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The problem offinding effective fast indicators of long-term stability for single particle betatronic
motion in hadron accelerators is considered. Two indicators are analysed: the maximal Lyapunov
exponent and the variation of the instantaneous tune. An automatic procedure to select stable
from unstable particles is proposed. The guess of the dynamic aperture provided by these fast
indicators is checked against long-term tracking for the 4D Henon map and for a simplified
version of the SPS lattice used for experiments. Both indicators prove to be very effective to
determine long-term stability with a limited number of turns.
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1 INTRODUCTION

During the past years, several approaches have been made to define fast
indicators of long-term stability in single-particle betatron motion. The aim is
to speed up the numerical simulations of the dynamic aperture, that for a large
machine such as the planned LHC should be carried out for approximately 107

turns. One approach to long-term stability is based on the Lyapunov exponent:
this tool has been applied both to celestial mechanics1-3 and to accelerator
physics4,5 to select chaotic from regular motion with a limited number of
turns. Under the assumption that all the chaotic particles are unstable, one
obtains a stability criterion. Another powerful indicator is the variation of the
instantaneous tune6- 8 that can provide an analogous criterion.

*Work partially supported by EC Human Capital and Mobility contract Nr. ERBCHRXCT
940480.
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On the other hand, following the spirit of the Nekhoroshev theorem and
its generalization to symplectic mappings,9-11 several methods for giving
stability estimates over long but finite times have been defined.12- 17 The
basic idea12 is to compute an invariant of motion with the highest achievable
precision; then, one numerically evaluates the drift in the invariant space for
a limited number of turns, and uses this value to extrapolate a bound for a
large but finite number of turns. In order to evaluate the reliability of these
approaches, the check of the stability estimates against long-term tracking is
crucial.

In this paper we follow the approach to long-term stability based on
two early indicators, namely the Lyapunov exponent and the tune variation.
The main aim is to propose an automatic procedure to determine long-term
particle loss. The procedure relies on the definition of thresholds that depend
on the number of turns. Moreover, we carry out an accurate check of the early
indicators predictions against long-term particle loss, making a statistical
analysis of a wide sampling of initial conditions.

The main result is that one can establish thresholds for defining automatic
procedures for long-term estimates. We considered a 4D Henon map and
a simplified version of the SPS lattice used for experiments,18 taking into
account of nonlinearities, of low order resonances, and of linear coupling.
For these models, it turns out that both indicators are very predictive: the tune
variation provides already at 102-103 turns rather good dynamic aperture
estimates (within 5%), and the Lyapunov gives more precise estimates at
103 -104 turns. Moreover, the Lyapunov evaluated for a large number of
turns (greater than 104 ) leads to a systematic underestimate of the dynamic
aperture since there exists a set of initial conditions that are chaotic but stable.
This effect can be relevant and for the analysed lattices is of the order of 10%.
Further developments of this work will concern the analysis of the case where
tune modulation is relevant, and the effect of off-momentum dynamics.

2 EARLY INDICATORS

2.1 Lyapunov Exponent

The Lyapunov exponent is a dynamical indicator that is related to the rate
of divergence of two infinitesimally neighbour particles. Let x be an initial
condition at a given section of the machine, and let x(n) be its phase space
position after n turns. If we consider a neighbour initial condition x= x +8,
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with 181 « 1, then the estimate of the maximal Lyapunov exponent at the
n-th tum reads

1 li(n) - x(n) 1

A(n) = ;; log --1-81--

One can have the following behaviours:

(1)

• The orbit is regular, i.e., it lies on a 2D deformed invariant torus. Then,
the rate of divergence of two close particles is linear with the number of
iterates, and therefore A(n) tends to zero for n ~ 00.

• The orbit is chaotic. Then, the rate of divergence is exponential with the
number of iterates, and therefore A(n) tends to a positive limit.

There exist several methods to estimate the Lyapunov exponent (see
Refs. 1-4); in the followings we will use the direct implementation of the
above definition (method of neighbour particles), plus the renormalization
procedure as outlined in Ref. 3, which is crucial to avoid underestimates of
the Lyapunov for orbits that are chaotic but stable for long times.

