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Abstract

In this paper it is shown that spatial distributions in the field-sweep rate and in the contact resistances along
the length of Rutherford-type cables provoke a non-uniform current distribution during and after a field
sweep. This process is described by means of Boundary-Induced Coupling Currents (BICCs) flowing
through the strands over lengths far larger than the cable pitch. The dependence of the BICCs on the cable
parameters (geometry, contact resistances etc.) is investigated by modelling the cable by means of a
comprehensive network model. Working formulas are presented that give a first estimate of the
characteristic time, the amplitude, and the characteristic length of the BICCs in any kind of magnet wound
from a Rutherford-type cable. The results of these calculations show that BICCs can attain large values in
multistrand cables, and hence play an important role in the ramp-rate limitation and field quality of
high-field accelerator magnets even if the field-sweep rate is small.
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Modelling Boundary-Induced Coupling Currents in Rutherford-type Cables

A.P. Verweij
CERN, CHl211 Geneva 23, Switzerland

Abstract - In this paper it is shown that spatial
distributions in the field-sweep rate and in the
con tac t  res is tances  a long  the  leng th  o f
Rutherford-type cables provoke a non-uniform
current distribution during and after a field sweep.
Th is  p rocess  is  descr ibed by  means o f
Boundary-Induced Coupl ing Currents (BICCs)
flowing through the strands over lengths far larger
than the cable pitch. The dependence of the BICCs
on the cable parameters (geometry,  contact
resistances etc.) is investigated by modelling the
cable by means of a comprehensive network model.
Working formulas are presented that give a first
estimate of the characteristic time, the amplitude,
and the characteristic length of the BICCs in any
kind of magnet wound from a Rutherford- B

.
t y p e

cable. The results of these caleulations show that
BICCs can attain large values in multistrand
cables, and hence play an important role in the
ramp-rate limitation and field quality of high-field
accelerator magnets even if the fieldsweep rate is
s m a l l .

I. INTRODUCTION

It is well known that Interstrand Coupling Currents
(ISCCs) are generated in superconducting multistrand cables
subject to a field variation B

.
. These ISCCs are usually

calculated assuming that B
.
 and the contact resistances Ra

(between adjacent strands) and Rc (between crossing strands)
are uniform along the length of the cable. However, in all
practical coils spatial variations of Ra, Rc and B

.
 are present

along the length of the cable. For example, charging
accelerator dipole and quadrupole magnets results in:
• Strong variations of B

.
, especially in the coil ends, for

which |∆ B
.
/∆z| is of the same order as |B

.

ce/Lp|, with
∆ B

.
 the change  in B

.
 over the longitudinal length ∆z,

B
.

ce the field change in the aperture of the magnet and Lp
the cable pitch.

• Weak variations, present in the entire coil, for which
|∆ B

.
/∆z| is much smaller than |B

.

ce/Lp|.
Note that in solenoid magnets mainly weak variations occur.

Besides spatial distributions of B
.

, spatial distributions of
Ra and Rc are also present in an accelerator magnet and can be
separated in:
• Variations over lengths far larger than Lp which are

present in the entire cable since the transverse pressure
varies considerably over the cross-section of the coil.

• Variations over lengths up to a few Lp which are
especially present in the coil ends, in the soldered
connections between different cables in the magnet and in
local 'shorts' between strands.
The influence of spatial B

.
 and Rc-distributions on the

coupling currents in Rutherford-type cables was also treated
by Akhmetov et al., showing that the coupling currents vary

periodically with a period equal to the cable pitch [1]. Also
Krempasky and Schmidt have recently shown that non-
Manuscript received August 26, 1996.

uniform -distributions provoke additional coupling currents
exhibiting very long time constants [2]. Their approach was
based on the solution of the diffusion equation which they
applied to a two-wire configuration coupled through a
transverse conductance. Both approaches demonstrate
qualitatively that non-uniformities in  or the contact
resistances always result in periodically varying coupling
currents.

Quantitative results can be obtained using a
comprehensive network model in which the cable is modelled
by a network of nodes interconnected by strands and contact
resistances [3,4]. In this paper the main results of these
numerical calculations are evaluated by means of a new type
of current, the so called 'Boundary-lnduced Coupling Current
(BICC)'. The term 'boundary' indicates that BICCs are
generated by geometrical boundaries, boundaries in B

.
 and

internal boundaries such as changes in Ra and mainly Rc.
Variations in B

.
, Ra and Rc across the cable width only

slightly change the distribution of the ISCCs but do not
generate BICCs, and are therefore not dealt with in this paper.

