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Abstract

We study the renormalization of operators of the type h̄v′Γ Gµνhv in the
heavy-quark effective theory (HQET). We construct the combinations of
such operators that are renormalized multiplicatively, and calculate their
velocity-dependent anomalous dimensions at the one-loop order. We then
show that the virial theorem of the HQET is not renormalized, and that
in the limit of equal velocities the anomalous dimension of the chromo-
electric operator vanishes to all orders in perturbation theory. This implies
an exact relation between renormalization constants, which may help in a
future calculation of the two-loop anomalous dimension of the chromo-
magnetic operator.
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1 Introduction

The heavy-quark effective theory (HQET) is a convenient tool to explore the
physics of hadrons containing a heavy quark [1]. It provides a systematic ex-
pansion around the limit mQ → ∞, in which new symmetries of the strong
interactions arise, relating the long-distance properties of many observables to a
small number of hadronic matrix elements. In the HQET, a heavy quark inside
a hadron moving with four-velocity v is described by a velocity-dependent field
hv subject to the constraint /v hv = hv. This field is related to the original heavy-
quark field by a phase redefinition, so that it carries the “residual momentum”
k = pQ − mQv, which characterizes the interactions of the heavy quark with
gluons. The effective Lagrangian of the HQET is [2]–[4]

Leff = h̄v iv ·Dhv +
1

2mQ

h̄v(iD⊥)2hv +
Cmag(µ)

4mQ

h̄v σµνG
µνhv +O(1/m2

Q) , (1)

where Dµ
⊥

= Dµ − (v · D) vµ contains the components of the gauge-covariant
derivative orthogonal to the velocity, and Gµν = i[Dµ, Dν] is the gluon field
strength tensor. The leading term in the effective Lagrangian, which gives rise
to the Feynman rules of the HQET, is invariant under a global SU(2NQ) spin–
flavour symmetry group. This so-called heavy-quark symmetry results from the
fact that in the limit mQ → ∞ the properties of the light constituents inside a
heavy hadron become independent of the spin and flavour of the heavy quark.
The symmetry is explicitly broken by the higher-dimensional operators arising
at order 1/mQ, whose origin is most transparent in the rest frame of the heavy
hadron: the first operator corresponds to the kinetic energy resulting from the
motion of the heavy quark inside the hadron (in the rest frame, (iD⊥)2 is the
operator for −k2), and the second operator describes the magnetic interaction
of the heavy-quark spin with the gluon field. The Wilson coefficient Cmag(µ)
results from short-distance effects and depends logarithmically on the scale at
which the chromo-magnetic operator is renormalized [2, 4]. As a consequence
of the so-called reparametrization invariance of the HQET (an invariance under
infinitesimal changes of the velocity), the kinetic operator is not multiplicatively
renormalized [5, 6].

One of the most important applications of heavy-quark symmetry concerns
the analysis of semileptonic weak decays of heavy hadrons. These processes are
mediated by flavour-changing currents containing two heavy-quark fields, which
in the HQET are represented by velocity-changing operators of the type h̄v′Γ hv,
where Γ represents some Dirac matrix. In the heavy-quark limit, all weak de-
cay form factors parametrizing the current matrix elements between two heavy
mesons or baryons are proportional to a universal (Isgur–Wise) form factor ξ(v·v′)
[7]. Large logarithms of the heavy-quark masses, which arise due to quantum cor-
rections, can be summed up to all orders in perturbation theory by calculating
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the anomalous dimension of the operator h̄v′Γ hv in the HQET and solving its
renormalization-group equation (RGE) [8, 9].

In the analysis of the symmetry-breaking corrections to the relations between
form factors, higher-dimensional current operators play an important role. At
order 1/mQ, there appear local dimension-four operators of the type h̄v′Γ iD

µ hv,
whose matrix elements have been studied in [10]. The renormalization of such
operators is completely determined by reparametrization invariance [11]. In the
present paper, we study the renormalization of dimension-five current operators
containing the gluon field, i.e. operators of the form h̄v′ΓG

µνhv. There are sev-
eral motivations for this study: The matrix elements of these operators determine
part of the 1/m2