2.2 Thne Variation

Another method to select regular from chaotic trajectories, proposed by
J. Laskar during the last decade,6-8 is based on the variation of the
instantaneous tune. Let Vx (m : n) and vy (m : n) be the nonlinear tunes in the
x and y plane respectively, computed over the m, m + 1, m + 2, ... , n turns;
then we define the variation of the tune r (n) over two successive samples of
turns 1, ... , n/2 and n/2 + 1, ... , n as

r(n) =
1- L [Vi(1 : n/2) - Vi (n/2 + 1 : n)]2.
2.

l=X,y

(2)

Also in this case one can distinguish between two different behaviours:

• For regular trajectories, the tunes are well defined and therefore r (n)

converges to zero in the limit n ~ 00.

• For chaotic trajectories, the tune is not well defined and therefore r (n) is
bounded away from zero.
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In order to use this method, it is crucial to have very precise tools to evaluate
the tune also with a limited number of turns.7,19

2.3 Thresholds to Select Regular from Chaotic Motion

We propose the following automatic procedure to forecast long-term particle
loss.

• The orbit is evaluated through tracking for n turns; if the particle is stable,
the early indicator A(n) or T(n) is computed.

• If the early indicator evaluated at n turns is greater than a threshold a (n),

then we assume that the particle is unstable. Otherwise, we consider it as
stable.

No tentative ofestimating the diffusion time is made: particles are considered
to be either regular (and therefore stable) chaotic (and therefore one assumes
that sooner or later they will be lost).

One can prove that all the regular particles have a Lyapunov exponent A(n)

that converges to zero according to the law lin 10g(An), and the constant A is
related to the derivative of the nonlinear tune with respect to the amplitude.20

Therefore we define the threshold for the Lyapunov as

(3)

Fortunately, the dependence of the threshold on the constant AA is quite weak.
In the followings, we will optimize the choice of AA through the check with
long-term tracking for the Henon map. Then, we will show that the same
value of AA gives good long-term estimates also for the SPS model.

The threshold for the tune variation has been fixed to

(4)

this can be justified by heuristic arguments: in fact, the dependence on the
inverse of the number of turns is an upper bound to the precision associated
to the tune estimate with n turns for generic signals. Also in this case, the
constant will be optimized through long-term tracking for the Henon map,
and ·will then be used for the SPS.
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2.4 Dynamic Aperture Definition
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(5)

In order to obtain a precise estimate of the dynamic aperture, it is crucial to
perform a wide sampling of initial conditions in the space x, y. In particular,
we use a polar grid x = r cos a and y = r sin a, scanning a E [0, n /2] and
r E [0, R]. The dynamic aperture is then defined as the average distance of
the border of stability rea)

1[/2

D = f r\a) sin(2a)da;

o

where the factor sin(2a) comes from the integration in a 4D phase space.21 ,22

We neglect the dependence on the angles, that can be taken into account
through the information folded in the dynamics (see Refs. 21,22).

3 ANALYSIS OF THE HENON MAP

The Henon map represents the transfer map of a linear lattice with a single
sextupole in the thin lens approximation. We fix to one the ratio between
the beta functions evaluated in the sextupole, and the linear tunes to 0.168
and 0.201 respectively, i.e., very close to low order resonances. This model
features a phase space where long-term losses are relevant.

We carried out an extensive sampling of initial conditions in the plane
x, y; we considered the polar coordinates r, a defined in the previous section,
using 20 steps in the angle a and 40 steps in r E [0,0.6]. We checked that
for r > 0.6 all the particles are lost in a very short number of turns (less than
64). For each initial condition we computed the orbit for 107 turns.

Both early indicators were evaluated for four different number of iterates:
nl = 128, n2 = 512, n3 = 2048 and n4 = 8192. In Figure 1 we
plot the histogram of the distribution of the Lyapunov exponents A(n/2),

computed over the grid of initial conditions, for n = n 1, n2, n 3, n4. We
marked in black the initial conditions that are lost before 107 turns. The
distribution features a high peak with a sharp fall on the right part. The
abscissa of the fall separates rather well the stable from the unstable particles,
and therefore it appears to be the natural threshold of the Lyapunov. In
fact, it turns out that the threshold evaluated numerically through the four
histograms is very well interpolated by Equation (3), with AA, = 0.15.
For low number of turns (n = 128 and n = 512), most of the particles
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FIGURE 1 Distribution of the Lyapunov exponent (computed for four different increasing
number of iterates) for the set of initial conditions of the 4D Henon map at VI == 0.168 V2 == 0.201
shown in Figure 1. Black parts of the histograms represents initial conditions that are lost before
107 turns.

whose early indicator prediction fails are unstable with Lyapunov lower than
the threshold (intermittency). On the other hand, for higher number of turns
(n = 2048 and n = 8192), most of the particles whose early indicator
prediction is wrong are stable with large Lyapunov (stable chaos). This shows
that for very large n the Lyapunov leads to a systematic underestimate of the
dynamic aperture, since it assumes that all the chaotic particles will be lost.
The relevance of this effect will be quantitatively evaluated in the following.