The characteristic pattern of the BICCs and several
analytical formulas for the magnitude and the characteristic
time are given in sections III and IV, in the case of a step
increase in B

.

⊥  along the length of the cable. In section V it
is explained how the formulas can be used to estimate the
magnitude of the BICCs in a practical coil.

II. MODELLING BICCS

The network model, as extensively described in [4], is
used to calculate the BICCs in a Rutherford-type cable (with
width w, average height h and strand diameter ds). Self- and
mutual inductances between the strands are incorporated in the
model. The longitudinal coordinate of the cable is denoted by
z. The cable lengths from z=0 to the ends of the cable are
referred to as lcab,1, for z<0, and lcab,2, for z>0. The end of
the cable is either the physical end (with or without a
cable-tocable connection) or a part where the strands are in the
normal state (and hence have a relatively large strand
resistivity). The strands are denoted by the strand number i
(from 1 to the number of strands Ns).

The calculations are performed assuming that:
- The strands in the cable have the same length.
- The strand currents are smaller than the critical current.
- The BICCs 'see' an effective resistivity ρbi along the

strand, which could be related to the diffusivity of the
BICCs from the contacts into the filaments. Note that ρbi
is not the same as the strand resistivity that the transport
current 'sees' .



- Ra is much larger than Rc, and its influence on the BICCs
is disregarded. See [4] for a treatment of Ra<< Rc, which
is e.g. the case for a cable with a resistive barrier between
the two layers.

- Only the field change B
.

⊥  perpendicular to the wide face
of the cable is considered because the other field
components turn out to have a much smaller effect.

- Only non-uniformities in B
.

⊥  are dealt with since they are
often the major cause of BICCs in coils. See [4] for a
treatment of the influence of local Rc-variations (and
uniform B

.
) which is important to estimate the BICCs

due to Rc-variations in the coil ends and the cable-to-cable
connections.

- The transport current is uniformly distributed among the
strands.

In the following the term 'steady-state' denotes the condition
that the cable is exposed to a certain B

.

⊥ distribution for a
time much larger than all characteristic times involved.

Most of the simulations are performed by subsequently
changing all the parameters in the network model, namely h,
w, Lp, Ns, Rc, Ra,~ B

.

⊥  and ρbi. The results are presented as
analytical formulas that describe the dependence of the
currents, time constants and decay lengths on the above-
mentioned parameters. Hence, each analytical relation
contains one or more constants of proportionality that are
needed to fit the numerical results to the analytical
expressions.

III. CHARACTERISTIC BICC PATTERN

The characteristic BICC pattern is illustrated for a 16-
strand cable exposed to a field change B

.

⊥  of 0 for z<0 and
0.01 Ts-l for z≥0 (with Rc=1 µΩ, Ra= 10 µΩ, ds= 1.3 mm
and Lp=100 mm). In Fig. 1a/b the current Istr in two strands
is depicted, showing that the strand current can be regarded as
a superposition of three components:
- The transport current which is constant all along the

strand (and equal to 20 A in this case).
- The oscillating term, with an average equal to 0, related

to the ISCCs which are mainly present for z≥0. The
amplitude of the ISCC pattern is about 7 A and remains
constant for z≥0.

- The BICC which is maximum close to the B
.

⊥ -step and
decays along the cable length.

Two regimes can be distinguished for the BICCs:
Regime A. The BICCs decay quasi-exponentially along
the length and approach 0 clearly before the end of the
cable. In this case a characteristic length ξ of the BICCs
can be defined as the length over which the BICCs decay
to l/e of their maximum value.
Regime B. The BICCs decay quasi-linearly towards 0 at
the end of the cable.
The ratio between Rc and ρbi is the main factor that

determines the regime of the BICCs (see section IV).
A regular pattern exists in the magnitudes of the BICCs.

In each cross-section of the cable opposite strands carry

BICCs with the same magnitude but with an opposite sign.
Adjacent strands have only slightly different BICCs.

The regular pattern is typical for BICCs and causes them
to generate more pronounced field errors in magnets than in
the case of a random current distribution among the strands,
such as that caused by different joint resistances.

Fig. l. The characteristic pattern of the currents in two strands of
a Rutherford-type cable subject to field changes of 0 for z<0 and
0.01 Ts-1 for z≥0. The transport current is shown by a dotted line.
a: Regime A: ρbi =2 10-14 Ωm, b: Regime B: ρbi =2 10-17 Ωm.