Q corrections to heavy-hadron weak decay form factors [12], which
at the present level of accuracy already have to be included in some applications
of the HQET, such as the extraction of the Cabibbo–Kobayashi–Maskawa ma-
trix element |Vcb| [13]. The same operators also play a role in the description of
non-factorizable corrections in non-leptonic two-body decays of B mesons [14].
Our primary motivation, however, is the connection between velocity-changing
dimension-five operators and the velocity-conserving operators appearing at or-
der 1/mQ in the effective Lagrangian (1). Clearly, for Γ = σµν and in the limit
of equal velocities, the operator h̄v′ΓG

µνhv reduces to the chromo-magnetic op-
erator. More interestingly, however, there is also a connection with the kinetic
operator h̄v(iD⊥)2hv. It is provided by the virial theorem of the HQET, which
relates the kinetic energy of a heavy quark inside a hadron to its interactions
with gluons [15]. For the ground-state mesons and baryons, this theorem can be
written in the form

lim
v′→v

〈H(v′)| h̄v′vµv
′

ν iG
µνhv |H(v)〉

(v · v′)2 − 1
=

1

3
〈H(v)| h̄v(iD⊥)2hv |H(v)〉 . (2)

It has been used to study the properties of the kinetic operator under renormal-
ization, and to estimate its matrix element using QCD sum rules [16].

Below we study first the general structure of operator mixing of current op-
erators containing the gluon field and show that it can be described by a 4 × 4
matrix of renormalization constants. We then calculate the corresponding anoma-
lous dimensions at the one-loop order. Next, we investigate the limit of equal
velocities, in which case the operator basis consists of a chromo-electric and a
chromo-magnetic operator, which are renormalized multiplicatively. We show
that, as a consequence of the virial theorem and reparametrization invariance,
the chromo-electric operator is not multiplicatively renormalized to all orders in
perturbation theory. This, in turn, implies an exact relation between renormal-
ization constants, which may help in the calculation of the yet unknown two-loop
anomalous dimension of the chromo-magnetic operator. Finally, we consider the
hadronic matrix elements of velocity-changing dimension-five operators and de-
termine, for the case of the ground-state heavy mesons, the scale dependence of
the corresponding hadronic form factors.
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2 Operator mixing and anomalous dimensions

Our goal is to study the renormalization of the local operator Oµν
1 = h̄v′ΓG

µνhv,
where v and v′ are the heavy-quark velocities, and Γ may be an arbitrary Dirac
matrix. Since the Feynman rules of the HQET do not involve γ matrices, the
structure of Γ will not be altered by radiative corrections. Under renormalization,
the operator Oµν

1 mixes with other operators carrying the same global quantum
numbers. We use the background-field formalism [18] and work in dimensional
regularization, so that it suffices to consider gauge-invariant operators of the same
dimension as Oµν

1 . Moreover, we shall not consider operators that vanish by the
equations of motion, since they have vanishing matrix elements between physical
states. To construct the operator basis, we find it convenient to introduce the
two vectors

v+ =
v + v′

√

2(w + 1)
, v− =

v − v′
√

2(w − 1)
, (3)

where w = v · v′ is the product of the two velocities. This definition is such that
v2
+ = 1, v2

−
= −1, and v+ · v− = 0. Hence, v+ can be regarded as a four-velocity,

whereas v− is a space-like four vector. In the Breit frame, where the two hadrons
move with opposite velocities, we have vµ

+ = (1, 0) and vµ
− = (0,n), where n is a

spatial unit vector. Since the original operator Oµν
1 is invariant under Hermitean

conjugation followed by an interchange of the velocities, the basis operators must
contain even powers of v−. Four such operators can be constructed, and we define

Oµν
1 = h̄v′ΓG

µνhv ,

Oµν
2 = v

[µ
+ v+α h̄v′ΓG

αν]hv ,

Oµν
3 = v

[µ
− v−α h̄v′ΓG

αν]hv ,

Oµν
4 = (vµ

+v
ν
−
− vν

+v
µ
−) v+αv−β h̄v′ΓG

αβhv . (4)

We use a short-hand notation such that a[µbν] = aµbν−aνbµ. In principle, there are
other operators carrying the same quantum numbers, which contain two deriva-
tives acting on the heavy-quark fields. However, the Feynman rules of the HQET
ensure that all operators that can mix with the above ones and do not involve
the gluon field strength tensor vanish by the equations of motion.

