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EXERCISES IN EQUIVARIANT COHOMOLOGY AND

TOPOLOGICAL THEORIES

R. STORA

Laboratoire de Physique Théorique ENSLAPP a, B.P. 110,

F-74941 Annecy-le-Vieux Cedex, France

and

Theory Division, CERN, CH-1211, Geneva 23, Switzerland.

Equivariant cohomology is suggested as an alternative algebraic framework for the

definition of topological field theories constructed by E. Witten circa 1988. It also

enlightens the classical Faddeev Popov gauge fixing procedure.

1 Introduction

Before going into the subject of this talk, I would like to describe some concrete
exercises done by Claude and I which represent a very small portion of the
numerous discussions we had, mostly by exchange of letters. We happened to
be both guests of the CERN theory division during the academic year 1972-
1973.

The perturbative renormalization of gauge theories was still a hot subject,
and, whereas most of our colleagues considered the problem as solved we were
both still very innocent. I happened to be scheduled for a set of lectures for
the ”Troisième cycle de la Suisse Romande” in the spring 1973, on the subject
”Models with renormalizable Lagrangians: Perturbative approach to symme-
try breaking”, and I decided to conclude those lectures with a summary of the
known constructions related to gauge theories, mostly at the classical level,
except for a heuristic derivation of the now called 1 Slavnov Taylor identities,
taking seriously the Faddeev Popov ghost and antighost as local fields. What
had to be done was indicated in A. Slavnov’s preprint which I had remarked:
perform a gauge transformation of parameter m−1ξ̄ where m is the Faddeev
Popov operator and ξ̄ the source of the antighost field. That strange trick was
due to E.S. Fradkin and I.V. Tyutin as indicated in Slavnov’s preprint. At
the time, I was not aware of J.C. Taylor’s paper which came to my attention
much later. Anyway, Claude and I carried out that calculation whose result is
reported in the notes, with details in an appendix for which the authors (A.
Rouet and I) thank Claude Itzykson for generous help 2. It is that form of the
identity which, a few months later drew Carlo Becchi and Alain Rouet’s atten-
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tion, leading them to the remark that the gauge fixed Faddeed Popov action
possesses a symmetry naturally called the Slavnov symmetry. A year later,
when the paper by E.S. Fradkin and G.A. Vilkovisky on the quantization of
canonical systems with constraints came out, Claude and I had a conversation
on the telephone and we found we had both noticed that paper. I suggested
that the action they proposed possessed a Slavnov symmetry. A couple of days
later, Claude called me back and gave me the formula -at least in the case of
gauge constraints- which I immediately forgot. When I met E.S. Fradkin in
Moscow in the fall 1976, I told him about Claude’s finding, and there followed
the first article by I.A. Batalin and G.A. Vilkovisky who unfortunately thank
me for suggesting the problem, and do not mention Claude at all.

These are only two examples of the innumerable discussions we had on
physics and other things as well, mostly in writing, because life did not make
our trajectories intersect so often. The last long series of discussions I had with
him took place in Turku, Finland, at the meeting of the spring 1991. Almost
every evening, we were ambulating around the big lawn in front of the dining
room, trying to reconstruct, at his request, the arguments which produce the
existence of 27 straight lines on an unruled third degree surface. That was a
prelude to his later work on enumerative geometry.

Generous, he was; intelligent he was; cultivated he was; we remain deprived
of patiently gathered wisdom, a rather rare item.

Returning to technicalities I will now try to describe a few facts about
the Lagrangian formulation of topological -more precisely cohomological- field
theories, constructed by E. Witten from 1988 on, in as much as they are
relevant to our poor understanding of gauge theories. That is to say I will
insist on the field theory aspects in particular, the distinction between fields
and observables, even though a host of beautiful results and conjectures have
been obtained otherwise.

Equivariant cohomology is roughly forty five years old, and yet, does
not belong to most theoretical physicists’ current mathematical equipment.
The easy parts, namely, definitions, terminology, elementary properties are
described in the appendix whose content is freely used throughout the text.

Section 2 is devoted to a reminder on dynamical gauge theories and a
formal description of the Faddeev Popov gauge fixing procedure in terms of
notions belonging to the theory of foliations 3.

