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Abstract: The program package ROXIE has been

developed at CERN for the design and optimiza-

tion of the coil geometries for the superconducting

magnets for the Large-Hadron-Collider, LHC. It

has recently been extented, in a close collabortion

with the University of Graz, to the calculation of

iron induced e�ects applying a reduced vector po-

tential formulation. The method allows accurate

computation of the multipole errors in the mag-

nets and allows the distinction between the e�ects

resulting from the coil geometry and the yoke ge-

ometry.

I. Introduction

The Large Hadron Collider (LHC) project is a supercon-

ducting accelerator for protons, heavy ions and electron-

proton collisions in the multi-TeV energy range to be in-

stalled at CERN. In order to achieve the design energy

within the constraint of the existing LEP tunnel with a

circumference of about 27 km, the magnet system must

operate in superuid helium below 2K. Space limitations

in the tunnel as well as cost considerations dictate a two-

in-one magnet design, where the two rings are incorpo-

rated into the same cryostat. The main dipole magnets

will operate at about 0.58 T at injection and 8.40 T at

nominal current (magnetic length in cold conditions 14.2

m) and the quadrupoles at 220 T/m �eld gradient (mag-

netic length 3.0 m) [3]. The superconducting magnets are

characterized by the dominance of the coil geometry for

the �eld distribution. For the optimization of the magnet,

contradictory parameters such as maximum dipole �eld,

minimum content of unwanted multipoles and su�cient

safety margin for the conductor must be considered. The

keystoning of the conductors and the grading of the current

densities between the two layers make necessary a compu-

tational method that allows to model the coil and calculate

the excitational �eld with a higher accuracy than rendered

by commercial FE packages. In addition the characteris-

tic data for both the coil and the iron con�guration has

to be parametric for the application of mathematical opti-

mization techniques. The program package ROXIE [5] has

been developed at CERN for the design and optimization

of the coil geometries for the superconducting magnets for

the Large-Hadron-Collider, LHC. It has recently been

extended, in a close collaboration with the University of

Graz, to the calculation of iron induced e�ects applying a

reduced vector potential formulation.

II. The reduced vector potential

formulation

Here, the emphasis is put on the principle idea, the com-

parison to the total vector potential, and the main advan-

tage of this method for the calculation of �elds in super-

conducting magnets. With the governing Maxwell equa-

tions for magnetostatics 5� ~H = ~J; 5 � ~B = 0 in region


, coupled through the material equations ~B = � ~H resp.
~H = � ~B together with the following boundary conditions;

~H � ~n = ~K on �H (1)

~B � ~n = �bm on �B (2)

where ~K is the surface current and bm is a �ctitious mag-

netic charge density on the boundary � of the region 
,

we can set ~B = 5� ~A and it follows

5� � 5� ~A = ~J (3)

where ~J is the current density. In order to make the vector

potential ~A unique it is necessary to de�ne its divergence

and, on the boundary �, either its normal component or its

tangential component. By introducing the Coulomb gauge

described in [1] and merging both di�erential equations

the complete ~A-formulation with its boundary conditions

reads:

5� �5� ~A �5� 5 � ~A = ~J in 
; (4)

�5� ~A � ~n = ~K on �H ; (5)

~A � ~n = 0 on �H ; (6)

~n� ~A = ~� on �B; (7)

� 5 � ~A = 0 on �B : (8)

The current density ~J appears on the right hand side of

the di�erential equation of the ~A-formulation. The con-

sequence of this is that using the �nite element method

for the solution of this problem the relatively complicated

shape of the coils has to be modelled in the FE-mesh. Thus
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the goal is to replace ~J in a way that it does not explicitly

appear in the �nite element equation system. Therefore,

the vector potential ~A is split into parts

~A = ~As + ~Ar (9)

where ~Ar is the reduced vector potential due to the mag-

netisation and ~As is the impressed vector potential due to

the source currents in free space. The relationship between

the impressed vector potential ~As and the �eld vector ~Hs

is,

5� ~As = �0 ~Hs (10)

and for conductor source regions with current density ~Js
the �eld vector ~Hs is given by Biot-Savart's Law [6]

