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are recognized in this approach, which can be compared to the usual induced represen-
tation technique. When G ' sp(2,R ) or sp(4,R ), the anyonic parameter can be seen as
the eigenvalue of a W generator in such W representations of G.

The generalization of such properties to the affine case is also discussed in the conclu-
sion, where an alternative of the Wakimoto construction for ŝl(2)k is briefly presented.
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1 Preliminaries

The subject of this talk concerns a special class of algebras, which have been called “finiteW
algebras” [1] and which we will denote FWAs. First constructed from the zero modes of the
(known) W algebras, the FWAs present two appealing features.

First, they can be seen as a good laboratory for studying properties of the usual -or affine-
W algebras, which depend of a complex variable: this is due to the relative simplicity of their
commutation relations, compared to the affine case. The second point is that they constitute
their own a rather interesting field of investigation, as well as applications, in mathematical
physics. It is this second aspect of finite W algebras that we wish to raise and develop
hereafter, just mentioning in the conclusion the generalization of our results to affine algebras.

The plan of this review will be the following:
-Section 2 contains a brief introduction on finite W algebras, with some definitions and

notations.
-Section 3 deals with the construction of (a class of) finiteW algebras starting from a simple

Lie algebra G. In our approach, the FWA appears as the commutant, in a generalization of
the enveloping algebra of G, of a G-subalgebra. Such an approach can be seen as providing a
definition of (a class of) FWAs, and also as an explicit method for determining the commutant
of (a class of) subalgebras of a simple Lie algebra.

Then, it is this property of FWAs that will be exploited to construct realizations of a
simple Lie algebra G. More precisely, it can be shown that knowing a special realization of G
in terms of differential operators of the G generators, new G realizations can be constructed
owing to a suitably chosen FWA. This will be the subject of section 4, where the method is
illustrated on the sl(2,R ) algebra. Then:

-Section 5 presents such aW realization for the four dimensional conformal algebra so(4, 2).
Unitary representations of the conformal algebra, as well as its Poincaré subalgebra, can be
recognized in this approach, which can be compared with the usual induced representation
technique.

-Section 6 is devoted to W realizations of the sp(2) and sp(4) cases. These Lie algebras
can be considered as the algebras of observables for a system of two identical particles in
d = 1 and in d = 2 dimensions, in the Heisenberg quantization scheme. In each case, it will
be possible to relate the anyonic parameter to the eigenvalues of a W generator.

Finally we conclude by a short discussion on the extension of these results to the affine
case.

2 Definitions and notations

As a general definition of a finite W algebra, we can propose the following :

It is an algebra over a field k (we will limit to R orC ) the two corresponding internal laws
being the usual addition and multiplication with an extra internal law —the commutator—
which is antisymmetric, k-bilinear, satisfies the Jacobi identity and closes polynomially.
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We will talk about a classical W algebra when the algebra is endowed with a Kirillov-
Poisson structure, and the so-called commutator is the Poisson bracket (PB); we will speak
about a quantum W algebra when the commutator is simply [A,B] = AB−BA for any couple
of elements A and B.

With this definition, the enveloping algebra of a finite dimensional Lie algebra appears as
a particular case of W algebra. But let us propose an example:

Consider the algebra generated by the four elements E,F,H and C with the commutation
relations (C.R.):

[H,E] = E [H,F ] = −F [E,F ] = H2 + C (2.1)

with [C,E] = [C, F ] = [C,H] = 0

It seems natural to compare this algebra with the sl(2) one generated by e, f, h:

[h, e] = e [h, f ] = −f [e, f ] = 2h (2.2)

The algebra (2.1) can be obtained from the zero modes of the (affine) W algebra made by
four generators, of spin 2, 3/2, 3/2 and 1 under the spin 2 Virasoro generator, and sometimes

called the Bershadsky algebra W (2)
3 .The zero mode of the spin 2 element is C, the ones of

spin 3/2 are E and F , while the one of spin 1 is H. One must note that commuting the zero
modes of two different spin 3/2 generators does not uniquely provide zero modes in the other
generators. The standard procedure to eliminate the non-zero modes consists in considering
the action of such elements on any highest-weight representation of the W algebra; then
projecting out both sides of the C.R. on each h.w. state will allow us to get the C.R. of (2.1),
the positive modes annihilating the h.w. states.

TheW (2)
3 algebra belongs to the large class ofW algebras, symmetries of Toda theories, and

which can be constructed from WZW models by using the Hamiltonian reduction technique[2].
The first step consists in imposing (first-class) constraints on the components of the conserved
currents in the considered WZW model. Such constraints imply gauge transformations, and
the associated W algebra will then be obtained by determining the corresponding gauge-
invariant polynomial quantities.