Section 3 describes some aspects of ”cohomological” topological theories
with emphasis on some of the features which distinguish them from dynamical
theories at the algebraic level provided by the Lagrangian descriptions.
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2 Formal aspects of dynamical gauge theories

Here are a few considerations on formal aspects of the Faddeev Popov gauge
fixing procedure which allowed to handle, thanks to the very strong conse-
quences of locality, the ultraviolet difficulties found in the perturbative treat-
ment of theories of the Yang Mills type. This can be found in most textbooks
and usually proceeds via factoring out of the relevant functional integral the
infinite volume of the gauge group produced by the gauge invariance of the
functional measure. There is a more satisfactory strategy sketched in J. Zinn
Justin’s book 4 which avoids this unpleasant step, and fits more closely math-
ematical constructions now classical in the theory of foliations 3.

The set up is as follows:
M4 is a smooth space time manifold, which one may choose compact with-

out boundary, in euclidean field theory. P (M,G) is a principal G bundle over
M4,

⋃

i

(Ui ×G) modulo glueing maps above Ui ∩ Uj, where {Ui} is an open

covering of M). G is a compact Lie group referred to as the structure group.
A is the set of principal connections a on P (M,G) (Yang Mills fields). On M4

aM =
∑

α

aαµ(x)dxµeα eα : basis of Lie G (1)

On P (M,G), locally,

a = g−1aM g + g−1dg (x, g) local coordinates in U ×G (2)

F (a) = da+
1

2
[a, a] (3)

is the curvature of a (the field strength).
A is acted upon by G, the gauge group, i.e. the group of vertical automor-

phisms of P (M,G) (”gauge transformations”). Upon suitable restrictions, A
is a principal G bundle over A/G, the set of gauge orbits.

Dynamical gauge theories are models in which the fields are the a’s (and,
possibly matter fields), and the observables are gauge invariant functions of
the a’s (or functions on A/G).

For historical as well as technical reasons related to locality, one chooses
models specified by a local gauge invariant action

SYM(a) =
1

4g2

∫

M4

trF ∧ ∗F. (4)

Heuristically, one considers the G invariant measure on A

ΩYM = e−SY M (a) ∧ δa
︸︷︷︸

Da

(5)
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If {Xα} denotes a basis of fundamental vertical vector fields representing
the action of Lie G on A, one constructs the Ruelle Sullivan 5 current

ΩRS = i(Λ
α
Xα)ΩYM (6)

which is closed and horizontal, therefore basic: (cf. Appendix A)

δΩRS = 0

i(Xα)ΩRS = 0 (7)

hence
ℓ(Xα)ΩRS = 0 (8)

It follows in particular that ΩRS is invariant under field dependent gauge
transformations.

Given a gauge invariant observable O(a), the question is to integrate it
against ΩRS , or rather to integrate its image as a function on A/G against the
image of ΩRS as a top form on A/G.

A

A/G
❆

❆❆

❇
❇

❇
❇
❇

❇❇

✂
✂
✂
✂
✂
✂✂

✁
✁
✁
✁✁

✘✘✘✘✘✘✘✘

Σ
✁✁☛

•☛ • •
•

• ✟

Choose a local section Σ (transverse to the fibers) with local equations

g(a) = 0 (9)

and corresponding local coordinates ȧ so that a local parametrization of A is
given by

a = ȧg (10)

i.e. all a’s are, locally gauge transforms of points on the chosen transversal
manifold.

One can represent the transverse measure associated with the chosen sec-
tion as follows:

< O >Ω=

∫

Σ

O(ȧ)ΩRS|Σ =

∫

Σ

O(ȧ)ΩRS|Σ

∫

fiber

δ(g) ∧ δg

︸ ︷︷ ︸

=1 !
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=

∫

O(a)ΩRS δ(g)detm(∧g−1δg) (11)

where the volume ∧g−1δg is chosen so that

i(∧α̇Xα̇)(∧g−1δg) = 1 (12)

and m is given by

m =
δg

δa
Da (13)

Thus

ΩRS(∧g−1δg) = ΩYM (14)

and the result follows:

< O >Ω=

∫

O(a) δ(g) detm ΩYM (15)

This, of course only holds if O(a) has its support inside the chosen chart.
By construction, the result is independent of the choice of a local section, two
local sections differing by a field dependent gauge transformation.

