory. If we have performed a calculation to O(as), variations of the scale 

p will lead to corrections of O(o$), 
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Real emission diagrams 

2 

2 

Virtual emission diagrams 

Figure 47: Examples of higher order corrections to heavy quark production 

In this equation o is the hadronic cross section as determined by Eq. (4.1). Using 

Eq.(7.18) we find that the term 7”’ which controls the p dependence of the higher 

order perturbative contributions is tied in terms of the lower order result 7(O): 

dzl F$)(:)PIG(z,)-J dza S$‘($)P~j(~~) 1 . (7.19) 

In obtaining this result we have used the renormabsation group equation for the 

running coupling, Eq.( 1.22) 

d 

” d/S 
---a&J) = -acc:(l+ b’as + . . .) 

b= 
33--?r2nf) b, = 153 - 19nr 

21r(33 - 2nf) 
(7.20) 
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and the Altarelli-Parisi equation, 

This illustrates an important point which is a general feature of renormalisation group 

improved perturbation series in QCD. The coefficient of the perturbative correction 

depends on the choice made for p, but the n dependence changes the result in such 

a way that the physical result is independent of the choice made for p. Thus the ~1 

dependence is formally small because it is of higher order in as. This does not assure 

us that the p dependence is actually numerically small for all series. A pronounced 

dependence on p is a signal of an untrustworthy perturbation series. 

We shall illustrate this point by showing the p dependence found in two cases of 

current interest. First, in Fig.(48), we show the p dependence found for the hadropro- 

duction of a 120 GeV top quark in leading and next-to-leading order. The inclusion 

of the higher order terms leads to a stabilisation of the theoretical prediction with 

respect to changes in p. The situation for the bottom quark is quite different. In 

Fig.(49) the scale dependence of the predicted bottom quark cross section is shown. 

The cross section is approximately doubled by the inclusion of the higher order cor- 

rections, which do nothing to improve the stability of the prediction under changes 

of p. It is apparent that the predictions for bottom production at collider energies 

are subject to considerable uncertainty. 

We now turn to the question of flavour excitation. A flavour excitation diagram 

is one in which the heavy flavour is considered to reside already in the incoming 

hadron. It is excited by a gluon from the other hadron and appears on shell in the 

final state. An example of a flavour excitation diagram is shown in Fig.(SOa). Note 

that in calculating the flavour excitation contribution the incoming heavy quark is 

treated as it were on its mass shell. If we denote the momentum transfer between the 

two incoming partons as q, the parton cross section wilI contain a factor l/q’ coming 

from the propagator of the exchanged gluon. Therefore these graphs appear to be 

sensitive to momentum scales all the way down to the hadronic size scale. This casts 

doubt on the applicability of perturbative QCD to these processes. 

In the following we shall sketch an analysis [82] which leads to an important 

conclusion. When considering the total cross section, flavour excitation contributions 

should not be included. The net contribution of these diagrams is already included as 
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Figure 48: Scale dependence of the top quark cross section in second and third order 

a higher order correction to the gluon-gluon fusion process. This analysis begins from 

the observation that the flavour excitation graph is already present as a subgraph of 

the first two diagrams shown in Fig.(SOb). D oes the flavour excitation approximation 

accurately represent the results of these diagrams? In particular is the l/q’ pole, 

which is the signature of the presence of the flavour excitation diagrams, present in 

these diagrams? 

We shall now indicate why the l/q” behaviour is not present in the sum of sll three 

diagrams displayed in Fig.(SOb). Let us denote the ‘plus’ and ‘minus’ components of 

any vector q as follows: 

qf = qo + q3, q- = qo - q3, qs = q+q- - pT . PT. (7.22) 

We choose the upper incoming parton in Fig.(50b) to be directed along the ‘plus’ 
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Figure 49: Scale dependence of the bottom quark cross section in second and third 

order 

direction, pl = p:. and the lower incoming parton to be directed along the minus’ 

direction, pr = p;. In the small qa region the ‘plus’ component of q is small, because 

the lower final state gluon is on shell, 

(pp - qy = 0, qf = &, (7.23) 

since in the centre of mass system p: x p; % ,/5. In the low q2 region the ‘minus’ 

component of q is determined from the condition that production is close to threshold, 

(pl + q)l x 472, q- x $ 

q- is therefore also small in the fragmentation region in which p: z 4. We therefore 
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a) Example of flavour excitation graph 

b) Graphs containing spin-one exchange in the t-channel 

Figure 50: Graphs relevant for discussion of flavour excitation 

find that in the fragmentation region of the upper incoming hadron, 

9’ = q+q- - 9T ’ qT = -qT ’ qT (7.25) 

The current J to which the exchanged gluon of momentum q couples is determined 

by the upper part of the three diagrams. In the fragmentation region only the ‘plus’ 

component is large. 