In the following, G will stand for the Lie algebra of a simple, real, connected and non-
compact Lie group G. Let {ta}, a = 1...dimG, be a basis of G and {Ja} the dual basis in
G∗

[ta, tb] = f cabtc Ja(tb) = δab (2.3)

We introduce the metric on G in a representation R:

ηab =< ta, tb >= trR(tatb) and ηabη
bc = δca (2.4)

We can then define on G∗ a Poisson-Kirillov structure that mimicks the commutator (we
have identified G∗ and G):

{Ja, Jb} = fabc J
c with fabc = ηadηbeηcgf

g
de (2.5)
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Actually, from the simple Lie algebra G, the different sets of constraints one wishes to
impose, and therefore the different W algebras one can construct, are in one-to-one corre-
spondence with the embeddings of the sl(2) algebra in G. To each such embedding can be
associated a grading of G, given by the eigenvalue of the sl(2) Cartan generator h: G = ⊕+m

p=−mG

with [h,X] = pX for any X ∈ G, p ∈ 1
2 ZZ ; we then have the property [Gp,Gq] ⊂ Gp+q, with

the convention that Gp = {0} when |p| > m. More generally, we write:

G = G+ ⊕ G0 ⊕ G− (2.6)

the constraints being imposed, in the current matrix J = Jata, on the components of G−.
Since any sl(2) subalgebra in a classical simple G algebra is principal in a subalgebra H

of G (we discard the exceptional algebras case), it is quite usual to denote the corresponding
W algebra by W(G,H). Taking as an example the G = sl(3) case, two W algebras can be
constructed in this way: the W(sl(3), sl(3)) one, which in the affine case is generated by

the two fields W2 and W3 of respective spin 2 and 3, usually also written as W (1)
3 , and the

W(sl(3), sl(2)) one, presented just above as the Bershadsky W algebra and also denoted as

W (2)
3 .

3 Realization of finite W algebras

In the usual Hamiltonian reduction approach [2], we start by imposing (first-class) constraints
on the G∗− part of the J-matrix. Following Dirac’s prescription, these first-class constraints
generate a gauge invariance on the Ja’s, i.e. in the classical case:

J → Jg = exp (cα{J
α, ·}cons.) (J) (3.1)

where the { , }cons. means that one has to impose the constraint conditions on the r.h.s. of
the Poisson bracket. Developing Jg with the help of the gradation and the use of constraints,
we can, using the relations (2.3-2.5), rewrite Jg as:

Jg = exp (cᾱ[tᾱ, ·]) (J) = g−1
+ Jg+ (3.2)

where g+ = exp(cᾱtᾱ) with the parameters cᾱ = ηᾱαcα and tᾱ ∈ G+. Thus the gauge trans-
formations can be seen as conjugation on G by elements of the subgroup G+.

Finally, while fixing the gauge, one obtains, in the components of Jg, gauge-invariant
quantities, i.e. quantities which Poisson-commute with the constraints.

The main idea of our construction [3, 4] is not to impose constraints anymore on G∗− once
the gradation is chosen, but however to use the G+ conjugation as in (3.2):

Jgtot = g−1
+ Jtot g+ with g+ ∈ G+ (3.3)

(we denote the J-part by Jtot in order to emphasize that no restrictions on its components
have been put).

Then, developing Jgtot by using the same rules as before, we get:

Jgtot = exp (cα{J
α, ·}) (Jtot) (3.4)
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where now the PBs are computed without using what were the constraints. Thus if one finds
quantities which are invariant under the coadjoint transformations, these objects will have
strongly vanishing PBs with the elements Jα. Let us add that, although the transformations
we are looking at have the same form as the gauge transformations described at the beginning
of this section, they are not gauge transformations, not being associated with constraints.
Thus the construction we present is strictly algebraic, but we will see that the technique can
be applied to physical problems.

Then we are looking for quantities which Poisson-commute with the G∗− part of G∗. Let
us translate this problem into the Lie algebra G. Such a quantization can be easily performed
thanks to the Lie isomorphism between G∗ and G, and a symmetrization procedure that maps
polynomials in G∗ onto elements of U(G). Indeed, the isomorphism i between G∗ and G defined
by:

i(Ja) = ta = ηabtb (3.5)

where ηab is the inverse matrix of the metric ηab, can be extended as a vector space homomor-
phism from G∗ polynomials into U(G) with the rule:

i(Ja1Ja2 · · ·Jan) = S(ta1 · ta2 · · · tan) ∀n (3.6)

where S(·, · · · , ·) stands for the symmetrized product of the generators ta; S is normalized by
S(X, · · · , X) = Xn.

