
CERN - European Laboratory for Particle Physics

CMS TN 96-114 SW

21 August 1996

Object Oriented Development

\The New Design Problem" �

Massimo Marino y

CERN, CMS/CMC

Geneva, Switzerlandz

New techniques often involve innovative approaches and looking at the problem they

address from a di�erent perspective: OO software development is not an exception.

Evolutionary development and the adoption of OO will be of heavy impact on the soft-

ware construction. The technological shift from classical development and structured

methods to evolutionary development and object-orientedmethods is certainly not easy.

We must given it the time and the means in terms of structures, training, sta�, and

support for all to come e�ective.

CMS has joined several R&D projects to test if and how Object Orientation can be

applied to its software. We share here our considerations on OO development and the

understanding obtained through practical experiences within the CMS object oriented

activities and the RD41 (Moose) project.

1. Introduction

Software development is a very demanding activity. Designing is not an exact

science: di�erent designers can produce di�erent models of the same problem, no

matter which development method is adopted. Furthermore, designing system for

the HEP environment is inherently complex, essentially due to the life-span required

to the software to survive and the geographically dispersed developer teams. To

most physicists there is no way-out: software will be complex to develop, hard to

manage and maintain, but it is to be there anyway. HEP applications do not escape

the need to have a disciplined approach to software development in order to achieve

its �nal aim: a reliable computer program that performs its tasks properly.

The development of any software systems should be carried out using a devel-

opment method. At the base of every development method, in order to manage the

complexity of software, we �nd a divide and conquer principle: the system is split

into understandable and consistent chunks of information that form the units to be

developed.

�http://ecpmoose.cern.ch/�marino/html/OOD.html
ymarino@ecpmoose.cern.ch
zECP Division, CH 1211 Geneva 23, Switzerland

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/25204462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Object-Oriented Development \The New Design Problem"

Today, the existing methods for software development can basically be divided

into two categories: functions and data (procedural) methods versus object oriented

methods. Comparing to traditional methods, building software applications within

the object paradigm may result in a design that is clearer, simpler to manage, more

robust with respect to changes.

2. Divide and Conquer

Traditional structured analysis - structured design (SA/SD) methods, applied to a

variety of software development areas, as well as to the HEP environment, treat

functions and data as separate entities. Such an approach often has lead to prob-

lems, especially during maintenance, since functions and data structures turn out

to be quite sensitive to changes and additions. A system developed using a func-

tions/data method often becomes di�cult to maintain and evolve.

A major problem is that, in general, all functions must know the storage or

the inner representation of data. Di�erent data often have di�erent formats, which

means that we need to add conditional statements to identify the data type to take

proper actions. To change a data structure we must then modify all the functions

related to that structure. The system easily becomes unstable: any slight change

will, in general, generate major consequences.

Object Oriented methods do not separate functions and data but view them as

an integrated chunk. The OO approach is to understand the system by developing a

model that is based on concepts and objects directly found in the problem domain.

The resulting objects contain data and behaviour that describe the entire system

functionalities. The concepts and objects in the problem domain have an higher

chance to be stable than data structures, hence the overall architecture of the system

will settle faster.

The problem domain provokes changes during the software life cycle. Within

OO paradigm they will have a local impact on the software by a�ecting few objects

only. Because of the very foundations of the object oriented paradigm, changes in

internal details do not spread in the system architecture.

2.1. SA/SD - Focus on Functions and Data

Structured analysis and structured design, with all the models most physicists are

used toa, approaches system decomposition through a set of processes, the data

they manage, and their mutual dependencies. SA/SD focuses upon and exposes

data structures and the implementation details of the processes that manipulate

them. These are exactly the parts in a complex software environment that are the

most subject to changes for improvement.

Indeed most of the e�ort is spent �rst in trying to achieve stable data structures,

then the hierarchical tree of processes that mutually exchange them. Unfortunately,

once de�ned, processes are so tightly dependent on data structures that they become

adata
ow diagrams, algorithmic decomposition,
ow charts, top-downmodule hierarchical trees...

Object-Oriented Development \The New Design Problem" 3

di�cult to modify, let alone to improve. The knowledge of data structures is so

deeply interwoven in the fabric of the system to discourage any evolution: even

major improvements are abandoned. In other terms, the modules that express the

relevant abstractions depend upon the modules that contain the irrelevant details.

The abstractions get a�ected when changes are made to the details!

In SA/SD, the top-down tree of the structured program expresses the chain of

dependencies from the more abstract modules at the top (closer to the problem

domain) to the more detailed ones at the bottom, the purely implementation con-

cerned (solution domain) modules. If we attempt to reuse one of those abstractions

we must carry along all the details that those abstractions depend upon. It is not

an exaggeration to say that every experiment in HEP has faced these and similar

problems during its life time.

2.2. OO - Focus on Interfaces

OO uses a completely di�erent perspective: data and processes are hidden within

objects that have interfaces and responsibilities. An application is a set of objects

that collaborate with each other to ful�l these responsibilities. In many respects this

is a modelling improvement: we can describe applications in terms of interfaces

instead of data and processes, that is, instead of implementation structures. The

interfaces become software entities in all respects and depend neither on the software

that uses them, nor in the software which implements them! Interfaces are to

be seen as screens behind which we can hide many di�erent data and processes:

they represent stereotypes relieving us from the burden of knowing their exact

implementation, hence leading to more
exible and robust designs.

What we aim to with OO is that dependencies are no more on the data model and

the processes that manipulate it (as arising from data and functional decomposition)

but on the interfaces only: given a client and a server, no part of the client has a

dependency upon the server internals; instead the client depends on the interface

that hides the server itself. Having the dependencies only on the interfaces also

implies that changes do not propagate into other parts of the application. The

changes will be contained within a particular client or server and will be irrelevant

to other software chunks elsewhere in the system.