The final outcome is to replace ΩYM by

ΩYMΦΠ = ΩYM ΩΦΠ (16)

where

ΩΦΠ =

∫

Dω̄DωDb ei<b,g(a)>+<ω̄,mω> (17)

where we have used the Stueckelberg Nakanishi Lautrup Lagrange multiplier b,
the Faddeev Popov fermionic ghost ω, the Faddeev Popov fermionic Lagrange
multiplier (antighost) ω̄. The modern reading of the exercise done with Claude
is that not only ΩYMΦΠ is invariant under the operation s

sa = −Daω

sω = −
1

2
[ω, ω] s2 = 0

sω̄ = −ib

sb = 0 (18)

but, thanks to the introduction of the b-field,

i < b, g > + < ω̄,mω >= s (− < ω̄, g >) (19)
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This allows to discuss perturbative renormalization using all the power of
locality. The useful part involves the local cohomology of Lie G in terms of
which the observables can be defined and which also classifies obstructions to
gauge invariance due to quantum deformations (i.e. anomalies).

We shall see in the next section that the cohomology involved in topological
theories is different !

Of course the above discussion is local over orbit space, and a constructive
procedure to glue the charts is missing. This is the Gribov problem.

3 Cohomological Theories

E. Witten’s 1988 paper 6 contains several things. First, invoking ”twisted
N = 2 supersymmetry” E. Witten gets an action S(a, ψ, ϕ; ...) where ψ resp ϕ
is a 1 resp 0 form with values in Lie G and the dots represent a collection of
Lagrange multiplier fields. Then it is observed that

QS = 0 (20)

with
Qa = ψ infinitesimal

Qψ = Daϕ Q2 = gauge transformation
Qϕ = 0 of parameter ϕ

(21)

Furthermore there is an identity of the form

∫

trF ∧ F = S −Qχ(a, ψ, ϕ; ...) (22)

where χ is gauge invariant.
The observables are classified according to the gauge invariant cohomology

of Q, with the example

Q tr F ∧ F = −d tr 2Fψ

Q tr 2Fψ = −d tr (ψ ∧ ψ + 2Fϕ)

Q tr(ψ∧ψ + 2Fψ) = −d(2ψϕ)

Q tr 2ψϕ = −d tr ϕ2

Q tr ϕ2 = 0 (23)

It follows that integrating the polynomials exhibited in these descent equa-
tions over cycles of the correct dimensions yields (non trivial !) elements of
the cohomology of Q whose correlation functions are conjectured to reproduce
Donaldson’s polynomials.
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Very soon after the appearance of E. Witten’s article, L. Baulieu and
I.M. Singer 7 remarked that Eq.(22) can be rewritten as

S =

∫

tr F ∧ F +Qχ(a, ψ, ϕ; ...) (24)

so that this action looks like the gauge fixing of a topological invariant. Fur-
thermore, at the expense of introducing a Faddeev Popov ghost ω, Q can be
replaced by s:

sa = ψ −Daω

sψ = −DaΩ + [ψ, ω] s2 ≡ 0

sω = Ω −
1

2
[ω, ω]

sΩ = −[ω,Ω]

(25)

(For homogeneity in the notations, we have replaced ϕ by Ω).
This has however a defect, namely, s has no cohomology and therefore is

not adequate to describe the physics of the model.
Inspired by an article by J. Horne 8, devoted to a supersymmetric formu-

lation of this model, S. Ouvry, R. S. and P. van Baal 9 solved that difficulty
by phrasing J. Horne’s observation as follows: S and χ are not only gauge
invariant but also are independent of ω !

In other words they are invariant under

I(λ), L(λ), λ ∈ Lie G
I(λ)ω = λ I(λ) other = 0
L(λ)ω = [λ, ω] L(λ) other = infinitesimal gauge

transformation of parameter λ

(26)

and, one can verify that
L(λ) = [I(λ), s]+ (27)

The cohomology that defines the physics of the model is the basic coho-
mology of s for the operation {I(λ), L(λ)}. This is not empty and cöıncides
with that of Q. Looking into that direction was suggested during a semi-
nar by P.§ Braam at the CERN theory division in the spring 1988. There it
was stated that the subject was the equivariant cohomology of A (restricted to
F = ∗F ). Further geometrical interpretations of ψωΩ were given by L. Baulieu
and I.M. Singer7 and the general set up was precisely phrased in terms of equiv-
ariant cohomology by J. Kalkman 10 who developed the algebraic equipment
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further. Two general types of equivariant cohomology classes are involved in
the present models:

- Mathäı Quillen11 representatives of Thom class of vector bundles (Gaus-
sian deformations of covariant δ functions). Those occur in the action.

