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In circular accelerators, sophisticated algorithms for frequency analysis can provide very precise
estimates of the betatron tune from a relatively short sequence of tum-by-tum measurements of
the beam position. They rely either on analytical interpolations of the Fast Fourier Transform,
or on the numerical estimate of the Continuous Fourier Transform.

In this paper we review these methods, and the analytical estimates of the frequency error as
a function of the sample size. Furthermore, we evaluate numerically the influence of noise in the
determination of the tune. Finally, we present experimental applications to the LEP machine: they
provide an accurate estimate of the detuning with amplitude due to the chromaticity sextupoles.

Keywords: Tune measurement.

1 INTRODUCTION

In circular accelerators, the tune can be measured by sampling the transverse
position ofthe beam for N turns and by performing the Fast FourierTransform
(FFT) of the stored data. This approach has an intrinsic error proportional
to 1/N. In routine situations, N is chosen of the order of a thousand, as
to reduce the tune error below 10-3. However, there are special cases where
either a better resolution or a faster measurement is desired. For instance, it is
important to estimate the precise dependence of the tune with the oscillation
amplitude or the precise distance of the working point from some harmful
resonance, whenever strong non-linear magnetic fields perturb the regular
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motion of the particles. Furthermore one could try to measure the tune using a
very limited number of turns, whenever the initial beam deflection is smeared
out too quickly, either by filamentation or by head-tailor radiation· damping.

In these and other situations, it is of paramount importance to make use
of more efficient algorithms, as those suggested by E. Asseol

-
3 and by

J. Laskar.4- 6 The first one is based on the analytical interpolation of the FFT,
while the second one relies on the search of the maximum of the Continuous
Fourier Transform. Both of them provide tune estimates more accurate than
those of a plain FFT, as discussed in Ref. 7.

Another issue is the effect of the finite resolution of the instrumentation
used to measure the beam position. In computer simulations, this is obviously
negligible. In real measurements, instead, the finite resolution of the beam
position monitor introduces a noise, that modifies the frequency response of
the beam.8,g

In the absence of noise, the outlined algorithms for tune determination
have an intrinsic error proportional to 1/N 2 . The error becomes proportional
to 1/N 4

, when the raw data are treated with a Hanning filter. In presence of
noise, the determination of the tune is less precise. We checked numerically
that the error is still smaller than that of a plain FFT, i.e. smaller than 1/N,
at least for a signal to noise ratio varying in the range between 1 and 10-3•

As an experimental application, we discuss the measurement of the
detuning with the amplitude in LEP, under condition of strong damping (the
initial oscillations of the beam disappear in about 150 turns).

The plan of the paper is the following. In Section 2 we recall the methods
to compute the tune and the estimate of the algorithmic error as a function
of N. In Section 3 we discuss the effect of noise. In Section 4 we discuss the
measurement of the detuning with the amplitude in LEP at 20 GeV.

2 TUNE DETERMINATION AND ERROR ESTIMATE

A standard way to measure the tune consists in displacing transversally the
particles by a fast kicker, in observing the beam position over N turns, and
in Fourier analyzing the stored data. The tune is in general deduced by
inspecting the power spectrum computed by an FFT and by choosing the
value corresponding to the maximum frequency response. There are two
basic methods to improve the resolution of the spectral analysis. Both of
them rely on the assumption that the spectrum of the transverse oscillations
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of the beam contains a limited number of peaks. They correspond to the
eigenfrequencies of the motion or to combinations of them driven by either
linear or non-linear coupling, or by the interplay of synchrotron and betatron
motion. In general, the harmonics of these peaks decrease very rapidly, and
therefore can be neglected.

2.1 Fourier Series (FS)

The Fourier Series (FS) algorithm allows to compute the tune, using N
consecutive values of the orbit. The time series {z (1), z(2), ... , z(N)} of
one of the orbit coordinates, can be expanded as a linear combination of
N orthonormal functions:

N

zen) = L ¢(Vj) exp(2ninvj)
j=l

j
Vj =-;

N
(1)

the coefficients ¢ (Vj ), representing the amplitude spectrum, are given by the
inverse formula

1 N
</J(Vj) = N Lz(n)exp(-2JTinvj).

n=l

(2)

One assumes that the N samples zen) are in fact extended in a periodic
sampled signal of period N.