More importantly, the interface does not depend on the server either. The server

is also made to depend on the interface: it is said the OO makes a dependency

inversion. We can reuse both the server and the client in other contexts and even

separately, with all the economical and quality gains that may result from this. Only

the interfaces need to be implemented, the re-users being legitimated to implement

those interfaces by any means they choose.

OO development is the technique through which the realisation of one of the

thoughest goal of software engineering is within reach: components that realize

the Open-Closed Principle ([Meyer, 1988]). One can enhance components without

disturbing their existing capabilities. Components are open in that they may be

extended without a�ecting the fabric of the system or its architecture. At the same

4 Object-Oriented Development \The New Design Problem"

time, they are closed in that they perform as black boxes accessed through their

interfaces. Extensions are made by adding new software rather than by modifying

existing one. Clients need not to know the internals of the objects which react only

via the published services. When most of the modules conform to the Open-Closed

Principle, the working code is not exposed to breakage. This creates a signi�cant

amount of isolation between features and allows for much easier maintenance.

Behaviour properties must be in foremost consideration: we adopt the Liskov

Substitution Principle (LSP) for proper arrangement of classes in inheritance hier-

archies ([Liskov, 1988]):

If for each object o1 of type S there is another object o2 of type T

such that for all programs P de�ned in terms of T, the behaviour of P

is unchanged when o1 is substituted for o2, then S is a subtype of T.

In other terms, derived classes must be usable through the base class interface

without the need for the user to know the di�erence.

This rule is a logical extension of the Open-Closed Principle. Consider a function

F that uses type T. Given S a subtype of T, F should be able to use objects of type

S without knowing it. Any subtype of T should be substitutable as an argument

of F. If this is not true, then F must have test statements to determine which of

the various subtypes it is using. And this breaks the Open-Closed Principle.

Not applying the Liskov Principle can lead to programming language equivalent

of homonyms: types having the same signature but di�erent semantics - subtyping

driven more by implementation than by design. If aiming at reuse Meyers suggests

implementation hierarchy ([Meyers, 1992]) which is simple containment of an ob-

ject of one class inside another. Implementation hierarchy states that we reuse the

functionality of the contained object. We may use delegation patterns, e.g., Medi-

ator, Strategy, Template, etc., ([Gamma et al.], 1994) where some operations

are forwarded to matching objects from other classes. Another option is the use of

private inheritance where no subtyping assumptions is involved.

When accessed via their interfaces, objects may be used in various manners, or

in di�erent collaborations, as made explicit in the use cases. Clients only need to

conform to what the objects expect: the programming by contract as expounded

in [Meyer, 1988]. Note that there is a strong relationship between the LSP and the

concept of design by contract.

The Open-Closed Principle is the core of many of the claims made for OO design.

It is when this principle is applied that a system is more maintainable, reusable and

robust. LSP is important to all applications that conform to the Open-Closed

Principle. It is only when derived types are completely substitutable for their base

types that functions that use those base types can be reused with impunity, and

the derived types can be changed with impunity ([Martin, 1995]).

Needless to say, all this is extremely di�cult, if not impossible, to achieve with

SA/SD.

Object-Oriented Development \The New Design Problem" 5

2.3. And Objects will behave...

In procedural techniques the software system is naked, its intimate, more vulnerable

parts exposed: it only asks for being raped with fury by uncaring personnel. In

OO, processes and data structures are hidden, subordinate to the objects, their

interfaces and their responsibilities. Objects may be shielded by caring developers

against intrusion from the outside.

Designers are not required to throw away all they know about design and start

from scratch, but they must learn the OO technique, apply a completely di�erent

perspective, and acquire a di�erent mind set to be integrated with the experience

and the talent. And objects will behave...

3. The Use Case Approach

Today we see use cases, a concept �rst formalised by Ivar Jacobson in the 1987 OOP-

SLA conference ([ACM, 1987], [Jacobson, 1987]), being incorporated into several

object-oriented methods, e.g., Objectory ([Jacobson et al.,1992]), Fusion ([Coleman

et al., 1994]), the Booch method ([Booch, 1994]), the so called Uni�ed Method

([Booch and Rumbaugh, 1995]), Syntropy ([Cook and Daniels, 1994]), and many

others.

Use cases, or mechanisms in Booch, are a way to express the objectives of the

software system. In [Jacobson et al., 1995] use cases are de�ned as \: : :a sequence

of transactions in a system whose task is to yield a measurable value: : :";.

We like to de�ne use cases as the behavioural chunks of the system to be.

A valid approach is to examine system requirements with the intention to iden-

tify candidate objects and establish interactions and interrelationships among them.

In the context of such an approach, we adopt use cases as a conceptual description

of the requirements.

We identify three primary motivations for use case creation:

� gaining an understanding of the problem,

� capturing an understanding of the proposed solution,

� identifying candidate objects.

Each use case is a description of the system in terms of how the user will see it,

and in terms of the delivered measurable values to the user ([Jacobson, 1992]), as

well as a system mechanism, \: : :a structure whereby objects collaborate to provide

some behaviour that satisfy a requirement of the problem: : :" ([Booch, 1994]).

Use cases, as they are most commonly described and used, are rather functional

in nature. This, by itself, is not really a problem. Many software practitioners

have a good deal of experience in functional decomposition approaches to system

building. Use cases present them with an opportunity to continue their functional

view of software development.

However, we must be careful: use cases, and in this respect they substantially

di�er from functions, are not to be treated in isolation. In the ultimate end, they

6 Object-Oriented Development \The New Design Problem"

describe one of the possible object collaborations within the system. In most cases

the same object participates in several use cases. That is, to have a chance of

accurately design any given object, we have to account for all its appearances in

the invented use cases.

While functions can be treated and developed in isolation by di�erent teams and

then integrateda , use cases must be seen and managed in their globality. In this

respect we are less prone to this functional creepism with an architecture-driven

process ([Booch, 1996]):

� Specify the system's desired behaviour through a collection of scenarios,

� Create, then validate, an architecture that exploits the common patterns

found in these scenarios,

� Evolve that architecture, making mid-course corrections as necessary to adapt

to new requirements as they are uncovered.