9T ’ JT qw~p = q+ J- + q-J+ - qT. JT = 0, Jc X - 
9- 

(7.26) 

where the Ward identity is a property of the sum of all three diagrams. The explicit 

term proportional to qr in the amplitude shows that one power of the l/q’ is cancelled 

in the amplitude squared. 
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This cancellation only occurs when the soft approximation to J+ is valid. This 

requires the terms quadratic in q to be small compared to the terms linear in q in the 

denominators in the upper parts of the diagrams in Fig.(BOb). The momentum q- 

must not be too small, 

pa < 2p+q- zz ma. (7.27) 

We therefore expect the soft approximation to be valid and some cancellation to occur 

when q* < ma. For further details we refer the reader to ref. [82]. The calculation of 

ref. (841 provides an explicit verification of this cancellation in the total cross section. 

7.4 Results on the production of charm and bottom quarks 

The value of the heavy quark maas is the principal parameter controlling the size of the 

cross section. This dependence is much more marked than the l/nil dependence in the 

short distance cross section expected from Eq.(7.16). As the mass decreases, the value 

of I at which the parton distributions are evaluated becomes smaller (cf Eq.(7.11)) 

and the cross section rises because of the growth of the parton flux. 

The approach which we shall take to the estimate of theoretical errors in heavy 

quark cross sections is a+ follows [86]. We shall take A to run in the range given by 

Eq.(1.46) with corresponding variations of the gluon distribution function. We shall 

arbitrarily choose to vary the parameter p in the range m/2 < ~1 < 2m to test the 

sensitivity to II. Lastly, we shall consider quark masses in the ranges, 

1.2 <m, < 1.8 GeV 

4.5 < m(, < 5.0 GeV. (7.28) 

We shell consider the extremum of all these variations to give an estimate of the 

theoretical error. 

We immediately encounter a difficulty with this procedure in the case of charm. 

Variations of p down to m/2 will carry us into the region p < 1 GeV in which we 

certainly do not trust perturbation theory. A estimate of the theoretical error on 

charm production cross sections is therefore not possible. In preparing the curve for 

charm production We have taken the lower limit on p variations to be 1 GeV. 

The dependence on the value chosen for the heavy quark mass is particularly acute 
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Figure 51: Data on hadroproduction of D/D compared with theory 

for the case of charm. In fact, variations due to plausible changes in the quark mass, 

Eq.(7.28), are bigger than the uncertainties due to variations in the other parameters. 

We shall therefore take the aim of studies of the hadroproduction and photoproduc- 

tion of charm to be the search for an answer to the following question. Is there a 

reasonable value for the charm quark mass which can accommodate the majority 

of the data on hadroproduction? In Fig.(51) we show the theoretical prediction for 

charm production. Note the large spread in the prediction. Also shown plotted is a 

compilation of data taken from ref. [87] which suggests that a value of m, = 1.5 GeV 

gives a fair description of the data on the hadroproduction of D’s. After inclusion 

of the O(oi) corrections, the data can be explained without recourse to very small 

values of the charmed quark mass [86]. 

This conclusion is further reinforced by consideration of the data on photopro- 
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Figure 52: Data on photoproduction of charm compared with theoretical lower limits 

duction of charm. The higher order O(or$) corrections to photoproduction have 

been considered in ref. [88]. After inclusion of these higher order terms we obtain 

predictions for the total cross section as a function of the energy of the tagged photon 

beam. The principal uncertainty derives from the value of the heavy quark mass, 

so we have plotted the minimum cross section which is obtained by varying A and 

the scale p within the range 1 GeV < /J < 2m for three values of the charm quark 

mass. The comparison with the data on the photoproduction of charm [89,90], shown 

in Fig.(52), indicates that charm quark masses smaller than 1.5 GeV do not give an 

acceptable explanation of the data. 

In conclusion, within the large uncertainties present in the theoretical estimates, 

the D/D production data presented here can be explained with a charm quark mass 

of the order of 1.5 GeV. This is not true of all data on the hadroproduction of charm, 
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especially the older experiments. For a review of the experimental situation we refer 

the reader to ref. [91]. 