~Hs =
1

4�

Z




~Js �5(
1

R
) d
 (11)

where R =j rq � ra j is the distance from the source point

rq to the �eld point ra. The �eld equations in terms of

a reduced vector potential ~Ar then di�er for the iron re-

gion 
i and the air region 
a where the sources (coils)

are located. Following the same procedure as for the total

potential leads to [4]:

5� �5� ~Ari �5�5 � ~Ari = �5�� 5� ~As in 
i (12)

5� �05� ~Ara �5�05 � ~Ara = 0 in 
a: (13)

Taking the curl of Eq. (10) gives 5� �05� ~As =

5� ~Hs; which represents the current density ~Js. At this

stage it is su�cient to show the complete ~Ar-formulation

where the surface current density ~K and the �ctive mag-

netic charge density bm are assumed to be zero:

5� � 5� ~Ari �5�5 � ~Ari = �5�� 5� ~As 
i (14)

5� �05� ~Ara �5�05 � ~Ara = 0 
a (15)

�5� ~Ari � ~n = 0 �Hi
(16)

~Ari � ~n = 0 �Hi
(17)

~n� ~Ari = 0 �Bi
(18)

� 5 � ~Ari = 0 �Bi
(19)

�05� ~Ara � ~n = 0 �Ha
(20)

~Ara � ~n = 0 �Ha
(21)

~n� ~Ara = 0 �Ba
(22)

�05 � ~Ara = 0 �Ba
(23)

and along the interface �ai between the iron and air region

(�05� ~Ara+�05� ~As)� ~na+(�5� ~Ari+�5� ~As)� ~ni = 0: (24)

Applying Ritz's procedure results in a volume integral in

the iron region 
i and a surface integral on

the boundary between iron and air:

R

i

(� 5� ~Ari � 5 � ~fk + � 5 � ~Ari 5 � ~fk) d
 +R

a

(�0 5� ~Ara � 5 � ~fk + �0 5 � ~Ara 5 � ~fk) d
 =R
�ai

( ~fk � �05� ~As � ~ni) d��
R

i

(� 5� ~As � 5 � ~fk) d
(25)

Because of Eq. (10) the curl of ~As has not to be com-

puted as ~Hs is given by Biot-Savart's law and can be in-

cluded directly in the right hand side of Eq. (25).

III. Field components

The expansion of the complex �eld By+iBx in the plane

z = x+ iy is performed for �eld calculations and measure-

ments as follows [2]:

By + iBx =

1X
n=1

(Bn + iAn)z
n�1 (26)

with z = x+ iy = rei' = r(cos'+ i sin') and B'+ iBr =

(By + iBx)e
i' we get

Br =

1X
n=1

rn�1(Bn sin n' +An cosn'): (27)

If the �eld is expanded relative to the main �eld component

B(r0) at r = r0 we get

By + iBx = B(r0)

1X
n=1

(bn + ian)(z=r0)
n�1 (28)

and thus

Br = B(r0)

1X
n=1

(r=r0)
n�1(bn sin n'+ an cos n'): (29)

The Bn are called the normal and the An the skew com-

ponents of the �eld, bn and an are the normal and skew

relative �eld components. In ROXIE the r- component

of the �eld at a given radius r = r0 is harmonically ana-

lyzed by means of the program TRICOF from the CERN

Library. With A being usually de�ned as the coe�cients

of the cos terms and B being the coe�cients of the sin

terms we get from given equidistant function values in the

interval �� � ' � �:

Br(r0) =

1X
n=1

(Bn(r0) sin n'+ An(r0) cosn') (30)

= B1(r0)

1X
n=1

(bn sin n'+ an cos n'): (31)

which is in agreement with Eq. (29) for the unit radius.

Note that for a positive skew component Br is positive on

the x-axis.
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IV. The main-dipole geometry

The following results are given for a dipole coil design

(drawing no. 06LHCMB-T-00010) which was optimized

for a part compensation of the b5 ,b7, and b9 components

resulting from persistent currents at injection. During

ramp of the superconducting magnets from 0.58 to 8.4

T nominal dipole �eld additional currents, the persistent

currents, are induced in the �laments. These currents per-

sist for a long time as they decay only through ux creep.