Booch refers to these activities as the analysis, design and evolution of the

object-oriented life cycle. The key point here, easily missed, is the \common pat-

terns". The architecture, or set of categories of related classes, is the one that

supports the entire set of explicited use cases, and the others to arise in the future.

A sure recipe for failure from the OO point of view is:

1. Determine the main (highest level of detail) functional capabilities of the

system to be,

2. Write a high-level use case for each high-level functional capability,

3. Assign each high-level use case to a separate team for further elaboration

(partitioning the tasks),

4. Eventually, based on progressively more detail being added to the use cases,

each team would implement their particular partition of the system,

5. Integrate the e�orts of each team into the �nal product.

This procedure su�ers from a functional decomposition \front end" and an

object-oriented \back end", from missing the system architecture, and from a de-

layed integration. We end up with a lot of duplication of e�ort due to the lack

of a dedicated activity to identify those objects that are common to two or more

partitions, and with scattered parts of many same objects across more than one

functional partition. It is easy to �nd each part of the system having a di�erent

implementation of the same object: this results in a signi�cant amount of re-design

and re-coding.

We should avoid the temptation to use this functional view of the system as

a basis for the creation of an object-oriented architecture for that same system.

Objects and functions do not map directly to each other, and the architecture of

aThe (in)famous big bang integration of traditional development techniques.

Object-Oriented Development \The New Design Problem" 7

an object-oriented system is signi�cantly di�erent from the architecture of a func-

tionally decomposed system. Recall the primary motivations for use case creation

mentioned before, and that all the foreseen use cases contribute, in parallel, to the

invention of the supporting architecture.

4. Object Interaction Diagrams

In many notations use cases are represented by interaction diagrams, schematically

shown in Fig. 1, where the sequence of message
ows progresses over the objects

participating in the use case. In the diagram time
ows from top to bottom and

the event and method passing is supposed to take no time. Interaction diagrams

trace the execution of a scenario. ���

Fig. 1. Object interaction diagram .

In [Jacobson et al., 1992] interaction diagrams are said to make evident the

decentralisation of the responsibility in the object collaboration. Figures 2 and 3

clearly show the extreme structures of the use case: the so called fork diagram and

stair diagram.

8 Object-Oriented Development \The New Design Problem"

4.1. Fork diagram

 ��

Fig. 2. Fork diagram .

A fork diagram arises in the presence of a central control. Pathological combi-

nations of functional architectures and object-oriented ones are often encouraged

by some of today's most popular methods, e.g., Objectory's so called \control ob-

jects", Booch's \manager objects", Meyer's \command objects", and the countless

examples of classes that encapsulate functions only, i.e., the \stateless classes". The

controller carries great responsibility and often becomes more and more complex

during the software life cycle. The \intelligence" of this partition of the system

is highly localised in the controller who also requires a lot of visibility: it has to

know the presence of many other objects that alone are incapable of 'intelligent' be-

haviour. Indeed the resemblance with a main function and the related subroutines

is striking.

If most of the system diagrams look like fork diagram, as in Fig. 2, an alarm

bell should ring. This is especially true if the \called" objects (again the resem-

blance with subroutines...) are visible to the whole system, perform only under

external control, and lack of mutual collaborations. Most probably the designers

disguised data and/or function repositories or were just rewriting a functional/data

architecture, maybe a legacy FORTRAN solution to their problem.

The fork diagram is absolutely valid if the use case describes the behaviour of a

composite object. In this case the composite delegates its mandates to the private

components, and no other object will be responsible for those parts. The use case

shows then one of the modus operandi of the composite object and constitutes a

detailed description of its internal mechanisms.

Object-Oriented Development \The New Design Problem" 9

Some claim that there is nothing wrong with fork diagrams: they make explicit

the situation where the developing team keeps the door opened to changes in the

order of the operations managed by controller objects. Personally we saw fork di-

agrams mainly coming out at the beginning of our OO activities and fading away

with the experience. In general it is not easy to introduce changes in the system op-

erations with controller-based use cases, and becomes hard if the controlled objects

are shared by many controllers. On the other hand the sequence of the operations is

under total control of the manager object, but we do not look into object-oriented

techniques to achieve this, do we?

If they cannot be said to be a sure proof of bad design, fork diagrams certainly

make it easier to develop functional structures and should be carefully validated

and justi�ed.

4.2. Stair diagram

 ��

Fig. 3. Stair diagram .

The other extreme is represented by the stair diagram (Fig. 3). This structure

clearly shows the delegation of responsibility. Each object knows only few of the

other participating objects and we have no 'Do This - Do That' controller. The

use case initiator object role is limited to triggering the delegation cascade. Each

object has its own task and knows which other object can help to ful�l it.

Some subparts of these collaborations could easily �nd their place in other use

10 Object-Oriented Development \The New Design Problem"

cases as well and constitute collaboration chunks to achieve more complex be-

haviours. Here the responsibility is evenly distributed among the objects and there

is no need of a distributed visibility of all participants.

The message here is not to avoid fork diagrams at all costs and strive for stair

ones only. The important thing is to be able to recognise the structures, know what

they do imply, and what they cost. In practice the structures are a mixture of the

two extremes where some object has more \control" than other less independent

objects. The lack of a controller and the decentralisation of responsibility is bene�-

cial to the
exibility of the architecture, and the localisation of the information. It

also allows to reuse some collaboration patterns of the system in di�erent contexts.

The following pictures (Figures 4-5) show stair diagrams extracted from one of

the CMS prototypes, a local method pattern recognition ([Innocente and Marino,

1995], [Bos et al., 1995]) as practical examples of application of the Open-Closed

Principle. The primary mechanisms behind the principle are abstraction and poly-

morphism. These are implemented by inheritance in statically typed languages like

C++. It is by using inheritance that we can create LSP derived classes that conform

to the abstract polymorphic interfaces de�ned by pure virtual functions in abstract

base classes.