At this stage, one could realize that the finite W algebras that we wish to construct have
some connection with the commutant of a subalgebra in G. Actually, after developing a
symmetry fixing procedure, and limiting to a class of finite W algebras that are of special
interest for the rest of this talk, we can announce the following result [4]:

Theorem: Any finite W(G,S) algebra, with S = µsl(2) regular subalgebra of G, can be seen
as the commutant in a (localization of) the enveloping algebra U(G) of some G-subalgebra G̃.

Moreover, let H be the Cartan generator of the diagonal sl(2) in S. If we call G−,G0

and G+ the eigenspaces of respectively negative, null and positive eigenvalues under H, then G̃
decomposes as G̃ = G−⊕G̃0, where G̃0 is a subalgebra of G0, which can be uniquely determined.

Let us briefly comment this property. First of all, the G grading obtained from regular
subalgebras S = µsl(2) are always such that the G− part is Abelian. This means in particular
that, in the determination of quantities that commute with G−, the elements of G− themselves
appear. In order to get rid of these undesirable quantities, one can think about increasing the
subalgebra G− up to another one G̃, in such a way that the commutant of G̃ provides exactly
the W algebra one wishes to obtain.

Note that more general finite W(G,H) algebras than the ones mentioned above can be
obtained as a commutant, but one will then have to extend G̃0 to a part of G+ in G. The case
of “affine” W(G,H) algebra can also be treated within this framework.

Thus the W algebras that one can construct are written in terms of all the generators of
the algebra G. There is, however, a price to pay: the generators obtained this way show up
as functions P (ta)/Q(tα) with P a polynomial in all the ta’s and Q a smooth function in the
center of the G̃ Lie derivative (i.e. Z([G̃, G̃])). It can be shown that the W generators form a
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polynomial basis of the commutant of G̃ in a generalization of the enveloping algebra U(G).
The one we consider is the localization U(G)S , where S = Z([G̃, G̃]), which contains apart
from U(G) itself, quotients u−1v, vu−1, where u ∈ S, u 6= 0 and v ∈ U(G), or an extension of
this latter allowing elements like ur, u ∈ S, r ∈ 1

2
ZZ . Let us emphasize that the technique that

is summarized and briefly commented on above leads to a purely algebraic construction of a
class of finite, as well as affine, W algebras. Consequently, it can also be considered as a way
of defining (a family of) W algebras.

4 W realizations of simple Lie algebras

The property of a W algebra to appear as the commutant of a G-subalgebra can be used
to build, from a special realization of G, a large set of G-representations [3][5]. Indeed one
knows how to construct a realization of G with differential operators on the space of smooth
functions ϕ(x1, · · · , xn) with n = dimG−. In this picture, when G− ≡ G−1, the abelianity of
the G−1 part allows each G−1 generator to act by direct multiplication:

ϕ(x1, · · · , xn)→ xiϕ(x1, · · · , xn) with i = 1, · · · , n (4.1)

—cf. action of the translation group— while the generators of the G0 ⊕ G+ part will be
represented by polynomials in the xi and ∂xi.

It is from a particular —canonical— differential realization of G that new realizations will
be constructed with the use of the finite W algebra mentioned above. Realization of the G̃
generators will not be affected in this approach. On the contrary, to the differential form
of each generator in a certain supplementary subspace of G̃ in G will be added a sum of
W generators, the coefficients of which f(xi, ∂xi) are polynomials in the ∂xi’s. To each irre-
ducible d-dimensional representation of the W algebra one can associate a matrix differential
realization of G acting on vector functions ϕ̄ = (ϕ1, · · · , ϕd) with ϕi = ϕi(x1, · · · , xn).

It is time to illustrate our technique on the simplest non-trivial example, i.e. G = sl(2,R ).
Let us define:

J = J−t− + J0t0 + J+t+ =

(
J0 J+

J− −J0

)
(4.2)

with G+,0,− generated by t+,0,− respectively.
By the action of an adequate G+ element, namely:

g+ =

(
1 −J0/J−

0 1

)
(4.3)

one obtains (symmetry fixing):

Jg+ = g+ Jg−1
+ =

(
0 J+J−+(J0)2

J−

J− 0

)
(4.4)

It follows, after quantization:

J+J− + (J0)2 →
1

2
(t+t− + t−t+) + t20 = C2 (4.5)
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that is, exactly the C2 Casimir operator of sl(2,R ) generating the finite W algebra that
we wish to determine (do not forget that we are expecting the zero mode of the Virasoro
generator !).