We define renormalization constants Zij, which absorb the ultraviolet (UV)
divergences in the matrix elements of the bare operators, by the relation

Oµν
i,bare =

4
∑

j=1

ZijO
µν
j . (5)

From the definition of the basis operators, it follows that the 4 × 4 matrix Ẑ =
(Zij) can be expressed in terms of the four entries Z1j ≡ Zj(w), which in general
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are functions of the variable w. Substituting for Γ the appropriate expressions
corresponding to the operators in (4), we find that

Ẑ =











Z1(w) Z2(w) Z3(w) Z4(w)
0 Z1(w) + Z2(w) 0 Z3(w) + Z4(w)
0 0 Z1(w) − Z3(w) Z2(w) − Z4(w)
0 0 0 Z1(w) + Z2(w) − Z3(w) − Z4(w)











.

(6)
Let us denote by zn(w) the eigenvalues of this matrix, given by the diagonal
entries. Since the mixing of Oµν

1 with Oµν
3 and Oµν

4 must vanish in the limit of
equal velocities, it follows that

Z3(1) = Z4(1) = 0 . (7)

This implies z1(1) = z3(1) and z2(1) = z4(1). The eigenoperators Oµν
n , which are

renormalized multiplicatively according to Oµν
n,bare = zn(w)Oµν

n , are given by

Oµν
1 = Oµν

1 − Oµν
2 +Oµν

3 − Oµν
4 ,

Oµν
2 = Oµν

2 +Oµν
4 ,

Oµν
3 = Oµν

3 − Oµν
4 ,

Oµν
4 = Oµν

4 . (8)

The anomalous dimensions of these operators, which appear in the RGE

(

µ
d

dµ
+ γn(w)

)

Oµν
n (µ) = 0 , (9)

are obtained from the relation

γn(w) = −2αs
∂

∂αs
z(1)

n (w) , (10)

where z(1)
n (w) denotes the coefficient of the 1/ǫ pole in zn(w) calculated in di-

mensional regularization, i.e. in d = 4 − 2ǫ space-time dimensions.
At the one-loop order, the renormalization factors Zi(w) are determined by the

UV divergences of the diagrams shown in Fig. 1. Zh denotes the wave-function
renormalization constant for the heavy-quark field in the HQET. A virtue of
the background field formalism is that the gluon field is not renormalized, since
ZgZ

1/2
A = 1 [18]. We have performed the calculation of these diagrams in an

arbitrary covariant gauge, and with arbitrary momentum assignments. The sum
of the UV divergent contributions is independent of the gauge and of the external
momenta of the heavy quarks. We find

Z1(w) = 1 +
αs

4πǫ

{

(CA − 2CF )
[

w r(w) − 1
]

− CA

}

,
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Figure 1: One-loop diagrams contributing to the calculation of the renormal-
ization factors Zn(w). The velocity-changing operators are represented by a
square, and heavy-quark propagators are drawn as double lines.

Z2(w) =
w + 1

2

CAαs

4πǫ
,

Z3(w) =
w − 1

2

CAαs

4πǫ
,

Z4(w) = 0 , (11)

where CF = 1
2
(N − 1/N) and CA = N are the eigenvalues of the quadratic

Casimir operator in the fundamental and the adjoint representations, and N is
the number of colours. The function r(w) is given by

r(w) =
1√

w2 − 1
ln
(

w +
√
w2 − 1

)

(12)

and satisfies r(1) = 1. Note that Z3(w) vanishes in the limit of equal velocities,
in accordance with (7). Moreover, in that limit we find

Z1(1) + Z2(1) = 1 . (13)

Below we shall argue that this is an exact relation, valid to all orders in pertur-
bation theory.

Applying now the relation (10) to the combinations of renormalization factors
appearing in the diagonal entries in (6), we obtain for the one-loop anomalous
dimensions

γ1(w) = γ4(w) +
CAαs

2π
,

γ2(w) = γ4(w) − w − 1

2

CAαs

2π
,
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γ3(w) = γ4(w) +
w + 1

2

CAαs

2π
,

γ4(w) = −(CA − 2CF )
αs

2π

[

w r(w) − 1
]

. (14)

In the limit of equal velocities, we find

γ1(1) = γ3(1) =
CAαs

2π
,

γ2(1) = γ4(1) = 0 . (15)

Because of (7) and (13), the second relation is valid to all orders in perturbation
theory.