 ���

Fig. 4. Select clusters compatible with a trajectory.

Main detector components (MainComponent) collaborate with active detector

units (DetectorUnit) to select clusters compatible with the current candidate track

represented by geometric parameters (Trajectory). The double dispatch idiom is

used to intersect all possible DetectorUnit's shape properties, the Surfaces, and

the trajectories built during the pattern recognition: whatever the particular sur-

face crossed by the particular trajectory, the proper crossing algorithm is applied

Object-Oriented Development \The New Design Problem" 11

(messages 3 and 4). The pre-selection of clusters to be analysed is performed around

the impact point (SpacePoint) on the detector surface. This collaboration is es-

tablished at the level of abstract classes so as to extend the capabilities without

interfering with the existing design and code. New geometrical shapes and tra-

jectories will �nd the collaboration ready for them to cooperate. Double dispatch

idiom is sometimes called also \double polymorphism" or \multi-method".

A slightly less simple example is the collaboration to determine the new set

of possible detector units that the candidate track may cross with a subsequent

recognition step and the subset of each detector unit clusters to be analysed.

 ��

Fig. 5. Build logical layer of next reachable detectors.

Here the CandidateTrack object is ready to proceed with a new step in the recon-

struction process. To do this it needs to know from the detector layout which are

the detector units it may cross with the new step, and which are those clusters that

may be along its trajectory. The use case shows two sequences of collaboration.

The �rst one builds a Layer object, the logical collection of detector units and

clusters that are reachable by the candidate track. This collaboration is triggered

by the candidate track by sending the message NextLayer(Trajectory &) to the

TrackingRegion object. This latter has knowledge of all the logical layers built

in the previous steps. Once the control returns to the candidate track, the second

collaboration takes place: the tracking region changed state so that it may now

provide the next detector unit and clusters to process (message 6).

In the previous example the candidate track also controls the sequence of events

since the next detector unit (message 6) is actually provided by the newly formed

layer (message 7). However, the candidate track has no possible way to know

12 Object-Oriented Development \The New Design Problem"

how the TrackingRegion deals with Layers and detector objects, nor has it any

knowledge of this taking place.

For the purpose of system evolution, what happens beyond the TrackingRegion

object may undergo drastic changes without the candidate track, or its collabora-

tion with the tracking region, even noticing that. If the evolution of the system

should require that, the ability of the detector objects to determine the subsequently

reachable ones, given a geometrical trajectory, may be reused in a di�erent context.

Delegation permits the encapsulation of the object collaborations for possible reuse.

5. Development Process

System development is indeed a complex task and in order to achieve the sought

result, complexity must be handled in an organised way. By working with di�erent

models of the system to develop, complexity is introduced gradually. It is important

to de�ne a process since it instills a discipline into the development of software

systems, de�nes the products that serve as communication among the members of

a development team, and de�nes the milestones needed by management to measure

progress and to manage risk.

We see the development process as based on architecture, method, and the

process. The following observations hold true:

� The process must yield the same deliverables, irrespective of which individual

performs the job

� The volume of output does not a�ect the process

� It must be possible to allocate parts of the process to several independent

teams

� It must be possible to make use of prede�ned building blocks and components

The development process is seen as consisting of �ve distinct seamless models:

requirements or conceptualisation, analysis, design, implementation, and

testing. By seamless we mean that one has to be able to get from concepts and

objects in one model to concepts and objects in another model. This is crucial

for a successful development process since the result must be repeatable. Main-

tainance of the system is necessary once the system is, for so to say, in production.

Maintainance task is simpli�ed if we have traceability between the models.

5.1. Requirements or Conceptualisation

In requirements we specify what the system has to o�er its users. The idea is to

capture the requirements of the system from user's perspective. This activity is

often conducted in close relation with the end users and addresses questions to un-

ambiguously describe how they will use the system. The consensus once achieved,

the system is structured from a logical perspective that aims to a robust and adapt-

able form. In our experience the use cases have played an important role in this

conceptualisation activity.

Object-Oriented Development \The New Design Problem" 13

5.2. Analysis

The analysis must be carried out in an ideal world and independent of the imple-

mentation environment. Working in the ideal circumstances reduces complexity

and allows to focus the e�ort on building a logical structure that is stable, robust,

and
exible. The model resulting from the analysis should not be overly elaborate

to permit adaption due to design and implementation choices.

Changes are unavoidable, and even welcomed: too formal an analysis model re-

sults into an in
exible architecture that will not cope with the evolving requirements

of the problem and user domains. Especially the implementation environment will

change during the software life cycle and it is undesirable that current circumstances

a�ect the system structure. One should work on analysis long enough to understand

the system completely, but not so long as to consider details which will be modi�ed

during design.

5.3. Design

Design de�nes how to realise the analysis model. This activity formalises the analy-

sis and speci�es the building blocks of the system. These will realise the functional

points required to �t the system requirements. Subsequently, the building blocks

will be implemented. In this model we address questions, for example, on how

to integrate a OODBMS or how to handle a distributed environment. Where the

analysis model cannot be directly implemented, the design should be.

5.4. Implementation

When the above decisions are made and the system further formalised, the im-

plementation model is developed: this is the actual code to be produced. Hence,

we may say that in design and implementation the ideal world of analysis will be

replaced by the additional requirements arising from the development environment.

5.5. Testing

The system is checked to make sure that the original path traced in the models is

not lost and that the performances meet the requirements. This usually involves

documentation of the test speci�cations and the test results. Many of the foreseen

tests, especially at code level, may be performed making use of dedicated tools. In

the end, the system should be validated to determine whether it performs accord-

ingly to the user requirements and whether its documentation describes it from the

user's perspective.