On this simple example, we can convince ourselves that the commutant of G− in U(G)S (S
is generated by t−) denoted by Com(G−) is a polynomial algebra generated by {C2, t−,

1
t−
}.

In order to get the C2 element only, we will look for the commutant of a Lie algebra larger
than G−; more precisely, we will obtain:

Com (G− ⊕ G0) = Polyn ({C2}). (4.6)

Now, let us show how this construction can be applied to realizations of sl(2,R ). For such
a purpose, consider the sl(2) (differential) realization:

E− =
1

2
x2 E+ = −

1

2
∂2
x H = −(x2∂x2 +

1

4
) (4.7)

acting on smooth functions ϕ of the real variable x. We are in the conditions of eq. (4.1)
for the G−1 part, which is one-dimensional. We also note that the eigenvalue of C2 for this
representation is = −3/16.

On this example, it is an easy calculation to write down from (4.7) new realizations of the
algebra under consideration. Leaving the G− generator unchanged, as well as the G0 one, a
realization corresponding to the eigenvalue γ of C2 is given by:

E− =
1

2
x2 E+ = −

1

2
∂2
x +

γ + 3
16

x2
H = −(x2∂x2 +

1

4
) (4.8)

The above expression of E+ can also be obtained systematically in the following way
(which, therefore, generalizes to the other cases). Coming back to eq. (4.4), let us formally
act on Jg+ by g−1

+ :

Jg+ =

(
0 ”C2”

J−

J− 0

)
→ g−1

+ Jg+g+ = J =

(
J0 −(J0)2+”C2”

J−

J− −J0

)
(4.9)

where ”C2” denotes the Casimir element before quantization. By identification, one gets:

J+ = −
(J0)2

J−
+

”C2”

J−
(4.10)

which shows a direct correspondence between J+ and ”C2”. J+ is linear in ”C2” and vice-
versa; this linearity property will survive at the quantum level:

E+ =
1

E−
(C2 −H

2 −H) (4.11)

which leads to the E+ expression in (4.8).
Thus, from the special (“canonical”) differential realization (4.7), our technique on the

commutant has allowed to get a large class of sl(2,R ) representations.
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5 Unitary irreducible representations of the conformal

and Poincaré algebras

We now apply the results summarized in sections 3 and 4 to get W realizations of the
so(4, 2) algebra and of its Poincaré subalgebra [5]. The so(4, 2) algebra is known as the
conformal algebra in four dimensions in the Minkowski space, i.e. with the metric gµν =
diag(1,−1,−1,−1). Its fifteen generators can be chosen and realized in the momentum rep-
resentation as follows:

- four translations: Pµ = pµ (µ = 0, 1, 2, 3) forming the G− part.
- six Lorentz generators: Mµν = i(pµ∂ν−pν∂µ) forming with the dilatation D = −i(p·∂+4)

the G0 part.
- four special conformal transformations

Kµ = pµ2− 2p− ∂ · ∂µ − 8∂µ (5.1)

constituting the G+ part.
The corresponding grading operator is D, and in the above expressions ∂µ stands for

∂/∂pµ, p is the quadrivector (pµ), ∂ the quadrivector (∂µ) and 2 = ∂ · ∂ = gµν∂µ∂ν = ∂µ∂µ.
We wish to construct the commutant of the Pµ in order to build a W realization of

G = so(4, 2). Note that so(4, 2) and sl(4,R ) are two different non compact real forms of the
algebra so(6) ∼ su(4). If we had considered sl(4,R ), i.e. the maximally non-compact form of
G, the chosen gradation would correspond to the modelW(sl(4), 2sl(2)). Referring to section
3, we can take G̃ = G− ⊕ G̃0, where:

G̃ = {M13 −M01,M23 −M02,M03, D} (5.2)

The commutant of G̃ can therefore be seen as a compactified form of W(sl(4), 2sl(2)). It
contains seven generators: three generators Jk, k = 1, 2, 3, forming an so(3) algebra; three
other generators Sl, l = 1, 2, 3 forming a vector under this so(3), their C.R.’s closing under
a polynomial in the Jk and the seventh generator C2, which is the second-order Casimir of
so(4, 2). In summary the W C.R.’s read:

[Jj , Jk] = i εjklJl

[Jj, Sk] = i εjklSl

[Sj, Sk] = −i εjkl(2(J2
1 + J2

2 + J2
3 )− C2 − 4)Jl

[C2, Jj] = [C2, Sj] = 0 {j, k, l} = {1, 2, 3}. (5.3)

It can directly be checked that this algebra satisfies, for each (real) value of the C2 scalar,
the defining C.R.’s of the Yangian [6] Y (sl(2)), with generators Ji and Si(i = 1, 2, 3). In other
words, the W algebra defined by (5.3) provides a realization of2 Y (sl(2)).