- Equivariant characteristic classes of vector bundles. They are expressed
in terms of an arbitrary invariant connection12. They provide the known topo-
logical observables. In the case where the manifold to be quotiented is a princi-
pal bundle, Cartan’s ”theorem 3”13 transforms equivariant cohomology classes
into basic cohomology classes, by the substitution ω → ω̃,Ω → Ω̃, where ω̃ is
a connection and Ω̃ its curvature. It is expressible in terms of another iden-
tity in which integral representation of both bosonic and fermionic δ functions
provides other terms in the action:

∫

DωDΩ δ(ω − ω̃) δ(Ω − Ω̃) = 1 (28)

This can only be understood if ω is introduced, although it does not always
appear in the action.

We shall now illustrate these general recipes in the case of topological Yang
Mills theories (YM top

4 ).
The observables are constructed as universal cohomology classes of A/G

as follows: consider the G bundle P (M,G) ×A and, on it, the G invariant G
connection a (a zero form on A, a one form on P (M,G)).

The equivariant curvature of a, in the intermediate scheme (see appendix
A) is

Req.int = F (a) + ψ + Ω (29)

with
ψ = δa. (30)

In the Weil scheme, we are interested in

Req.w = F (a) + ψ + Ω (31)

with
ψ = δa+ Daω. (32)

This is the object first considered by L. Baulieu, I.M. Singer 7.
The equivariant characteristic class tr(Req.w )2 fulfills

(d+ δ) tr(Req.w )2 = 0 (33)

which provides the descent equations (Eq.23). Replacing ω by ω̃,Ω by Ω̃, where
ω̃ is a G connection on A, provides a basic form on P (M,G) ×A.
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One may choose 7,11

ω̃ = −D∗
a

1

D∗
aDa

δa (34)

provided reducible connections are excluded.
Let now Oi(a, ψ, ω,Ω) be equivariant classes of A obtained by integration

over cycles in M with the proper dimension. We want to find an integral
representation in terms of fields of the form on A/G corresponding to a basic
form O =

∏

iOi and, in the case of a form of maximal degree (”top form”) of
its integral.

Let ã be coordinates of a local section Σ

g(ã) ≡ 0
δg

δa
δã ≡

δg

δa
(ψ̃ −Dãω̃) ≡ 0 (35)

We have

O(a, ψ, ω̃, Ω̃)|Σ = O
(

ã, δã+Dãω̃|Σ, ω̃|Σ, Ω̃|Σ

)

(36)

This defines a cohomology class on A/G, independently of the choice of Σ,
because of the basicity of O. The expression at hand can be expressed through
the introduction of a collection of δ-functions.

First, in the case of YM top
4 , one has to restrict to F = ∗F , which goes

through a δ function or a smeared gaussian thereof according to the Mathäı
Quillen formula (cf. Ref.11 and appendix A).

The replacement ω → ω̃ Ω → Ω̃ can be carried out using the δ functions
of Eq.(28):

∫

δ(ω − ω̃)δ(Ω − Ω̃)DωDΩ

=

∫

Dω̄DΩ̄DωDΩ e(s+δ)(Ω̄(ω−ω̃)) (37)

where s is extended to

sΩ̄ = ω̄ − [ω, Ω̄]

sω̄ = [Ω, Ω̄] − [ω, ω̄] (38)

If ω̃ is the solution of a local equation e.g.

D∗
aΨ̃ = D∗

a(δa+Daω̃) (39)

this can be rewritten, thanks to the cancellation of determinants, as:
∫

DωDΩDω̄DΩ̄ es(Ω̄D
∗Ψ) (40)

9



Other local choices can be made, e.g. the flat connection determined by
the local section Σ 14, but, in this case, a change of local section produces a
change of representative in the cohomology class under consideration due to
the associated change of connection.

Finally, the restriction to Σ goes via the insertion of the δ function identity
∫

δ(a− ã)δ(ψ − ψ̃)DaDψ = 1 (41)

This can be rewritten as
∫

DaDψ

∫

DᾱDψ̄ e(s+δ)(ψ̄(a−ã)) = 1 (42)

with

sψ̄ = ᾱ− [ω, ψ̄]

sᾱ = [Ω, ψ̄] − [ω, ᾱ] (43)

Integrating over all a’s and Ψ’s yields a field theory representation of forms
on orbit space, as advocated in ref.14. Integrating over the superfiber (the
tangent bundle of a fiber with Grassmann variables on the vectorial part)
yields a formal field theory representation of the integral over orbit space of a
basic top form. In terms of the local equations Eq.(35), this can be rewritten
as ∫

DaDψ

∫

DᾱDψ̄ es(γ̄g(a)) = 1 (44)

with

sγ̄ = β + ω · γ̄

sβ = −Ω · γ̄ + ω.β (45)

where the dot denotes the action of G on the bundle over A of which g is a
section.