Jacobson also points out to use cases in the testing process: \: : : For the �rst

time several classes, block, service packages and subsystems are brought together

and therefore the testing should concentrate on this. Each use case is initially tested

separately. The use cases constitute an excellent tool for integration test since they

explicitly interconnect several classes and blocks. When all use cases have been

tested (at various levels) the system is tested in its entirety. The several use cases

14 Object-Oriented Development \The New Design Problem"

are executed in parallel and the system is subject to di�erent loads."

5.6. Maintenance

Maintenance manages the post-delivery evolution. Normally, the issues that require

changes in the architecture of the system are not addressed; rather localised changes

will be made as new requirements and/or defects are found in using the system in

its �nal environment.

6. System life-cycle

The system is gradually re�ned in cycles using the models mentioned above. The

models form a sound base on which the complexity of the system is managed as

it is introduced step by step by focusing on the more important aspects. These

models should not be viewed as sacred or untouchable: they are not the �nal

answer! An evolutionary approach with gradual re�nement of the system would

not be compatible with such an attitude.

System development implies also the progressive changes made as new and mod-

i�ed requirements are imposed to the product. In a rapidly changing environment

the development process should support an evolutionary approach to handle such

changes during the construction of a speci�c version of the product. The evolu-

tionary approach also features bene�cial early reactions to feedback the subsequent

development cycles. To complement the process, early prototyping can be used to

explore and prove uncertain features well ahead in the life cycle of the system.

Each developer will deal with these activities together with the members of the

same team. A software project often has several teams, and certainly this is the

case with the software to be produced for LHC experiments. This picture calls

for managerial issues that have been recognised and studied since early ([Brooks,

1972]).

The life-cycle notion depicts the activities and measures project progress from

the requirements speci�cation to the development of the software and submission

of the �nished product. This notion has been formalised in di�erent development

structures or modelsa, where all their phases are somewhat linked together in se-

quence. A �rst example of traditional life-cycle is the waterfall model that estab-

lished the basis of the formalism.

6.1. The Waterfall model

In the waterfall model (Fig.6) the development is split into sharply de�ned phases

each constituting the information source to the subsequent one. Variations aimed

at improving this over simpli�ed life-cycle exist such as the back-stepping, as shown

in the �gure, or the V model where emphasis is placed on the preparation of the

integration and validation phases. The problem with the waterfall model is its

crisp separation between modelling theory and the \real life" environment. It is

aThe term model is used with a wide meaning.

Object-Oriented Development \The New Design Problem" 15

in general too late when exceptions and unmatched assumptions are found: the

implementation diverges from the original model, often in an uncontrolled way.

 ��

Fig. 6. The waterfall model.

The criticisms to the waterfall model may be resumed to ([Humphrey, 1989]):

� It does not adequately address changes

� It assumes a relatively uniform and orderly sequence of development steps

� It does not provide for methods such as rapid prototyping

Waterfall-like models also rely on the assumption that the system is fully spec-

i�ed from the beginning and that the development team will not be faced with

obscure areas or possibly di�erent understandings of the problem because of new

insights, during its entire life-cycle. The fundamental principles on which waterfall-

like models are based are nevertheless valid.

6.2. The Spiral model

Improved strategies have been adopted where the project is broken down into sub-

parts to which an entire life-cycle is applied. Clearly identi�ed parts are developed

�rst and the insights achieved are used for less evident subparts. The system is

built incrementally part by part. This approach has been introduced by Boehm

([Boehm, 1985]) as the Spiral Model life-cycle (Fig.7). Boehm introduced testing,

prototyping and risk analysis for the obscure areas of a software project.

16 Object-Oriented Development \The New Design Problem"

 ��

Fig. 7. The Spiral model.

The main conclusion from previous studies and works is that fundamental phases

exista and that a strategy must be adopted to e�ectively deal with them.

Traditional life-cycle models are said to be \requirements-driven" and may be

resumed with the following process ([Booch, 1996]):

(i) Enumerate all of the system functions

(ii) Design components for each of these threads

(iii) Implement each component

(iv) Integrate

These models suite well with SA/SD developments techniques. On the contrary,

modern OO methods emphasise the incremental, iterative, evolutionary, concurrent

and situational nature of software development.

aConceptualisation, analysis, design, and so on.

Object-Oriented Development \The New Design Problem" 17

6.3. The Evolutionary OO model

System development involves also progressive changes as new and modi�ed require-

ments are imposed on the product. As said before, in a rapidly changing environ-

ment, as HEP is, the process should handle the changes during the development of

a speci�c version of the application. Traditional models are easily thrown out of

balance when the problem domain evolves and puts changes upon the requirements.

Evolutionary development strives for a well-designed software architecture, in

terms of categories of classes applying the Open-Closed Principle and featuring

patterns of collaboration. A well-designed architecture shows itself adaptable to

changes arising from varying conditions and requirements, either new or modi�ed.

In evolutionary development the system is built and delivered as a series of

partial, but increasingly complete, implementations. Software is integrated early

and often, at each evolution instead of at the end of the project. The nature of

the evolutionary process of OO development means that rarely, if ever, a single

\big bang"; integration event occurs. Each release evolves from an earlier stable

release. The system deliberately satis�es fewer requirements at the beginning but

is constructed to facilitate the addition of new requirements, thus achieving higher

adaptability. Frequent integration reduces risk by exposing it early in the project

lifetime. This strategy accelerates the discovery of architectural and performance

problems in the development process.

Software systems have technical as well as non-technical risks. Technical risks in

OO systems include problems such as the selection of an architecture that features

the best in terms of usability and
exibility. Another example is the choice of

\mechanisms"; that yield acceptable performance while simplifying the system's

architecture itself. Non-technical risks concern supervising the delivery of software,

from a third-party or in-house, and managing the relationship between the �nal

usera and the development team to discover the system's real requirements during

analysis. Because we can get a working system from the beginning of the life-cycle,

we may better keep it on-track with the requirements and the needs well before the

project completion. These often constitute a living document.