In Figure 2 the same histograms shown in Figure 1 are plotted for the
tune variation. The distributions are wider: this is a good feature since it
implies that the long-term estimate is less sensitive on the threshold. On
the other hand, there is not a specific pattern that allows one to .define a
threshold without carrying out the long-term analysis. Using the long-term
data, we empirically fixed the threshold using Equation (4), with Aa = 0.1.
For n = 2048 and n = 8192 a very large fraction of the particles
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FIGURE 2 Distribution of the variation of the tune (computed for four different increasing
number of iterates) for the set of initial conditions of the 4D Henon map at v} == 0.168 V2 == 0.201
shown in Figure 1. Black parts ofthe histograms represents initial conditions which are lost before
107 turns.

has a tune variation that is very small (less than 10-7); no long-term loss
is observed for these particles. This is another interesting feature that could
allow one to define a conservative lower bound to long-term stability.

Having fixed the thresholds, we computed the dynamic aperture using the
average defined in (5) through three methods: we define D(n) as the dynamic
aperture evaluated through particle loss at n turns, D)..(n) as the dynamic
aperture evaluated through the Lyapunov exponent computed at n /2 turns,
and Dr (n) as the dynamic aperture evaluated through the tune variation over
n /2 + n /2 turns.

In Table I we give the relative errors of these estimates compared to
the dynamic aperture computed through particle loss at 107 turns, that
has been taken as the reference value. One observes that the effect of
long-term is rather relevant for this model: the dynamic aperture estimate
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TABLE I Relative errors of the dynamic aperture estimates for the
Henon map model

n Particle loss Lyapunov Tune variation

128 38% 11% 2%

512 30% 7% -4%

2048 17% 00/0 -5%

8192 9% -5% -5%

105 3% -8%

using the standard particle loss criterion through tracking at 2048-turns leads
to an overestimate of about 20%. Moreover, the procedure based on the
Lyapunov exponent allows one to have a more realistic estimate, especially
for 1000-4000 turns where the errors due to stable chaos are compensated
by intermittency. For 50000 turns the Lyapunov is already considerably
pessimistic, and this trend continues for larger number of turns. Finally, the
procedure based on tune variation is rather precise with an extremely low
number of turns (n = 128). Unfortunately, there is no improvement of the
precision with the number of turns. It must be pointed out that, contrary to
the Lyapunov analysis, the threshold parameter has been optimized through
long-term tracking; for this reason the early indicator cannot be considered
predictive for this model. We will show in the next section that using the
same threshold one obtains good estimates for the considered SPS model.

4 ANALYSIS OF THE SPS

The used lattice is a simplification of the setup for nonlinear dynamics
experiments. I8 The nonlinear part of the magnetic lattice is made up by
8 strong sextupoles normally used to extract the beam, and by 108 chromatic
sextupoles placed near the main quadrupoles of the regular cells. The tune
modulation due either to coupling with the synchrotron frequency or to ripples
is neglected. Also the close orbit effects are not taken into account.

We considered the following working points:

• WP1: 26.6378 26.5319 - it is the working point of the SPS during
operations.
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TABLE II Relative errors of the dynamic aperture estimates for the
SPS models

n Particle loss Lyapunov Tune variation

128 14% 7% 5%

512 7% 5% 2%

2048 5% 2% 2%

8192 4% 1% 2%

105 1% -7%
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• WP2: 26.6059 26.5373 and WP3: 26.8320 26.7990 - these are" working
points close to resonances of order five, that are used for the machine
development experiments.

• WP4: 26.720026.6900 - it is the planned LHC working point.

• WP5: the same as WP4, plus some linear coupling that was included in
order to check whether the tune variation is still effective in this case.

For each of the working points, we evaluated the histograms of the early
indicators; one obtains very similar patterns to the case of the Henon map.
The comparison with long-term particle loss (106 turns) shows that the same
thresholds worked out for the Henon map hold. The dynamic aperture results
are summarized in Table II, where an average over the five working points
has been carried out. The long-term effect is less relevant compared to the
analysed Henon map: particle loss at 2048 turns gives the dynamic aperture
within 5%. Nevertheless, both the Lyapunov and the tune variation give very
similar results to the Henon case.
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