If O is a top form, integration transforms the integration over the fiber,
in Eqs (42, 43) into integration over A, after localizing O inside the domain
of Σ. The result is then a functional integral of the exponential of an action
of the form sχ. If this representation involves ultraviolet problems one may
conjecture that, besides the necessity to include in χ all terms consistent with
power counting the gauge fixing term in Eq.(44) has to be written in the
form sWχ where W is another operation which anticommutes with s and
involves a Faddeev Popov ghost field, its graded partner, and the corresponding
antighosts. This however is still waiting for confirmation.
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In support of the relevance of these constructions, one may give a few
examples:

i) The equivariant curvature Eq.(31),(33) precisely yields the observables
constructed by E. Witten via the interpretation given by L. Baulieu, I.M. Singer.
The same method yields the observables constructed by C. Becchi, R. Collina,
CÉ Imbimbo 14 in the case of 2-d topological gravity (see also L. Baulieu,
I.M. Singer 7).

ii) Recent work by M. Kato15 and collaborators remarking the equivalence
of some pairs of topological conformal models through similarity transforma-
tions of the form eR is interpretable by R = iM (ω), in J. Kalkman’s language10.

iii) The identification in topological actions of terms which fix a choice of
connection is an additional piece of evidence 6, 14.

4 Conclusion

The formalism of equivariant cohomology provides an elegant algebraic set
up for topological theories of the cohomological type. Its relationship with
N = 2 supersymmetry via twisting is still mysterious and may still require
some refinements before it provides some principle of analytic continuation. At
the moment, it is still a question whether topological theories can be treated
as field theories according to strict principles 14 or whether the formal integral
representations they provide can at best suggest mathematical conjectures to
be mathematically proved or disproved.
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Appendix A

Equivariant Cohomology

Example 1.

M is a smooth manifold with a smooth action of a connected Lie group
G; Ω∗(M) is the exterior algebra of differential forms on M,dM the exterior
differential; λ ∈ Lie G is represented by a vector field λ ∈ VectM.iM (λ) = i(λ)
operates on Ω∗(M) by contraction with λ; the Lie derivative is defined by

ℓM (λ) = ℓ(λ) = [i(λ), dM ]+ (46)
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One has

[iM (λ), iM (λ′)]+ = 0

[ℓM (λ), iM (λ′)]− = iM ([λ, λ′])

[ℓM (λ), ℓM (λ′)]− = ℓM ([λ, λ′]) (47)

Forms ω ∈ Ω∗(M) such that

iM (λ)ω = 0 ∀λ ∈ Lie G (48)

are called horizontal.
Forms ω ∈ Ω∗(M) such that

ℓM (λ)ω = 0 ∀λ ∈ Lie G (49)

are called invariant.
Forms which are both horizontal and invariant are called basic.
The basic de Rham cohomology is the cohomology of dM restricted to

basic forms.
Generalization.
E is a graded commutative differential algebra with differential dE and

two sets of graded derivations iE(λ) (of grading -1) ℓE(λ) (of grading 0) ful-
filling Eq.(47), with M replaced by E. The notions of horizontal and invariant
elements similarly generalize as well as that of basic cohomology.

Example 2: The Weil algebra of G : W (G).

W (G) = ∧(Lie G)∗ ⊗ S ((Lie G)∗) (50)

whose factors are generated by ω, of grading 1,Ω of grading 2, with values in
Lie G. We define the differential dw by

dW ω = Ω −
1

2
[ω, ω]

dW Ω = [ω,Ω] (51)

iW (λ), ℓW (λ) by

iW (λ)ω = λ iW (λ)Ω = 0

ℓW (λ) = [iW (λ), dW ]+ :

ℓW (λ)ω = [λ, ω]

ℓW (λ)Ω = [λ,Ω] (52)

12



Definition: The equivariant cohomolgy of M is the basic cohomology of
W (G)⊗Ω∗(M) for the differential dW+dM and the action iW (λ)+iM (λ), ℓW (λ)+
ℓM (λ).