An architecture driven development has all the bene�ts of a requirements-

driven style, as well as the favourable characteristic of encouraging the

creation of resilient frameworks that can withstand shifting requirements

and technological calamity. [Booch, 1996]

It is important to view object-oriented development not merely in terms of a rela-

tively informal coding practice, but rather at least partial as a life-cycle process.

7. We Need a Software Process

Establishing a well de�ned software development process is at the heart of future

CMS software e�ort. Current experience shows the importance of:

aThe physicist in our case.

18 Object-Oriented Development \The New Design Problem"

� Iterative development (to reduce risk by exposing it early)

� The software architecture (to achieve
exibility)

� Software reuse (through focusing on interfaces)

� The use of object-oriented methods in day-to-day analysis, design, implemen-

tation, and maintenance

In an evolutionary architecture-driven development process we specify the ob-

jectives of a software system through a collection of scenarios where responsibilities

are shared among the participating objects. An architecture is built and validated

to support the scenarios while exploiting the common collaboration patterns found

there. The system is built and the architecture evolved making mid-course correc-

tions to adapt to new requirements as they are uncovered.

The most striking feature of the structure of an architecture-driven project is

that its components tend to map to the abstractions we �nd in the real world,

hence �lling the knowledge gap between the problem domain and its representation

as software.

7.1. The Booch Process

The Booch approach to an evolutionary development process is at two di�erent

levels: a macro-process, that addresses organisational and managerial issues at each

evolution, or release of the system, and a micro-process that covers the everyday

activities of the developers.

7.1.1. The macro-process

 ��

Fig. 8. The macro-process, from [Booch, 1994].

The macro-process is important to identify problems early in the life-cycle and to

respond meaningfully to the risks before they jeopardise the success of the project.

Object-Oriented Development \The New Design Problem" 19

Project planning involves scheduling the deliverables in the macro-process. Be-

tween evolutionary releases, the management must assess the imminent risks to the

project, address the resources so as to attack those risks, and then manage the next

iterations of the micro-process that will yield a stable system.

7.1.2. The micro-process

 ���

Fig. 9. The micro-process, from [Booch, 1994].

The micro-process of object-oriented development is inherently subjective and

requires the macro-process as a driving force. The process is designed to lead to

completion by providing a number of tangible products that management can study

to judge the health of the project, as well as controls that allow management to

redirect resources as necessary.

The Booch approach has been followed in the development of the CMS Pilot

Project ([Innocente and Marino, 1995] and [Bos et al., 1995]).

8. Project Management

When developing software systems we must also consider sound managerial practices

with regard to subjects like sta�ng, release management, and training. To most

physicists, these are non-issues since the software will be there anyway, somehow,

almost by magic. Unfortunately it is almost never the case: these are realities that

must be faced to build successful complex software systems. With an iterative and

evolutionary life-cycle it is evident that the project's activities have to be managed.

8.1. Task Planning

The basic practices of software development management, e.g., task planning, walk-

throughs for analysis and design validations, code inspections, are una�ected by

object-oriented technology. These activities in general require the development

team to meet and communicate improvements. Both formal, scheduled meetings

and informal brainstormings are necessary.

20 Object-Oriented Development \The New Design Problem"

Some minimal frequency of meetings is needed for communication within the

team; too many meetings, on the contrary, would destroy productivity. In the

CMS OO activities, it has been reasonable to have weekly team meetings to discuss

completed work and incoming mailstones. Unnumbered chats, exchanged ideas and

joint mumbling proved invaluable.

Object-oriented software development requires that individuals have unsched-

uled time to think, invent, develop, and meet informally other team members to

discuss detailed technical issues. The management team must take into considera-

tion this unstructured time.

Meetings provide an e�ective vehicle for tuning schedules in the micro-process

and for gaining insight into potentially complex areas. These meetings can result in

small adjustments to the tasks to ensure the progress of the ongoing work. In our

projects we will �nd that developers cannot wait for other team members to stabilise

their parts of the architecture. In object-oriented systems, classes and mechanisms

heavily a�ect the system architecture: development can stall if certain key classes

are still in the clouds (no reference to Booch notation).

Task planning involves scheduling the deliverables in the macro-process. Be-

tween evolutionary releases, the management team must assess the imminent risks

to the project, allocate the resources to attack those risks, and then plan the next

iterations of the micro-process that will yield a stable system. Task planning at this

level most often fails because of too optimistic schedules. Booch suggests that in

order to develop schedules in which the team can have con�dence, the management

must devise multiplicative factors for the developers' estimates. Anyway, manage-

ment must realise that e�ective planning is a skill that is acquired only through

experience.

OO helps in this respect because an iterative and evolutionary life-cycle requires

many intermediate milestones to be established early in the project. These mile-

stones can be used to meet schedules and priorities. As evolutionary development

proceeds, management will gain a better understanding of the real productivity of

each of its developers over time, and individual developers can gain experience in

estimating their own work more accurately.

Incidentally the same kind of lessons apply to tools: with early delivery of archi-

tectural releases, OO encourages the use of tools early and leads to the identi�cation

of their limitations before it is too late to change them.

8.2. Walkthroughs - A validation procedure

Walkthroughs are another established habit to employ. Management should balance

between too many and too few walkthroughs, keeping in mind that it is simply not

practical to review every line of code. In our projects we should regularly conduct

formal reviews on scenarios as well, and on the system's architecture, with many

informal reviews focused on smaller tactical issues.

Scenarios are a primary product of the analysis phase of OO development and

serve to capture the desired behaviour of the system in terms of its functionalities.

Object-Oriented Development \The New Design Problem" 21

Formal reviews of scenarios are led by the team's analysts together with the domain

experts or other end users and are witnessed by other developers. These reviews are

best conducted throughout the analysis phase, rather than in one massive review

at the end of analysis, when it is already too late to do anything useful to redirect

the e�orts.