At injection they were estimated to be b3 = �4:1667,

b5 = +0:2073 and b7 = �0:0357 (in units of 10�4 at radius

10 mm) [7].

Fig. (1) shows the coil cross-section. Note that due to

insu�cient keystoning of the cable the blocks do not follow

the curvature of circles on the outer diameter of the coils.

0 10 20 30 40 50 60

Figure 1: Coil with optimized block positions for part com-

pensation of the persistent current multipole errors at in-

jection, size in mm

For the yoke the drawing 06LHCMBP-N10070 for the

warm laminations was given and the cold dimensions were

calculated. Note that the beam separation distance is 194

mm in cold conditions. This assumption would leave the

yoke laminations unchanged with respect to the present

drawings. Fig. (2) shows a sketch of the yoke with the sym-

bols used in the ROXIE input �le. All these dimensions

can be addressed as design variables for a subsequent yoke

optimization or �ne-tuning. The dipole geometry with coil

and iron yoke is displayed in Fig. (3).

Figure 2: Symbolic input data for the main dipole geome-

try

0 51.43 102.86 154.29 205.71 257.14 308.57 36

Figure 3: Geometric model of main dipole cold mass
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Table 1: Relative multipole errors in units of 10�4 at radius

10 mm as a function of the mesh size at normal operation

8.4 T for the main dipole without vacuum vessel. The far

�eld boundary is at 5 times the yoke outer diameter.

Number of nodes

1800 7200 28500 36000

n bn bn bn bn

2 1.19320 1.27823 1.28336 1.28377

3 -0.21129 -0.24245 -0.23930 -0.23928

4 -0.14697 -0.14834 -0.14867 -0.14875

5 -0.20487 -0.18869 -0.18650 -0.18650

6 0.01211 0.00060 0.00060 0.00067

7 -0.06011 0.03308 0.03381 0.03380

8 0.02150 -0.00040 0.00003 0.00002

9 0.06972 -0.00338 -0.01025 -0.01026

10 -0.00654 0.00003 0.00000 0.00009

11 -0.00996 0.01680 0.00771 0.00769

V. Numerical Accuracy

Table (1) shows the calculated multipole content for

the LHC main dipole for di�erent numbers of elements in

the �nite-element mesh using eight-noded, isoparametric

second order elements. The results show convergence for

meshes bigger than 28500 nodes. The higher order multi-

poles b7, b9, b11 are hardly inuenced by the yoke and the

iron saturation e�ect. The estimates for a coil in an in�-

nite permeable iron yoke are b7 = 0:034 , b9 = �0:010, and

b11 = 0:0088. These multipoles are therefore a good mea-

sure of the accuracy of the �eld solution. The quadrupole

component that arises from the two-in-one geometry is rel-

atively insensitive to the mesh size.

Table (2) shows the calculated multipole content for the

LHC main dipole depending on the far �eld boundary

conditions. The boundary was chosen to be 1.1, 5., and

10. times the radius of the cold mass. The result shows

that the higher order multipoles are not dependent on the

boundary whereas the iron induced quadrupole component

and the sextupole component can be used as a measure for

the accuracy of the solution. A boundary which is at least

5 times the radius of the cold mass is appropriate. At the

symmetry planes x=0, and y=0 the Neumann boundary

condition imposes the ux to be normal to the surfaces.

In the vector potential formulation they are natural con-

ditions which are satis�ed in the weak sense only. The

accuracy can be improved by re�ning the discretization in

the vicinity of the symmetry planes. The Bt components

at this planes can therefore be considered as a measure of

the satisfaction of the boundary conditions and is in our

case in the order of 10�7T .

Due to the keystoning of the superconducting cable the

current density is higher at the narrow side of the cable.