Knowing the one-loop anomalous dimensions allows us to solve the RGE (9)
for the eigenoperators in the leading logarithmic approximation. The solution
reads

On(mQ) =

(

αs(mQ)

αs(µ)

)γ0
n
(w)/2β0

On(µ) , (16)

where the coefficients γ0
n(w) are defined by γn(w) = γ0

n(w)(αs/4π), and β0 =
11
3
N − 2

3
nf is the first coefficient of the β function.

3 Equal-velocity limit

The discussion of operator mixing becomes more transparent in the limit of equal
velocities (i.e. v′ = v and w = 1), in which v+ → v and v− → n, where n is an
external space-like four-vector satisfying n2 = −1 and n · v = 0. Because of
relation (7), the mixing of the operators Oµν

1 and Oµν
2 decouples from that of Oµν

3

and Oµν
4 ; indeed, the latter two operators are simply proportional to the first two:

Oµν
3 = n[µnαO

αν]
1 and Oµν

4 = n[µnαO
αν]
2 . The operators that are multiplicatively

renormalized can be chosen as

Oµν
mag = Oµν

1 − Oµν
2 = h̄vΓG

µν
⊥
hv ,

Oµν
el = Oµν

2 = v[µvα h̄vΓG
αν]hv , (17)

where Gµν
⊥

= (gµ
α − vαv

µ)(gν
β − vβv

ν)Gαβ contains the components of the field
strength tensor in the subspace orthogonal to the velocity. In the rest frame,
where vµ = (1, 0), the operators Oµν

mag and Oµν
el correspond to purely chromo-

magnetic and chromo-electric field configurations, respectively. The anomalous
dimensions of these operators are given by

γmag = γ1(1) = γ3(1) = −2αs
∂

∂αs
Z

(1)
1 ,

γel = γ2(1) = γ4(1) = −2αs
∂

∂αs

[

Z
(1)
1 + Z

(1)
2

]

, (18)
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where Z(1)
n is the coefficient of the 1/ǫ pole in Zn(1). The anomalous dimension

of the chromo-magnetic operator is known at the one-loop order [2, 4], and it is
in agreement with our result for γ1(1) in (15). The virial theorem (2) implies
that the chromo-electric operator has the same anomalous dimension as the ki-
netic operator h̄v(iD⊥)2hv. However, reparametrization invariance enforces that
to all orders in perturbation theory the kinetic operator is not multiplicatively
renormalized [5]. Therefore, we obtain the exact relation

γel = γkin = 0 , (19)

which is equivalent to (13). Again, this constraint is satisfied by our explicit
one-loop result for γ2(1) in (15). Using this relation, we obtain

γmag = −2αs
∂

∂αs
Z

(1)
1 = 2αs

∂

∂αs
Z

(1)
2 . (20)

Recalling the definition of the renormalization factors,

[h̄vΓG
µνhv]bare = Z1 h̄vΓG

µνhv + Z2 v
[µvα h̄vΓG

αν]hv , (21)

we observe that relation (20) provides for two complementary ways to calculate
the anomalous dimension of the chromo-magnetic operator. This relation may
be useful in a future calculation of γmag beyond the one-loop order.

4 Hadronic matrix elements

In the HQET, hadronic matrix elements of the operators Oµν
n in (4) can be

parametrized in terms of invariant functions φi(w, µ), which are generalizations
of the Isgur–Wise form factor. These functions are most conveniently introduced
using a covariant formalism, in which heavy hadrons are classified in multiplets
of the heavy-quark spin symmetry and described by spin wave functions with
the appropriate transformation properties [8, 17]. In particular, the ground-state
pseudoscalar and vector mesons, P (v) and V (v), are described by a matrix

M(v) =
√
mM

1 + /v

2

[

γ5 P (v) + /e V (v)
]

, (22)

which satisfies /vM(v) = M(v) = −M(v) /v. Here mM is the hadron mass, v the
hadron velocity, and e the polarization vector of the vector meson. The matrix
elements of the operators Oµν

n between meson states can be obtained from the
relation [12]

〈M(v′)| h̄v′Γ iG
µνhv |M(v)〉 = −Tr

{

φµν(v, v′, µ)M(v′) ΓM(v)
}

, (23)
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where µ is the scale at which the operators are renormalized. The tensor form
factor φµν(v, v′, µ) can be decomposed in terms of three scalar functions, i.e.