This is the Weil model of equivariant cohomology.
One can define the intermediate model according to J. Kalkman10 by ap-

plying the algebra automorphism

x→ e−iM (ω)x (53)

which transforms the differential into

dint = dW + dM + ℓM (ω) − iM (Ω) (54)

and the operation into

iint(λ) = iW (λ)

ℓint(λ) = ℓW (λ) + ℓM (λ) (55)

From this one easily sees that the equivariant cohomology is that of [Ω∗(M)⊗
S ((Lie G)∗)]G with the differential

dC = dM − iM (Ω) (56)

where the superscript G denotes G-invariant elements. This is the Cartan
model 13, 10. If M is a principal G bundle with a connection ω̃, the mapping

ω → ω̃ Ω → Ω̃ (57)

where Ω̃ is the curvature of ω̃, maps isomorphically the equivariant cohomology
of M into its basic cohomology, independently of the choice of ω̃. This is
Cartan’s theorem 3 13.

There are two standard ways to produce non trivial equivariant cohomol-
ogy classes:

i) 12 If the action of G can be lifted to a principal bundle P (M,K) with
structure group K, and Γ is a G invariant connection on P (M,K), the inter-
mediate equivariant curvature is defined as

Reqint (Γ) = DintΓ +
1

2
[Γ,Γ] = R(Γ) − iP (Ω)Γ (58)

One has

iint(λ) R
eq
int(Γ) = 0

ℓint(λ) R
eq
int = [λ,Reqint(λ)] (59)
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It follows that any K invariant polynomial of Lie K, Pinv yields an equiv-
ariant ”characteristic” cohomology class. This can be written in the Weil
model using Kalkman’s automorphism and is at the root of the construction
of topological observables 6, 14.

ii) If E(X,V ) is a vector bundle over the manifold X , reducible to G, one
may write

E(X,V ) = P (X,G) ⊗G V (60)

where P is the associated frame bundle.
There is a basic cohomology class, the universal Thom class obtained as

follows 11:

τ0 ≡ δ(v) ∧ dv = N0

∫

db dω̄ ei<b,v>+<ω̄,dv> (61)

for some normalization constant N0 where b and ω̄ ∈ V ∗, the dual of V,
∫
dω̄

means Berezin integration, and < , > denotes the duality pairing. Introducing
s by

s v = dv + ωv ≡ ψ + ωv

s dv = −Ωv + ωdv

s ω = Ω −
1

2
[ω, ω]

s Ω = −[ω,Ω]

s ω̄ = −ib− ω̄ω

s ib = −ibω + ω̄Ω (62)

One may write

τ0 = δ(v)(∧dv) = N0

∫

db dω̄ es<ω̄,V > (63)

It is easy to prove that

τ = N0

∫

db dω̄ es[<ω̄,v>−i(ω̄,b)] (64)

where (ω̄, b)is a G invariant bilinear form on G∗, is an equivariant class of V ,
with fast decrease. Replacing ω by ω̃, a connection on P (X,G), yields a basic
class of E(X,V ), once written in the Weil scheme (ψWeil = dv − ωv, whereas
ψint = dv). The extension of the s-operation to the integration variables brings
a substantial simplification to the original calculations.

The substitution of v by a section v(x) transforms τ into the cohomology
class associated with the submanifold of X defined by v(x) = 0.
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Formula 64 gives the Mathäı Quillen representative of the Thom class of
E(X,V ) and leads to a gaussianly spread Dirac current of the submanifold in
question.

As a last example, used in the text, let us describe the Ruelle Sullivan 3,5

class associated with an invariant closed form ω on M :

ωRS = i(∧αeα)ω (65)

where eα is a basis of Lie G.
That ωRS is both closed and invariant follows from the closedness and

invariance of ω, and horizontality is trivial (i(eα)i(eα) = 0).

References

1. Bibliographical documentation can be found, e.g., in: BRS Symmetry,
M. Abe, N. Nakanishi, Iojima eds, Universal Academy Press, Tokyo,
Japan, 1996.

2. The corresponding pages of these notes are available from the author
upon request.

3. A. Connes, Non Commutative geometry Academic Press New York USA,
1994, p. 59-71.

4. J. Zinn-Justin, ”Quantum field theory and critical phenomena”, Oxford
Science Publications, Clarendon Press, Oxford 1989, p. 485.

5. D. Ruelle, D. Sullivan, Topology 14 (1975), 319-327.
6. E. Witten, C.M.P. 117 (1988) 353.
7. L. Baulieu, I.M. Singer, Nucl. Phys. B 15, 12 (1988) (Proc. Suppl.);

C.M.P. 135 (1991) 253.
8. J.H. Horne, Nucl. Phys. B 318, 22 (1989).
9. S. Ouvry, R. Stora, P. van Baal Phys. Lett. B 220, 159 (1989).

10. J. Kalkman, C.M.P. 153 (1993) 447.
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