The change of the BICCs in axial direction corresponds to
the cross-over currents lc flowing between the upper and
lower layers through Rc. This in turn results in a periodic
behaviour of l c and, therefore, the coupling power
P I Rc c c=( )2

 along the cable length. So, parts having large and
small local power losses alternate, which is shown in Fig. 2
where the coupling power loss in each resistance Rc is
depicted over a length of 3 Lp.

Half of the strands are less heated than the average since
they 'slalom' in between the hot spots. These strands
correspond to those with small BICCs. The other half of the
strands, which carry large BICCs, are heated more than the
average. Hence, the spots with a large local power loss
correspond to those areas where strands with large BICCs
cross each other. During ramping, the stability of a coil is
therefore affected since some strands have significant larger
current than the transport current and are heated more than the
average. However, if the thermal conductivity inside the cable



is good the temperature of the strands will probably be quite
uniform even if the power loss fluctuates strongly.

Note that, due to the large characteristic lengths, the
BICCs can cause a significant enhancement of the coupling

Fig. 2. The characteristic pattern of Pc across the cable width
(with w= 10.4 mm) and along the length of a Rutherford-type
cable subject to field changes of 0 for z<0 and 0.01 Ts-1 for z≥0
(Regime A: ρbi  = 2 10-14 Ωm).

power loss, also in those parts of the cable which are not
exposed to the local B

.

⊥ .
It is important that the the decay of the BICCs along the

length is only quasi-exponential or quasi-linear if Rc is
constant. In the case of a cable with a longitudinal Rc
variation, the change of the BICCs along the cable length
will vary according to the local Rc. This implies that, for
example, the slope dIbi/dz of the linear decay shown in
Fig. 1b will not be constant along the length but wil1
locally increase (decrease) in sections with smaller (larger)
Rc. This means that all the sections in a cable having a small
Rc could enhance the magnitude of the BICCs, even if these
sections are placed in a low-field region of the magnet. A
typical example is the joint between the cables of two poles.
Experimental evidence of the influence of a local decrease in
Rc on the magnitude of the BICCs is given in [5].

IV. QUANTITATIVE RESULTS

The BICCs are characterised by an amplitude, a
propagation length and a characteristic time. The development
of the BICCs in time is a complicated process which shows a
certain similarity with electromagnetic waves having a
propagation velocity, and attenuation and dispersion along the
length. In this paper the transient behaviour of the BICCs is
summarised by means of the average characteristic time
τbi,av , i.e. the time during which the average of the absolute
value of all the BICCs in the whole cable decays to 1/e of its
initial value.

Note that the BICCs can only attain the steady-state
values if the total current in each strand section remains
smaller than the critical current, and if the characteristic time
of the BICCs is smaller than the time during which the cable
is exposed to a field change.

The following analytical relations for regimes A and B are
derived by a fit to the numerical calculations using the
network model in the case of a straight cable having strands
with a round cross-section. The errors in the fitting constants
are about 5-10% (for 8 ≤Ns≤40).
Regime A.
The steady-state BICC Ibi,i in strand i can be approximated
by (neglecting the small periodic signal for z<0):

ξ can be large for practical superconductors especially for
small ρbi and large Rc The characteristic time τbi,av satisfies:

where the constant has the dimensions Ωsm-l. Note that
τbi,av is independent of Rc.

Regime B.
A similar expression for Ibi,i  is obtained as eq. l with the
difference that the BICCs depend linearly on the cable length:

The time constant τbi,av is now related to the lengths
lcab,1 and lcab,2  and can be expressed by:

where the constant has the dimension Ωsm-1. Note that for
lcab,1= lcab,2 = lcab/2 the characteristic time τbi,av is about
a factor (lcab /Lp) larger than the average time constant of the
ISCCs, i.e. ca. 1.6.10-8 LpNs

2/Rc [4].
The maximum magnitude Ibi,0 of the BICCs for practical

cables (i.e. Ns is about 20-40) is, in first approximation,
about a factor ξ /Lp (regime A) or lcab,eff/Lp (regime B)
larger than the maximum ISCC, i.e. ca. 0.042LpwNs B

.
⊥ /Rc

[5]. This factor explains the large magnitude of the BICCs
shown in Fig. 1a/b where ξ≈4Lp and L cab,eff≈18Lp for the
given simulation parameters.

V. ESTIMATING BICCS IN COILS

The magnitude of the BICCs due to any distribution of
B
.