As emphasised above, the theoretical prediction for bottom quark production at 

collider energies is very uncertain. The cause of this large uncertainty is principally 

the very small value of c at which the parton distributions are probed. In fact, at 

present collider energies the bottom cross section is sensitive to the gluon distribution 

function at values of z < 10-a. Needless to say the gluon distribution function has 

not been measured at such small values of +. An associated problem is the form of the 

short distance cross section in the large d region. The lowest order short distance cross 

sections, 7(s), tend to zero in the large i region [84]. This is a consequence of the fact 

that they involve at most spin i exchange in the t-channel as shown in Fig(46). The 

higher order corrections to 99 and gq processes have a different behaviour because 

they involve spin 1 exchange in the t-channel. The relevant diagrams are shown in 

Fig(50b). In the high energy limit they yield a constant cross section, independent 

of energy [84]. Naturally these high j contributions are damped by the small number 

of energetic gluons in the parton flux, but at collider energies the region 4 > m 

makes a sizeable contribution to the bottom cross section. The fact that this constant 

behaviour is present in both 7(‘1 and 7”’ indicates the sensitivity of the size of this 

term to the value chosen for p. There is therefore an interplay between the size of 

this term and the small 2 behaviour of the gluon distribution function. 

At fixed target energies the cross section for the production of bottom quarks is 

theoretically more reliable. The p dependence plot has a characteristic form similar 

to Fig.(48) and it is possible to make estimates of the theoretical errors. A compi- 

lation of theoretical results [92] and estimates of the associated theoretical error is 

shown in Table 6. The experimental study of the production of bottom quarks in 

hadronic reactions is still in its infancy, but Table 6 also includes the limited number 

of experimental results on total bottom production cross sections. 

The calculations of ref. [84] also allow us to examine the pi and rapidity distri- 

butions of the one heavy quark inclusive cross sections. Although the prediction of 

the total bottom cross section at collider energy is uncertain, it is plausible that the 

shape of the transverse momentum and rapidity distributions is well described by 

the form found in lowest order pertubation theory. The supporting evidence [97] for 

this conjecture is shown in Fig.(53), which demonstrates that the inclusion of the 
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mb [GeV] g (theory) Theoretical error Experimental data 

fi = 41 GeV, pp 

4.5 23 nb $21 -15 

5.0 9 nb 

fi = 62 GeV, pp 

4.5 142 nb 

5.0 66 nb 

$8.4 -5.9 

+98 -80 

i-47 -38 

BCF[93], 150 < o < 500 nb 

Ji = 630 GeV. v~ 

;:; 1 :; :; 1 i-i-O-8 1 UA1[94], 10.2f3.3 pb 

fi = 24.5 GeV, xN 

4.5 7.6 nb +4.7 -3.8 1 WA78[95], &= 24.5 GeV, 4.8 %0.6&1.5 nb 

5.0 3.1 nb 1-1.5 -1.5 NA10[96], &= 23 GeV, 14+7-6 nb 

Table 6: Cross section for bottom production at various energies. 

first non-leading correction does not significantly modify the shape of the transverse 

momentum and rapidity distributions. At a fixed value of p, the two curves lie on top 

of one another if the lowest order is multiplied by a constant factor. Similar results 

hold also for the shape of the top quark distribution [97]. The UAl collaboration have 

investigated the transverse distribution of the produced bottom quarks. In Fig.(54) 

comparison of the full oi prediction with UAl data is made. The data are plotted as 

a function of the lower cutoff pk(min) on the transverse momentum of the b quark. 

The agreement is satisfactory. 

The corresponding prediction for the shape of the bottom production cross section 

at the Tevatron is shown in Fig.(55). 

7.5 The search for the top quark 

The belief that the top quark must exist is based both on theoretical and experimental 

evidence. The theoretical motivation is that complete families are required for the 

cancellation of anomalies in the currents which couple to gauge fields. Hence the 

partner of the b, r and v, must exist to complete the third family. 
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Figure 53: The shape of the cross-section for bottom quark production 

An anomaly occurs in a theory because symmetries present at the classical level 

are destroyed by quantum effects. They typically involve contributions to the diver- 

gence of a current which is conserved at the classical level. If the gauge currents are 

anomalous, the Ward identities, which are vital for the proof that the gauge theory 

is renormalisable, are destroyed. 