The so(4, 2) realization obtained by our W approach stands as follows, for p2 > 0 (note
that sign (p2) = +, 0,− is conserved in so(4, 2)):

Pµ = pµ1 µ = 0, 1, 2, 3 (5.4)

2We thank Mo-Lin Ge for bringing our attention to this point.
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M12 = i(p1∂2 − p2∂1)1+ J3 (5.5)

M13 = i(p1∂3 − p3∂1)1−
√
p2

p0 + p3

J2 −
p2

p0 + p3

J3 (5.6)

M23 = i(p2∂3 − p3∂2)1+

√
p2

p0 + p3
J1 +

p1

p0 + p3
J3 (5.7)

M01 = i(p0∂1 − p1∂0)1−
√
p2

p0 + p3
J2 −

p2

p0 + p3
J3 (5.8)

M02 = i(p0∂2 − p2∂0)1+

√
p2

p0 + p3
J1 +

p1

p0 + p3
J3 (5.9)

M03 = i(p0∂3 − p3∂0)1 (5.10)

D = −i(p · ∂ + 4)1 (5.11)

K0 = (p02− 2p · ∂∂0 − 8∂0)1−
2

p0 + p3
Z3 +

p0

p2
Z0

+
1

(p0 + p3)
√
p2

(p1Z1 + p2Z2) +

−
2i
√
p2

p0 + p3

(
−(

5

2

p2

p2
+ ∂2)J1 + (

5

2

p1

p2
+ ∂1)J2

)

−
2i

p0 + p3

(p2∂1 − p1∂2)J3 (5.12)

K1 = (p12− 2p · ∂∂1 − 8∂1)1+
1
√
p2
Z1 +

p1

p2
Z0

−
2i
√
p2

p0 + p3

(
5

2

p0 + p3

p2
+ ∂0 + ∂3

)
J2

−2i

(
p2

p0 + p3
(∂0 + ∂3)− ∂2

)
J3 (5.13)

K2 = (p22− 2p · ∂∂2 − 8∂2)1+
1
√
p2
Z2 +

p2

p2
Z0

+
2i
√
p2

p0 + p3

(
5

2

p0 + p3

p2
+ ∂0 + ∂3

)
J1

+2i

(
p1

p0 + p3
(∂0 + ∂3)− ∂1

)
J3 (5.14)

K3 = (p32− 2p · ∂∂3 − 8∂3)1+
2

p0 + p3
Z3 +

p3

p2
Z0

−
1

(p0 + p3)
√
p2

(p1Z1 + p2Z2)

+
2i
√
p2

p0 + p3

(
−(

5

2

p2

p2
+ ∂2)J1 + (

5

2

p1

p2
+ ∂1)J2

)

+
2i

p0 + p3

(p2∂1 − p1∂2)J3 (5.15)
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where
Z1 = 2S1 + J3J1 + J1J3 Z2 = 2S2 + J3J2 + J2J3

Z3 = S3 − (J2
1 + J2

2 ) Z0 = 2S3 + C2 − J2
3 − 2(J2

1 + J2
2 )

(5.16)

Let us focus for the moment on the expressions of the Poincaré generators and remark
that only the ~J-part of the W algebra shows up there. We recall the expressions of the
Pauli-Lubanski-Wigner quadrivector W µ = 1

2
εµνρσPνMρσ, which satisfies:

[Wµ, Pν ] = 0 [Wµ,Wν ] = iεµνρσW
ρP σ W · P = 0 (5.17)

It is well-known that the irreducible representations of the Poincaré algebra are labelled by
the eigenvalues of P 2 = p2 and W 2 = −s(s+ 1)p2, where s is the spin of the particle. Because
of the relation W · P = 0, the quadrivector W µ possesses only 3 independent components.
These generate the spin algebra so(3) when p2 is positive. This is recovered in a very natural
way in our W algebra framework. Indeed, the generators Jk really play the role of the spin
generators, since they can be rewritten as:

Jk = −
1

m
nk ·W = −

1

m
(nk)

µWµ and W µ = −m
k=3∑
k=1

(nk)
µJk (5.18)

(since P ·W = 0)

with m =
√
p2 and W ·W = −P 2 ~J2 (5.19)

and where we have introduced the frame [7] of the “particle” of momentum p:

n0 = (n0)µ =
1

m
p = (

p0

m
,
p1

m
,
p2

m
,
p3

m
)

n1 = (n1)µ =
1

p0 + p3
(p1, p0 + p3, 0,−p1)

n2 = (n2)µ =
1

p0 + p3

(p2, 0, p0 + p3,−p2)

n3 = (n3)µ =
−m

p0 + p3
(1, 0, 0,−1) +

1

m
p (5.20)

which obeys nµ · nν = (nµ)ρ(nν)
σgρσ = gµν and also (nµ)ρ(nν)