⊥along the cable length, simulating e.g. the coil ends or
the part where the cable enters the coil, can be modelled



directly with the network model. It is also possible to replace
(1) by a multi-step function:

and NB=l cabNs/Lp, and z=mLp/Ns. This approach is valid as
long as the set of equations is completely linear, i.e. as long
as the strands are not saturated and ρbi is independent of the
current through the strand. A similar summation can of
course be made for regime B by combining (5)-(7).

It can be easily seen that the BICCs are maximum if the
B
.

⊥-transition happens in a single step, since the summation
in (9) can never be larger than Ibi,0 as defined by (2). In
general it can be said that strong variations (i.e. |∆ B

.
⊥ /∆z| of

the same order as |B
.

⊥ ,max/Lp|), cause large BICCs whereas
weak variations, i.e. |∆ B

.
⊥ /∆z|<<|B

.
⊥ ,max/Lp|, cause small

BICCs.
In a practical coil, due to the numerous Rc- and B

.
⊥-

variations located at different positions, there is of course a
large quantity of BICCs each having their own magnitude and
characteristic time and length. Usually, it is therefore only
possible to speak about average values for Ibi,0, ξ and τbi.

Note that τbi,av in a coil can change (compared to a
straight cable) due to the mutual inductances between the
BICCs of the various turns, and can be a few times smaller or
larger than τbi,av  in a single straight cable.

An estimate of the BICCs of regime A still requires a
proper value of ρbi , in order to calculate ξ  and τbi,av.
Probably the most convenient way is to measure either ξ or
τbi,av. in a coil and deduce ρbi  from it. τbi,av can be
measured by measuring the characteristic time of the sinu-
soidally varying field errors in the coil that are proportional
to the field sweep rate B

.
. ξ is more difficult to measure but

can (especially in long accelerator magnets) sometimes be
deduced from the decay of the sinusoidally varying field errors
(that are proportional toB

.
) along the length. In the LHC

dipole model magnets ξ  is typically a few meters, τbi.
between l00 and l000 s andρbi about 10-14 Ωm [4],[6].

Note that even at small field-sweep rates the BICCs can
become relatively large. For example, Ibi,0=50 A for
Ns=28, w=0.015 m, ξ=4m, Rc=10µΩ and ∆ B

.
⊥=0.0l Ts-1

(regime A).
If ξ is calculated to be larger than the length between the

cable non-uniformity and the ends of the cable, then the
BICCs have to be calculated using the formulas for regime B.
If ξ is of the same order as lcab,1 (or lcab,2) then the exact
BICC pattern cannot be described by simple analytical
relations but the relations for regime A or B can be used as a
first approximation.

V. CONCLUSION

So-called Boundary-Induced Coupling Currents (BICCs)
are generated in (Rutherford-type) cables, which are exposed

to a varying field, if the field sweep rate or the contact
resistances vary along the cable length.

BICCs differ from the 'normal' Interstrand Coupling
Currents because they stay in the strands over long distances
of 10-103

 times the cable pitch (or the length of the cable).
BICCs propagate through the cable and exhibit large
characteristic times of 10-105 s (for practical cables) which are
several orders of magnitude larger than the time constant of
the Interstrand Coupling Currents.

In accelerator magnets the BICCs cause:
• sinusoidally varying field distortions along the magnet

axis with a large characteristic time, an amplitude
proportional to the field sweep rate and a period equal to
the cable pitch,

• an increase in the coupling power,
• a decrease of the stability of the cable since some strands

carry more current than the transport current and since
these strands are heated more than the average.
The decay of the BICCs along the length of the cable is

either quasi-exponential (regime A) or quasi-linear (regime B),
which is determined by the ratio between Rc and the effective
strand resistivity that the BICCs "see". The slope of the decay
varies according to the local Rc in the cable.

The BICCs are mainly caused by variations in the field
change B

.
⊥ transverse to the cable width, and their magnitude

increases strongly if the lengths of the B
.

⊥variations are of
the same order or smaller than the cable pitch. In the case of a
dipole magnet this implies that the field variations in the coil
ends cause large BICCs whereas the gradual variation of B

.
⊥

to which the total cable is exposed only causes relatively
small BICCs.

The magnitude of the BICCs can be reduced by increasing
the contact resistances Ra and especially Rc. However, local
decreases in Rc (e.g. in the cable-to-cable connections) could
significantly increase the magnitude and the characteristic
time of the BICCs. This implies that also in cables having a
large Rc, BICCs will be present if the cable is locally soldered
(even if the soldered parts are located in a low-field region).
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