Anomalies occur in the simple triangle diagram with two vector currents and one 

axial vector current. Elimination of the anomalies for a particular current in the 

lowest order triangle diagram is sufficient to ensure that the current remains anomaly 

free, even after the inclusion of more complicated diagrams. If the currents which 

interact at the three corners of the triangle couple to the matrices L”, Lb and L’ for 

the left-handed fields, and to the matrices R”, Rb and R’ for the right-handed fields, 
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Figure 54: The cross-section for bottom quark production at CERN energy 

the vector-vector-axial vector triangle anomaly is proportional to, 

A = Tr [Iz”{Rb,R=}] - Tr [P{Lb,LC}]. (7.29) 

For the specific case of the SU(2) L x U(1) theory of Glashow, Weinberg and Salam 

(GSW) we have the following weak isospin and hypercharge assignments for the third 

family (Q = Ts + Y), 

tL., T3 = ;,YL = ;, 
2 

tR, T3 = 0, YB = -, 
3 

bL, T3 = -;,Y, = ;, b.q, T3 = 0, YR = -5, 

VL, T3 = f,Y, = -a 

TV, T3 = -i,YL = -I 19 Y-R, T3 = 0, Yn = -1. (7.30) 
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Figure 55: The cross-section for bottom quark production at FNAL energy 

Substituting these couplings into Eq.(7.29), with all combinations of the SU(2) ma- 

trices T” or the U(1) matrices Y we obtain the form of the anomaly for the gauge 

currents of the GSW theory. Two of the resulting traces of the couplings vanish for 

each fermion separately, 

Tr Ta(T”, TC} = 0, Tr T”{YL, YL} = 0. (7.31) 

The other two traces vanish only for a complete family [SE] 

Tr (YR” - Yj) = 0, Tr Y,{T”,T*} = 0. (7.32) 

It should be noted that there are still anomalies in global (non-gauged) currents in 

the GSW model. For example the normal isospin current corresponding to a global 

symmetry (in the absence of quark masses) is anomalous. It is this anomaly which is 
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responsible for K” decay. 

Tke experimental reason to believe in the existence of the top quark is the mea- 

surement of the weak isospin of the bottom quark. The forward backward asymmetry 

of b-jets in e+e- annihilation [99] is controlled by A.& the product of the axial vector 

coupling to the electron and the b quark. The produced b and 6 quarks are identified 

by the sign of the observed muons to which they decay. The measurement is therefore 

subject to a small correction due to P-F mixing. Assuming that the axial coupling 

to the electron has its standard value the measured weak isospin of the left-handed b 

quark is [99], 

T3 = -0.5 rt 0.1. (7.33) 

The simplest hypothesis is that the bottom quark is in an SU(2) doublet with the 

top quark, although more complicated schemes are certainly possible. 

Thus assured that the top quark exists, it only remains to find it. The expected 

cross section for the process 

p+p--+t+t+x (7.34) 

is shown in Fig.(56). The cross section is calculated using the full O(ai) calculation 

of [84] and the method of theoretical error estimate described in the previous sections, 

(c$ [86]). In addition, production of top quarks through the decay chain W + t6 is 

also shown. Note the differing proportions of the two modes at CERN and FNAL 

energies. At fi = l.S(O.63) TeV the tf production is due predominantly to gluon- 

gluon annihilation for mt < lOO(40) GeV. On the other hand the W production comes 

mainly from qn annihilation at both energies. This explains the more rapid growth 

with energy of the tt production shown in Fig.(56). 

From Fig.(56) the range of top quark masses which can be investigated in current 

experiments can be derived. In a sample of 5 inverse picobarns about 2500 tf pairs 

will be produced if the top quark has a mass of 70 GeV. One can observe the decays 

of the top quark to the ep channel or to the e+ jets channel. With a perfect detector 

the numbers of events expected is, 

Number of ep events = 2 x .ll x .ll x 2500 zz 60 

Number of e + jet events = 2 x .ll x .66 x 2500 z 360. (7.35) 

The e plus jets channel gives a more copious signal and does not require muon detec- 
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Figure 56: The cross section for top quark production at CERN and FNAL 

tion, but the background is larger due to the process pp -t W+jets. This background 

may become less severe with increasing top mass as the jets present in top decay be- 

come more energetic. 