2.1.1 Fast Fourier Transform (FFT) In principle, the computation of the
FS for a signal of N samples requires N 2 operations; indeed, if N is a power
of two, one can define an algorithm that computes the FS by using only
N log N operations: this method is called Fast Fourier Transform (FFT).

The error associated with the FFT is due to the discreteness of the
frequencies Vj, and is given by

CFFT
IE PFT I :::: --;;- where

1
CFPT = -.

2
(3)

The FFT provides a very fast estimate of the complete Fourier spectrum,
however, the evaluation ofthe main frequency is made with a poor precision.
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2.1.2 Interpolated FFT Since the error in the FFT estimate is due to
the discreteness of the spectrum, one can try to obtain better results by

interpolating it around the main peale The tune is then the abscissa of the

maximum of the interpolating function. Following the approach outlined by
Asseo,1-3 we use as interpolating function the spectrum of a pure sinusoidal

signal with unknown frequency v Pint:

(4)

(5)

For large N, the accuracy is given by

CPint
IE Pint l::s N2 .

This estimate holds, provided that the distance in frequency between the main
peak and the closest one is larger than liN (for more details see Ref. 7).

2.1.3 Interpolated FFTwith Data Windowing A standard approach used
in signal processing theory to improve the Fourier analysis is based on
filtering the data z(n) using weight functions X (n) (see Ref. 10). In this
case, the FS of the orbit reads

1 n
4>(Vj) = N Lz(n)x(n)exp(-2Jrinvj).

n=l

If we consider a Hanning filter

x(n) = 28in2 c;;) ;

(6)

(7)

then, the spectrum of a pure sinusoidal signal of frequency VQ is given by

The effect of the filter is to increase the width of the main peak centered at
VQ and to decrease the amplitude of the sidelobes. In fact their height as a
function of N is reduced to 11N 3 while without filter it is liN.
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By applying the same reasoning used for the case of the interpolated FFT,
it is possible to show that the expression (8) can be used as interpolating
function: in this case vo represents the unknown interpolating frequency. In
this case the error scales as:

CFHan
IE Fint I ::s ~.

The details can be found in Ref. 7.

2.2 Fourier Transform Methods

(9)

2.2.1 Fourier Transform (FT) Another very effective approach for spectral
analysis which has been extensively used in the literature4- 6,11 is based on the
Fourier Transform (FT). Let us consider a continuous function f(t), where
t E R. Then, it can be expanded as a linear combination of an infinite number
of orthonormal functions:

+00

f(t) = f ¢(v) exp(2nivt)dv.

-00

(10)

The function 4J(v) is the FT of f(t), and is given by the inverse formula

N

¢(v) = ~ f f(t)exp(-2nivt)dt.

o

(11)

In our case we have a discrete system, whose orbit z(n) is defined only for
integer times. Therefore one has to replace the integral (11) with a discrete
sum:

1 N
¢(v) = N L zen) exp(-2nivn).

n=O
(12)

Contrary to the case of the interpolated FFT, no analytical formulas are
available; indeed, the maximum can be computed using v FFT as a first guess,
an by applying standard numerical tools such as the bisection method or the
Newton method.
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(13)

The scaling laws are the same as in the case of the interpolated FFT. For
large N, provided that the distance ~v between the main frequency and the

closest one is greater than 1/N, one has

CFT
lEFT l::s N2 ·

Otherwise the error is independent of N.

2.2.2 FT and Data Windowing As already mentioned, data windowing
considerably improves the precision of the method: one defines an FT as

1 N
¢(v) = N Lz(n)x(n) exp(-2nivn)

n=Q

(14)

where x(n) is a window function. In the case of a Hanning window [see
Equation (7)] one obtains an error estimate which scales like N-4 :

CPTHan
IE FTHan l::s N4

This result is proven in Ref. 7.