Our experience shows that even non-programmers can understand scenarios pre-

sented through scripts or through the formalisms of interaction diagrams. Ulti-

mately, the reviews help to establish a common vocabulary among the developers

and the users.

Architectural reviews should focus on the overall structure of the system, in-

cluding its class structure and mechanisms. As with scenario reviews, architectural

reviews should be conducted throughout the project and led by the project's ar-

chitect or other designers. Early reviews focus on architectural issues that have

to stabilise, whereas later reviews focus on particular class categories or speci�c

mechanisms, also called object interactions.

The main purpose of these reviews is to validate designs early in the develop-

ment. A secondary purpose is to increase the visibility of the architecture among

the team in order to create opportunities for discovering patterns of classes or col-

laborations of objects, which then can be exploited to simplify the architecture

itself.

Informal reviews may be carried out weekly and generally involve peer-to-peer

review of particular clusters of classes or lower-level mechanisms. The main purpose

of these reviews is to validate tactical decisions.

8.3. Release Management

From the perspective of the users of the system, the macro-process in the OO

evolutionary development generates a stream of executables, each with increasing

functionality, and eventually evolves into the �nal system. From the developers'

point of view usually many more releases and prototypes are constructed.

In larger projects, internal releases of the system could be produced every few

weeks. A running version along with its associated documentation can be shipped

to the users for review every few months, according to the needs of the project.

8.4. Con�guration Management and Version Control

Consider the problem from the perspective of an individual developer who is re-

sponsible for the implementation of a particular category. He usually has a working

version of that subsystem and a version under development. To proceed with the

development, at least the interfaces of all imported subsystems must be available.

As this working version becomes stable, it is planned for integration.

Who will be responsible for collecting the compatible subsystems for the entire

system? Probably when the projects will get considerable size a dedicated team will

be devoted to this task. Eventually, this collection of subsystems is frozen, put on

22 Object-Oriented Development \The New Design Problem"

the base line, and made part of an internal release. This internal release becomes

the current operational one visible to all the developers who need to further re�ne

their particular parts. In the meantime, the individual developer can work on a

newer version of his subsystem. In this way, development can proceed in parallel,

with stability possible because of the well de�ned and the well guarded subsystem

interfaces.

At any point in the evolution multiple versions of a particular subsystem can

exist: one version for the current release under development, one for the current

internal release, and one for the latest customer release. This situation explicitly

needs tools for con�guration management and version control.

Implicit in this model is the idea that a category or a cluster of classes, not

the individual class, is the unit of version control. Our experience suggests that

managing versions of individual classes is too �ne a granularity because no class

tends to stand alone. The CMS Pilot project has been put under versions control

using the categories as controlled unit.

The concepts of con�guration management apply not only to the source code,

but also to all the other deliverables of the OO development, such as requirements,

class diagrams, object diagrams, documentation �les, and so forth.

8.5. Technology Transfer

Learning object-oriented programming can be more di�cult than just learning an-

other programming language, often because a di�erent perspective is involved rather

than a di�erent syntax in the same framework. Indeed, you must learn a new way

of thinking about programming.

We have to develop this object-oriented mind-set by providing formal training to

both developers and managers in the elements of the object model. An important

step we made is to use OO �rst in a low-risk project and allow initial developers to

make mistakes. In the future, use these team members to seed other projects and

to act as mentors for the object-oriented approach.

9. Deliverables

The development of a software system requires much more than writing plain source

code. Certain deliverables of the development process provide the means to give the

management team and the users information about the progress of the project. Doc-

umentation of the analysis and design decisions must be produced also to bene�t the

eventual maintainers of the system. The products of object-oriented development

essentially are sets of:

� Class diagrams

� Object interaction diagrams

Object interaction diagrams denote scenariosa conceived in order to �t the re-

aPatterns of object collaborations.

Object-Oriented Development \The New Design Problem" 23

quirements, while class diagrams represent key abstractions that form the vocab-

ulary of the problem domain and support the implementation of the mentioned

scenarios. As a whole these diagrams o�er the possibility to trace back to the

system requirements.

Module and process diagrams are additional parts of the Booch method. Process

diagrams show how processes are allocated to processor in the physical model of

the system, processors and devices that serve as the platform for the execution of

the system concerned; module diagrams show the allocation of classes and objects

to modules of the system such as subsystems, speci�cations, source bodies, and the

main program.

Not all these modules are supported by any language, e.g., C++ only supports

the concept of �les, speci�cations (the class declarations), source bodies (de�ni-

tions), main program, and their dependencies. Each of these modules represents

the implementation of some combination of classes and objects, which are in turn

found in class diagrams and object diagrams.

The documentation of a system's architecture and implementation is important,

but the production of documents should not really drive the development process.

Documentation is an essential part of the system development although it has to be

seen in the right perspective in the process; it is a support product. It is also impor-

tant to remember that documents are \living" things, hence they should be allowed

to evolve together with the iterative and incremental evolution of the project.

Together with the generated code, delivered documents serve as the basis of

most of the formal and informal reviews (walkthroughs, code inspections and the

like).

9.1. What must be documented?

End-user documentation must be produced to instruct the user on the operation

and installation of each release of the system. In addition to that, analysis doc-

umentation must be produced in order to capture and store the semantics of the

system's function points as viewed through the scenarios.

Architectural and implementation documentation must be generated to commu-

nicate the overall vision and the details of the architecture to the architects and

the developers and to store information about all relevant strategic decisions - the

fundamental whys of decisions - so that the system can be adapted and evolved in

the case the reasons should change.

In general, the essential documentation include the following:

� The high-level system architecture

� The key abstractions and mechanisms in the architecture

� The scenarios that illustrate the built-in behaviour of key aspects of the sys-

tem.

The addition of the word key means that I do not expect every single detail

of the system to be documented, especially the irrelevant internal details of the

24 Object-Oriented Development \The New Design Problem"

implementation.