The current lower limit on the mass of the top quark is 69 GeV [66]. If the 

efficiency of extracting the signal from the data does not change with the mass of the 

top quark, we. can expect to improve the limit by an additional 40 GeV above the 

present limit, by increasing the luminosity accumulated at the Tevatron by a factor 

of 10. Note however that the efficiency of the e+ multi-jets channels will increase 

for a heavier top quark. As the mass of the top quark increases the b quark jets 

occurring in its decay will be recognised in the detector as fully-fledged jets. This 

occurs with no extra price in coupling constants. The background due to normal 

W+jets production, discussed in the previous lecture, is suppressed by a power of 
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Figure 57: Required luminosity to discover top at 1.8 TeV in various decay modes 

LY.~ for each extra jet. It will become less important in the channel with an electron 

and/or three and four jets. The results of a detailed study of the prospects for top 

quark discovery are shown in Fig.(57), taken from ref. [loo]. The limits are based on 

the expected performance of the DO and upgraded CDF detectors. 

7.6 Heavy quark in jets 

Another question of experimental interest is the frequency with which heavy quarks 

are found amongst the decay products of a light quark or gluon jet. Since hadrons 

containing heavy quarks have appreciable semi-leptonic branching ratios such events 

will often lead to final states with leptons in jets. If we wish to use lepton plus jet 

events as a signature for new physics we must understand the background due to 

heavy quark production and decay. 
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Figure 58: Heavy quark production in jets 

This issue is logically unrelated to the total heavy quark cross section. As discussed 

above, the total cross section is dominated by events with a small transverse energy 

of the order of the quark mass. Jet events inhabit a different region of phase space 

since they contain a cluster of transverse energy ET > m.,ms. This latter kinematic 

region gives a small contribution to the total heavy quark cross section. A gluon 

decaying into a heavy quark pair must have a virtuality k’ > 4mr so perturbative 

methods should be applicable for a sufficiently heavy quark. The number of Qa pairs 

per gluon jet is calculable [loll using diagrams such as the one shown in Fig.(58). 

The calculation has two parts. First one has to calculate n,(E2, k’), the number of 

gluons of off-shellness k’ inside the original gluon with off-shellness El. Secondly, one 

needs the transition probability of a gluon with off-skellness k2 to decay to a pair of 

heavy quarks. 
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The number of gluons of mass squared k’ inside a jet of virtuality El is given by 

[W 
ln(EZ/A1) -exp J[(2N/rb)ln(Ea/Aa)] 

ns(E’,k’) = In(kz,Az) [ 1 exp J[(2N/xb)ln(k’/hr)] ’ 
(7.36) 

where 

-;1+ 
[ 

(7.37) 

and b is the first order coefficient in the expansion of the p function, Eq.(7.20). 

The correct calculation of the growth of the gluon multiplicity Eq(7.36) requires the 

imposition of the angular ordering constraint which takes into account the coherence 

of the emitted soft gluons [102] as discussed in the second lecture. 

Define R,Q to be the number of Qv pairs per gluon jet. Ignoring for the moment 

gluon branching calculated above, we obtain 

Rsp=~~::~a(k’)~~=[r’+(l-=)‘+~] (7.38) 

where the integration limits are given by z+ = (l&p)/2 with/3 = J(l-4m’/k’). The 

term (z’ + (1 - z)r)/2 is recognisable as P zS., the Altarelli-Parisi branching probability .- 
for massless quarks. Integrating over the longitudinal momentum fraction z we obtain, 

The final result including gluon branching for the number of heavy quark pairs per 

&on jet is, 

1 
RQG = G $-w(k’) [1 + g] ,/iz n,(Ea, k’). (7.40) 

The predicted number of charm quark pairs per jet is plotted in Fig.(59) using a 

value of A@) = 300 MeV and three values of the charm quark mass. Also shown is the 

prediction for the number of bottom quarks per jet with A(‘1 = 260 MeV. The data 

point shows the number of D’ per jet as measured by the UAl collaboration [103] 

and by the CDF collaboration [104]. Note that these results depend on the values 

used for the branching ratios (D’ --t DA) and (D -+ Krr). CDF uses the values of 

the Mark III collaboration [IO51 whereas UAl uses the values quoted by the Particle 

Data Group. In order compare these numbers with the cs pair rates, a model of the 
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Figure 59: Heavy quarks in jets compared with UAl and CDF data 

relative rates of D and D’ production is also needed. For example, if aII spin states 

are produced equally one would expect the charged D’ rate to be 75% of the total 

D production rate. The points in Fig. 59 need to be corrected for unobserved modes 

before they can be compared with the curves for the total CE pair rate. 
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