This e�ect cannot be neglected as the sextupole �eld com-

ponent changes. Table (3) shows the results for the case

with a grading of the current density and for the case where

the grading is not considered. The di�erence is an o�set

of the sextupole component of about 0.6 units. The satu-

ration e�ects are the same, as the excitational �eld in the

iron does not change very much with this grading. There-

fore also the quadrupole components that are due to the

two- in-one design show only minimal dependecy on the

grading. If the coils cannot be modelled su�ciently accu-

ratly as is the case in most of the commercially available

FE-packages, the sextupole component may contain a rel-

atively large error.

Table 2: Relative multipole errors in units of 10�4 at radius

= 10 mm and nominal operation, depending on the far �eld

boundary, 28500 nodes.

Distance of far �eld boundary

1.1� ryoke 5.0� ryoke 10.0� ryoke

n bn bn bn

1 -8.40231 T -8.36833 T -8.36815 T

2 2.36867 1.28336 1.27138

3 -0.13080 -0.23930 -0.24019

4 -0.13138 -0.14867 -0.14885

5 -0.18591 -0.18650 -0.18651

6 0.00067 0.00060 0.00060

7 0.03378 0.03381 0.03381

8 0.00004 0.00003 0.00003

9 -0.01024 -0.01025 -0.01025

10 0.00000 0.00000 0.00000

11 0.00773 0.00771 0.00770

Table 3: Relative multipole errors in units of 10�4 con-

sidering the grading of the current density in the super-

conducting cable compared to the results with no grading

(radius = 10 mm). Main dipole without vacuum vessel

At injection, 0.58T At nom. operation, 8.4T

without with without with

grading grading grading grading

n bn bn bn bn

2 -0.25362 -0.24612 1.24352 1.28336

3 -0.12407 -0.71274 0.39358 -0.23930

4 -0.11136 -0.11050 -0.14982 -0.14867

5 -0.18642 -0.17652 -0.19540 -0.18650

6 0.00185 0.00183 0.00056 0.00060

7 0.03782 0.03556 0.03836 0.03381

8 -0.00002 -0.00002 -0.00002 0.00003

9 -0.01006 -0.01056 -0.01017 -0.01025

10 0.00002 0.00002 0.00001 0.00001

11 0.00662 0.00704 0.00693 0.00771
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VI. Results

Fig. (4) shows the lower order harmonics as a function

of the main �eld. About -0.7 units of sextupole result

0 1 2 3 4 5 6 7 8 9 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

b2*10-4

b3*10-4

b5*10-5

100%

B(T)

Figure 4: Variation of the relative (lower order) multipole

errors with main �eld calculated for main dipole without

vacuum vessel; together with the percentage on the load-

line given for block no. 5

from the iron geometry. Sextupole and quadrupole har-

monics depend on saturation e�ects. Fig. (5) and Fig. (6)

show the physical explanation of the measures taken in

order to minimize the variation of these multipoles. The

quadrupole component results from the two-in-one design

and the ux being divided into two paths, one across the

mid-plane x=0 into the second aperture and one across

the y=0 into the lower half of the yoke. The small hole in

the mid-plane helps to balance the ux in the two paths,

one across the mid plane into the second aperture and the

second along the yoke leg across the y = 0 plane. The

e�ect of this hole vanishes with saturation but the second

hole between the heat exchanger tube and the outer yoke

radius leads to local saturation e�ects at nominal current

thus balancing the ux in the two paths.

The vacuum vessel being o�-centered with respect to

the magnet horizontal axis introduces some skew dipole

and skew quadrupole components that get more and more

pronounced at �elds higher than 7 T as can be seen from

Fig. 7. The vacuum vessel also has an inuence on the

variation of the normal quadrupole which increases and is

then about 2 units at 8.4 T. Sextupole and higher order

multipoles are basically not a�ected. Table (4) gives the

multipoles at injection and nominal �eld level.