The worst possible documentation we could produce to describe an object-

oriented system is if we limit ourself to only the description of the methods on

a class-by-class basis, and to the purpose of each single class. This approach would

generate a big amount of quite useless documentation that no one really reads.

On the other hand it would present an object-oriented system as a collection of

island-classes. This misses completely the goal of documenting the important ar-

chitectural issues that go beyond the individual classes, that is, the collaborations

between classes and objects.a

It is far more e�ective to document these higher-level structures expressed in dia-

grams of the notation that have no direct counterpart in the programming language

adopted to implement the system.

10. Final remarks

Software development is not an easy task and object-oriented technology may con-

stitute a real help. As we see things today, the problems we face now will appear

trivial in the next ten years. Traditional approaches are already facing their limits

in handling the present complexity. Will OO be able to be a clean solution to that?

We can't honestly say, but we cannot deny that OO will be an important step on

that way, a step we cannot a�ord if we stick to the older techniques.

The discipline of Object-Oriented analysis and design is more complex than other

software disciplines. The complexity arises from variety: we may invent millions

of di�erent perfectly valid objects, and the classes from which they are created.

Also, great variation of relationships exist between them and the way we may make

them to collaborate with each other. We accept to face the complexity of the OO

discipline to achieve a simpler, more
exible and robust design.

To add to this picture, each di�erent object, class, relationship has its own proper

semantics. This complexity makes the discipline of OO analysis and design harder

to grasp , learn, and master than any other. But, and from this come the bene�ts,

OO has an unprecedented semantic richness and expressiveness. Software maintains

a closer mapping with the real world, reducing the gap between the understanding

of the problem domain and its software counterpart. The problem and the software

solution may use now the same dictionary and expressions.

aNo object is an island, G. Booch.

Object-Oriented Development \The New Design Problem" 25

Acknowledgementsa

We wish to thank our colleagues of CMS and RD41 for their contribution in terms

of discussions, suggestions, and the explanation of their di�erent perspectives. We

are indebted to V. Innocente, W. Jank, and M. Pimia - without their support

and encouragement this work would have not been written. We like to mention F.

Rademakers and S. Ravndal with whom the discussions and querelles have continued

on the gOOlf courses. Finally special thanks to L. Tuura for his help in �ne tuning

the text and permitting the readers to get the intended messages.

References

[ACM, 1987] Association for Computing Machinery, OOPSLA'87 Conference Pro-

ceedings, special issue of SIGPLAN Notices, Vol. 22, No. 12, December 1987.

[Boehm, 1985] B. W. Boehm, A Spiral Model of Software Development and En-

hancement, Proceedings of International Workshop on Software Process and Soft-

ware Environments, Coto de Caza, Trabuco Canyon, California, March 27-29, 1985.

[Booch, 1994] G. Booch, Object-Oriented Analysis and Design - With Applications,

Second Edition, Benjamin/Cummings, Menlo Park, California, 1994.

[Booch, 1996] G. Booch, Object Solutions - Managing the Object-Orient ed Project,

Addison-Wesley, Menlo Park, California, 1996.

[Booch and Rumbaugh, 1995] G. Booch and J. Rumbaugh, Uni�ed Method: User

Guide, Version 0.8, Rational Software Corporation, Santa Clara, California, 1995.

[Bos et al., 1995] Moose Project, Status Report of Moose - an Object Oriented

Approach to Software Development for LHC Experiments, CERN/LHCC 95-60.

[Brooks, 1972] F. P. Brooks, The Mythical Man-Month, Addison-Wesley, Menlo

Park, California, 1972.

[Coleman et al., 1994] D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist,

F. Hayes, and P. Jeremaes, Object-Oriented Development: The Fusion Method,

Prentice Hall, Englewood Cli�s, New Jersey, 1994.

[Cook and Daniels, 1994] S. Cook and J. Daniels, Designing Object Systems - Object

Oriented Modelling With Syntropy, Prentice Hall, Englewood Cli�s, New Jersey,

1994.

aFor interaction diagrams we used fc Rational Rose/C++ v. 3.0

26 Object-Oriented Development \The New Design Problem"

[Gamma et al., 1994] E. Gamma, R. Help, R. Johnson, and J. Vlissides, Design Pat-

terns - Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,

Massachussetts, 1994.

[Humphrey, 1989] W. Humphrey, Managing the Software Process, Addison-Wesley,

Menlo Park, California, 1989.

[Innocente and Marino, 1995] V. Innocente and M. Marino, An Object-Oriented

Approach to CMS Reconstruction Software, CHEP,95 Conference Proceedings, Rio

de Janeiro, Brasil, September 1995, CMS TN/95-139 SW.

[Jacobson, 1987] I. Jacobson, Object-Oriented Development In an Industrial Envi-

ronment, OOPSLA'87 Conference Proceedings, special issue of SIGPLAN Notices,

Vol. 22, No. 12, December 1987, pp. 183-191.

[Jacobson et al., 1992] I. Jacobson, M. Christerson, P. Jonsson, and G. �Overgaard,

Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-

Wesley, Reading, Massachusetts,1992.

[Jacobson et al., 1995] I. Jacobson, M. Ericsson, and A. Jacobson, The Object Ad-

vantage: Business Process Reengineering With Object Technology, Addison-Wesley,

Reading, Massachusetts, 1995.

[Liskov, 1988] B. Liskov, Data Abstraction and Hierarchy, SIGPLAN Notices, Vol.23,

No.5, May, 1988.

[Martin, 1995] R. C.Martin, The Liskov Substitution Principle, C++ Report, March

1996.

[Meyer, 1988] B. Meyer, Object-Oriented Software Construction, Prentice Hall, En-

glewood Cli�s, New Jersey, 1988.

[Meyers, 1992] S. Meyers, E�ective C++ - 50 Speci�c Ways to Improve your Pro-

grams and Designs, Addison-Wesley, Reading, Massachusetts, 1992.