φµν(v, v′, µ) = (vµv′ν − vνv′µ)φ1(w, µ)

+
[

(v − v′)µγν − (v − v′)νγµ
]

φ2(w, µ) + iσµν φ3(w, µ) . (24)

Evaluating (23) for the eigenoperators Oµν
n in (8), we obtain the combinations of

scalar functions that are renormalized multiplicatively. They are

ψ1(w, µ) = φ3(w, µ) ,

ψ3(w, µ) = φ3(w, µ) − (w − 1)φ2(w, µ) ,

ψ4(w, µ) = (w + 1)φ1(w, µ) − 2φ2(w, µ)− φ3(w, µ) , (25)

and the corresponding anomalous dimensions are γ1(w), γ3(w), and γ4(w), respec-
tively. The operator Oµν

2 has a vanishing matrix element between the ground-
state mesons.

In leading logarithmic approximation, the scale dependence of the functions
ψn(w, µ) is the same as that of the operators Oµν

n shown in (16). The theoretical
predictions for, e.g., weak decay form factors in the HQET involve these func-
tions renormalized at the large scale set by the mass of the heavy quark that
decays. Our results can then be used to rewrite the results in terms of functions
renormalized at a low scale µ ≪ mQ, which may be identified with the scale
at which a non-perturbative evaluation of these functions is performed. As an
example, consider the combination f(w,mb) = ψ1(w,mb) + 2ψ3(w,mb), which
parametrizes a class of non-factorizable contributions in non-leptonic weak de-
cays such as B̄0 → D+π− [14]. Using our results, we can relate the function
f(w,mb) with the functions ψn(w, µ) renormalized at a low scale µ ≈ 1 GeV,
which have been calculated recently using QCD sum rules [16]. The result is

f(w,mb) =

(

αs(mb)

αs(µ)

)γ0

1
(w)/2β0

ψ1(w, µ) + 2

(

αs(mb)

αs(µ)

)γ0

3
(w)/2β0

ψ3(w, µ) . (26)

The functions ψn(w, µ) obey non-trivial normalization conditions at w = 1.
They are given by [12]

ψ1(1, µ) = ψ3(1, µ) = λ2(µ) , ψ4(1, µ) = −2

3
λ1 , (27)

where λ1 and λ2(µ) parametrize the forward matrix elements of the kinetic
and chromo-magnetic operators present in the effective Lagrangian (1). The
anomalous dimension determining the scale dependence of the parameter λ2(µ)
is γmag, whereas the parameter λ1 has no (logarithmic) scale dependence because
of reparametrization invariance [5]. Thus, the relations (27) are in accordance
with our exact results in (18) and (19).
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5 Conclusions

We have discussed the general structure of the mixing and renormalization of
velocity-changing operators of the type h̄v′ΓG

µνhv in the HQET. The primary
motivation for this study is the connection between these operators and the
velocity-conserving operators appearing at order 1/mQ in the effective Lagrangian
of the HQET. Besides, the hadronic matrix elements of such operators determine
part of the 1/m2

Q corrections to heavy-hadron weak decay form factors, as well
as a class of non-factorizable corrections in non-leptonic two-body decays of B
mesons.

We have constructed the combinations of operators that are renormalized
multiplicatively, and calculated the corresponding velocity-dependent anomalous
dimensions at the one-loop order. We have also considered the hadronic ma-
trix elements of the operators h̄v′ΓG

µνhv and determined, for the case of the
ground-state heavy mesons, the scale dependence of the corresponding hadronic
form factors. In the limit of equal velocities, we find that the chromo-electric
and the chromo-magnetic operators do not mix under renormalization. More-
over, as a consequence of the virial theorem and reparametrization invariance,
the anomalous dimension of the chromo-electric operator vanishes to all orders in
perturbation theory. This implies an exact relation between renormalization con-
stants, which may help in the calculation of the yet unknown two-loop anomalous
dimension of the chromo-magnetic operator.
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