Figure 5: Modulus of reduced �eld resulting from iron mag-

netization only, given for injection �eld level of 0.58 T

Figure 6: Modulus of reduced �eld at nominal operation,

�eld level of 8.4 T in the aperture
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Table 4: Relative multipole errors in units of 10�4 at radius

10 mm for the main dipole in an symmetric and asymmet-

ric vacuum vessel 12 mm thickness and 80 mm o�-centering

with respect to cold mass

At injection, 0.58T At nom. operation, 8.4T

n bn an bn an
1 0.00003 0.59679

2 -0.24788 0.00000 2.00362 -0.06635

3 -0.71298 0.00000 -0.14884 0.00542

4 -0.11049 -0.00002 -0.13595 -0.00024

5 -0.17651 0.00000 -0.18474 0.00001

6 0.00183 0.00000 0.00064 0.00000

7 0.03555 0.00000 0.03597 0.00000

8 -0.00002 -0.00002 -0.00002 -0.00001

9 -0.01055 0.00000 -0.01065 0.00000

10 0.00002 0.00000 0.00001 0.00000

11 0.00703 0.00000 0.00737 0.00000

0 1 2 3 4 5 6 7 8 9 10
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a2*10-4
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Figure 7: Variation of lower order multipole errors with

main �eld given for the main dipole in its asymmetric vac-

uum vessel.

Figure 8: Reduced vector potential for main dipole in

asymmetric vacuum vessel

The big advantage of the new program is that the coils

have not to be meshed and therefore asymmetries caused

by deformations or shifts of the coil blocks can easily be

calculated. As an example, the e�ects resulting from a

vertical (y direction) o�-centering of the coils with respect

to the yoke are calculated. The coil was shifted by 0.05

mm in an upward direction. As expected, the main e�ect

is on the skew quadrupole of about -0.17 units at injection.

Interesting is the reduction of these errors with excitation

because of the di�erent saturation in the upper and lower

yoke halves. At nominal �eld the skew quadrupole is -0.11

units.

Fig. (9) shows the fringing �eld at a radius of 290 mm

outside the cold mass as a function of the angular position,

-90 deg. is the bottom of the magnet, 90 deg. the top.

As the reduced �eld coming from the iron magnetization

and the excitational �eld from the coil can be calculated

separately it is also possible to calculate the peak �eld

in the coils which determines the margin to quench with

an higher accuracy than before. Fig. 10 shows the load

line curves for the coil blocks of the main dipole magnet.

Blocks 1 and 2 are in the outer layer, block 3 - 5 are the

inner layer blocks.

The point Jc; Bc is derived from solving the equations

Bc = �1 �B = Bref + �2 (32)
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Figure 9: Radial component of the fringing �eld (in T)

outside the cold bore at a radius of 290 mm, given for the

main dipole in its asymmetric vacuum vessel. (-90 deg. is

the bottom of the magnet, 90 deg. at the top.)
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Figure 10: Load line for the main dipole. Blocks 1 and 2

are in the outer layer, 3 - 5 are the inner layer coil blocks

Jc = �1 � J = Jc(Bref ) + �2
dJc

dB
(33)

The current density in the superconductor is given by

Jsc =
Icable

Asc

=
Icable � (1 +

Cu
Sc

)

n � d
2
��
4

(34)

where Icable is the total current in the cable, n is the num-

ber of strands in the cable and d is the strand diameter.

From the critical current density Jc and dJc=dB the per-

centage of the critical current density in the working point

can be evaluated. The short sample B � J characteristic

curves are approximated by

Jsc = �
dJc

dB
�B + Jc (35)

at 1.9 Kelvin. The assumptions of the cable characteristics

were: Inner layer; Tref = 1.9 K, Bref = 10 T, Jc(Bref ) =

1433.3 A/mm**2 , dJc
dB

= 500.34 A/mm**2 T . Outer layer:

Tref = 1.9 K, Bref = 9 T, Jc(Bref ) = 1953.0 A/mm**2 ,
dJc
dB

= 550.03 A/mm**2 T.

Figures (4) and (7) show the mutlipole content versus

excitation. Also the percentage on the load line, calcu-

lated for the block with the highest peak �eld (block No.

5), is displayed. The short sample �eld Bss for the dipole

magnet in its o�-centered cryostat is estimated to be 9.6

T. The peak-�eld to main-�eld ratio for the block No. 5

with the least margin to quench is 1.053.
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