σgµν = gρσ.
The Lorentz transformation L(p), which moves the rigid referential frame (e0, e1, e2, e3)

with e0 = (1,~0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0) and e3 = (0, 0, 0, 1) to the p-frame (n0, n1, n2, n3),
also relates the three-vector (Ji) to the four-vector (Wµ)

mJ = (0,m~J)
L(p)
−→W = (Wµ) (5.21)

It is through L(p) that the representations of the Poincaré group can be constructed from
representations of the rotation subgroup. Indeed, the Lorentz transformation Λ acting on
functions ϕ̃ of the p-variable in the U representation:

Λϕ̃(p) = U(Λ)ϕ̃(Λ−1p) (5.22)

9



is written more conveniently on the Wigner functions ψ defined by

ψ(p) = U(L(p)−1)ϕ̃(p) (5.23)

as (
Λψ
)

(p) = U
(
L(p)−1ΛL(Λ−1p)

)
ψ(Λ−1p). (5.24)

We recognize in the product L(p)−1ΛL(Λ−1p) a Wigner rotation, element of the (m, 0, 0, 0)-
vector stabilizer, itself isomorphic to the SO(3) group when p2 > 0. It is exactly the in-
finitesimal part of (5.24) that we have in the expressions of the Poincaré generators displayed
above.

We now look at the other generators of the conformal algebra. In the same way as we have
introduced the Pauli-Lubanski-Wigner vector W µ, let us define:

Σµ = −W 2 Pµ + P 2[ P αMαµ(D + i)−

−
1

2
(Pµ P ·K − P

2Kµ)−
1

2
εµνρσW

νMρσ] (5.25)

It satisfies in particular
[Σµ, Pν ] = 0 and Σ · P = 0 (5.26)

and we can prove that the generators Si are connected to the quadrivector (Σµ) through

Sk = −
1

m3
nk · Σ = −

1

m3
(nk)

µΣµ and Σµ = −m3
k=3∑
k=1

(nk)
µSk (5.27)

(since P · Σ = 0) and also:

m3S = (0,m3~S)
L(p)
−→ Σ = (Σµ) (5.28)

It would be interesting to add to these geometrical properties a physical meaning for (Σµ),
which appears as a sort of conformal analogous of (Wµ).

Finally, as for the Poincaré subcase, we expect that the obtained W -realizations of the
so(4, 2) algebra can be compared with the ones constructed via the induced representation
method. This later approach can be found in ref. [8], where the classification of all the unitary
ray representations of the su(2, 2) group with positive energy is achieved. A direct comparison
with the construction of ref. [8] can be performed [5], which leads to a selection of finite-
dimensional representations of theW algebra leading to the unitary conformal representations.
In ref. [8] the induced representations are labelled by two non-negative (half) integers (j1, j2)
associated with spinor representations of the Lorentz group Dj1,j2, and by d a real number
associated to the dilatation. In particular the representations of positive masses satisfy the
conditions:

d ≥ j1 + j2 + 2 with j1, j2 6= 0 and d > j1 + j2 + 1 with j1, j2 = 0 (5.29)

Our task is greatly facilitated by the Miura transformation, which allows theW generators
to be expressed in terms of generators of the G0 part, that is the Lorentz algebra generated
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by the rotations ~R and the boosts ~B to which has to be added the dilatation D. The result
is quite simple:

~J = ~R ~S = ~R × ~B − i(D − 1) ~B C2 = ~R2 − ~B2 +D(D − 4) (5.30)

Owing to (5.30) we know how to associate, and explicitly construct, the W representa-
tion relative to the so(4, 2) unitary representation labelled by (j1, j2; d) the condition (5.29)
becoming:

c2 ≥ 2j1(j1 + 1) + 2j2(j2 + 1) + (j2 + j2)2 − 4 if j1j2 6= 0 and
c2 > 3(j1 + j2 + 1)(j1 + j2 − 1) if j1j2 = 0

(5.31)

where c2 is the C2 eigenvalue.

6 Anyons and W algebras

We now turn to the Heisenberg quantization for a system of two identical particles in
d = 1 and d = 2 dimensions[9]. In each case a finiteW algebra will be recognized [3] from the
algebra of observables, and used for an algebraic treatment of intermediate statistics.