3 EFFECT OF NOISE

(15)

There are several perturbing, effects that reduce the precision associated to
the measure of the transverse beam position. In general, one can assume
that the main source of uncertainty is related to the granularity of the
Analog-to-Digital-Converter (ADC), used to digitize the position signal. This
means that all the other perturbations such as the non-linear response of
the pick-up, its finite resolution, the electronic noise, the distortion due to
the cable transmission, and so on, are negligible compared to the step of
the ADC. The least significant bit (LSB) of the ADC is equal to zero or
one, randomly. In the frequency domain, the random variation of the LSB
introduces a white noise whose r.m.s. amplitude is 1/2 LSB. The effect on
the tune precision can be investigated using a simple numerical model that
contains a main sinusoidal wave offrequency VQ (with its harmonics), together
with a secondary sinusoidal wave of frequency VI (with its harmonics). The
amplitude of the harmonics is assumed to decrease rapidly. We therefore
consider
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FIGURE 1 Tune error E (N) versus N for different values of the signal over noise power ratio
s / n. The signal is generated by two sine waves plus harmonics. The tune is computed using the
interpolation of the FFT plus Hanning filtering. Five cases, referring to different signal to noise
ratio, are shown.
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FIGURE 2 Tune error E (N) versus N for different values of the signal over noise power ratio
s / n. The signal is generated by two sine waves plus harmonics. The tune is computed using the
interpolation of the FFT without filtering. Five cases, referring to different signal to noise ratio,
are shown.
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FIGURE 3 Horizontal and vertical tune as a function of vertical amplitude. The tune is
computed using a moving window of 64 turns. The vertical amplitude, averaged over the 64 tum
window, is in j.Lm. The method used is the interpolation of the FFT without filtering.

zen) = e2n:ivon + Lak e2n:ivokn +bae2n:iv1n + Lbk e2n:iv1kn +r(n) LSB ,
k k

(16)

where lakl, Ibkl < 1, n E N, and r(n) is a random variable equal to 0 or 1.
In our simulations we chose Va = 0.28 and VI = 0.31 to simulate the

working point of the LHC. We consider five harmonics of Va and VI, and
we assume that their amplitudes decrease exponentially with their order. The
main tune Va is found using the interpolated FFT algorithm. The reference
case, without noise, is compared to several cases,where the signal to noise
power ratio (s / n) vary over a large range. Due to the noise, the precision
associated to the tune is reduced, as shown in Figures 1 and 2. In particular,
the beneficial effect of the Hanning filter is completely lost, even if the noise
is small (s / n = 1000). On the other hand, the effect of the noise has a weak
dependence on the s / n ratio. In addition, the tune error scales always better
than 1/N, even in the extreme case when the noise and the signal powers are
equal.
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4 TUNE MEASUREMENTS IN LEP
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Archived data of LEP have been used to illustrate how one can measure the
tune as a function of the amplitude even in the presence of a strong damping.

The horizontal and the vertical beam oscillations following a vertical
deflection of about 5 mm are collected and stored for 1024 consecutive turns.
The horizontal motion, induced by the residual linear coupling, has an initial
amplitude of about 1.5 mm. The oscillations persist for 150 turns only, since
the too high circulating current induces head-tail damping. The horizontal and
the vertical tunes are both computed with the interpolated FFT algorithm. The
computation is made using the first 64 values of the horizontal and the vertical
positions respectively. The vertical amplitude of oscillation is evaluated by
averaging over the same set of64 turns. The calculation is iterated over several
successive sets of 64 turns. In each iteration the window of 64 turns moves
by one tum until the whole range of data is scanned. The results are shown
in Figure 3. The vertical tune increases with the vertical amplitude, whereas
the horizontal tune decreases with it. This is in a qualitative agreement with
the expected behavior of the LEP machine with injection optics. Quantitative
comparisons are not yet available. The ADC step of the LEP pick-ups is of the
order of 60 /-Lm, therefore s/ n 2: 10 even in the last set of 64 data. Using the
results of the simulations presented in the previous section, we can conclude
that the tune accuracy is likely to be of the order of 10-3, or better. A deeper
investigation is needed to confirm that.

5 CONCLUSIONS

We presented some of the advanced methods to determine the betatron tune
in circular particle accelerators. We discussed their precision, and pointed
out the harmful effect of the electronic noise due to the analog-to-digital
conversion ofthe beam position signal. Finally, we presented an experimental
application to evaluate the detuning with .amplitude in LEP, in the presence
of a strong damping.

Our experimental analysis was on purpose concise and mostly oriented
to apply the theoretical results to real measurements. The applications
of the modem methods of Fourier analysis discussed here are extremely
appealing both in experimental and numerical studies of beam dynamics.
These approaches are certainly propaedeutic to a deeper investigation of
existing or planned accelerators.
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