6.1 Two particles in d = 1

We must remark that such a one dimensional system of two identical particles has been
proposed as anyon candidate. Indeed it can be formally related to a system of two identical
vortices in a thin, incompressible superfluid film, the two spatial coordinates of the vortex
center acting as canonically conjugate quantities [10].

The relative coordinate and momentum of the two particle system are denoted by:

x = x(1) − x(2) p =
1

2
(p(1) − p(2)) (6.1)

and satisfy the C.R. [x, p] = i in the quantum case.
Then the chosen observables, i.e. the quadratic polynomials homogeneous in x and p

(x2, p2, xp + px) close in the quantum case under the C.R.’s of G = sp(2,R ) ' sl(2,R ) and
we recognize the expressions already written in (4.7). The W treatment [3] leads directly to
(4.8), in particular to the expression:

E+ = −
1

2
∂2
x +

γ + 3/16

x2
(6.2)

where we can recognize (x = x(1) − x(2)) the Calogero Hamiltonian. As discussed in [9] the
parameter λ = γ + 3/16 can be directly related to the anyonic continuous parameter, with
end point λ = 0 or γ = −3/16 corresponding to the boson and fermion cases.
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6.2 Two particles in d = 2

Then, the algebra of observables is generated by the quadratic homogeneous polynomials in
the relative coordinates xj and pj (j = 1, 2). One gets a realization of the G = sp(4,R ) Lie
algebra, the generators of which can be conveniently separated into three subsets:

- the G−1 part with the three (commuting) coordinate operators:

u = (x1)2 + (x2)2 v = (x1)2 − (x2)2 w = 2x1x2 (6.3)

- the G+1 part with the three (commuting) second order differential operators:

U = (p1)2 + (p2)2 V = (p1)2 − (p2)2 W = 2p1p2 (6.4)

- and the G0 part isomorphic to s`(2,R ) ⊕ g`(1) with the four first order differential
operators:

Cs = 1
4

∑2
i=1(xipi + pixi) Cd = 1

4
(x1p1 + p1x1 − x2p2 − p2x2)

L = x1p2 − x2p1 M = x1p2 + x2p1

(6.5)

Cs being the Abelian factor.
The finiteW algebra associated with this G-gradation is four-dimensional, and can be seen

as a “deformed” gl(2) algebra, i.e.:

[S,Q] = −2iR

[S,R] = −2iQ

[Q,R] = −8iS(µ− 2S2) (6.6)

[µ,Q] = [µ,R] = [µ, S] = 0

We will not give explicit W realizations of the sp(4,R ) algebra in order not to overload
the text, but rather concentrate our attention on the possible determination of an operator
which carries the intermediate statistics in this framework.

By the following change of variables

u = r2 v = r2 sin θ cos 2φ w = r2 sin θ sin 2φ (6.7)

with 0 ≤ θ ≤ π
2
, 0 ≤ φ ≤M, the generator L in (6.5) becomes:

L = −i
∂

∂φ
(6.8)

We note that when working with univalued functions, this operator is not well defined on
the set L2([0, π]). More precisely, for L to be self-adjoint, we have to:

- either restrict it on functions satisfying

ψ(0) = λψ(π) (6.9)
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where λ plays the rôle of an anyonic parameter (λ = 1 characterizes the bosons, while λ = −1
characterizes fermions)

- or modify the explicit form of L

L = −i
∂

∂φ
+ α (6.10)

and apply it on functions such that
ψ(0) = ψ(π) (6.11)

the anyonic parameters being here α (α = 0 being the bosons, and α = 1 being the fermions).

Choosing the second alternative, which is compatible with the bosonic case provided by
the xi, pj representation, leads to adding aW contribution to the L defined in (6.8). Actually,
it appears possible to propose different W realizations of the sp(4,R ) algebra, i.e. different
expressions including W contributions to the sp(4,R ) generators; of course these different
realizations will be equivalent once a finite dimensional W representation has been chosen.
Among the different possibilities (see ref. [3]), the simplest one is the following:

L′ = −i
∂

∂φ
− S (6.12)

For the one-dimensional representations of the W algebra, S becomes a number that can
be non-zero. For higher dimensional W representations, S is a diagonal matrix, and this
framework could lead to a generalization of anyons directly related to the enlargedW algebra
(when compared with paragraph 6.1). A more complete discussion of the validity of this
interpretation can be found in ref. [3].

As a conclusion, owing to aW algebra treatment, the one-parameter self-adjoint extension
family of the angular momentum does allow the anyonic statistics to be incorporated.

7 Conclusion and perspectives

The characterization of the class of finite W algebras that we proposed, based on com-
pletely algebraic grounds, is conceptually simple. Such an algebra is defined in terms of the
commutant, in a particular localization of the enveloping algebra U(G), of a subalgebra G̃ of
a simple Lie algebra G. This approach is specially adapted to obtain new realizations of the
Lie algebra G from a particular (differential) one. In other words, a class of G representations
can be explicitly built with the help of a G differential realization and the knowledge of a
particular W algebra. A direct comparison of this construction with the technique of induced
representations has been given in section 5 for the cases of the four-dimensional conformal and
Poincaré algebras. It was also shown in section 6 that this framework fits with the Heisenberg
quantization for a system of two identical particles in two dimensions, the W algebra under
consideration being interpreted as carrying the anyonic information.

Therefore, it appears reasonable to put some more effort in the physical applications, as well
as in the mathematical developments of these objects. The first question that could be raised
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concerns the Heisenberg quantization for a system of more than N = 2 identical particles. For
N ≥ 3, the structure of the algebra of observables becomes much more complicated (see for
example ref.[11]). The anyonic problem deserves more work, in particular if we keep in mind
the relevance of the W1+∞ algebra in the algebraic treatment of the quantum Hall effect (ref.
[12]). As a second question, one could wonder about the occurrence of a finiteW algebra as the
symmetry algebra for a particular Hamiltonian; several examples corresponding to different
types of potential have already been detected (see for example ref. [1]). It might be of some
interest to bypass the mere observation and try to understand how the non-linearity of the
symmetry algebra arises.

On the mathematical side, it looks promising to connect our approach with the general
study of primitive ideals considered in ref. [13], in which the commutants of nilpotent algebras
are directly involved. But the most natural field of investigation is of course the generalization
of our constructions to the affine —or not finite— W algebra case.

Actually the realization of W algebras with the generators expressed in terms of all the
generators of an affine Kac-Moody algebra has been performed in ref. [4]. As in the finite
case, the (primary) W fields are written as quotients of polynomials. However, we have to
stress that the denominators, in these quantities, simply commute with all the numerators,
allowing in particular a computation of the operator product expansions (OPE) without spe-
cial difficulties in the quantum framework. Such a construction might be seen as a sort of
generalized Sugawara one, but without the restrictions to special values of the Kac Moody
central extension, and without need of coset technique, as developed in ref. [14].

Finally, affine W algebras could also be used to obtain realizations of affine Kac-Moody
ones[15][16]. Let us close this section by presenting such an approach in the ŝl(2)k case.

For such a purpose, we need first to define the ŝl(2)k currents J−(z), J0(z) and J+(z) which
satisfy the OPE’s

J0(z)J±(w) ∼ ±
1

z − w
J±(w) J0(z)J0(w) ∼

k/2

(z − w)2

J+(z)J−(w) ∼
k

(z − w)2
+ 2

J0(w)

z − w
(7.1)

where the ∼ symbol indicates that we restrict the OPE to its singular part.
Then, we introduce the T (z) operator, which commutes with J0(z) as well as J−(z):

T = Tsug − ∂J0+ :
∂J−
J−

J0 : +k

3

4

(
∂J−
J−

)2

−
1

2

∂2J−
J−

 (7.2)

with Tsug = 1
k+2

: J0J0 + 1
2(J+J− + J−J+) :, and : : being the normal ordered product.

T (z) generates the Virasoro algebra with central charge

c = 1− 6
(k + 1)2

k + 2
(7.3)

In the following, we will use: W (z) = (k + 2)T (z), which for k = −2 reduces to: J0J0 +
1
2(J+J− + J−J+) : (z), and commutes also with J+(z).
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Now, as in the Wakimoto construction [17], we start with a (β, γ) system satisfying:

β(z)γ(w) ∼
1

z − w
(7.4)

which can be considered as the “affine” analogue of the (x, ∂x) pair. The realization of ŝl(2)k
we obtain reads:

J− = γ J0 = − : γβ : −
k + 2

4
:
∂γ

γ
: (7.5)

J+ = − : γβ2 : −k∂β + :
1

γ
W : +(k + 2)

[
−

1

2
::
∂γ

γ
: β :

+
1

4

(
(k + 1)

∂2γ

γ2
−

1

4
(5k + 6)

(∂γ)2

γ3

)]
(7.6)

We could say that in our construction, the Wakimoto φ(z) free field has been replaced
by the Virasoro W (z) operator. Fractional calculus technique [18] are well adapted to this
framework, which, we hope, might have its interest in the computation of correlation functions.

By the Sugawara construction, we knew how to obtain, from an affine Lie algebra, a
Virasoro realization. The alternative to the Wakimoto construction given just above allows
us, starting from a Virasoro representation, to obtain new ŝl(2)k ones: shall we conclude that
we have looped the loop?
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