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1 Introduction

A key role in exploring the Standard Model is played by studying electroweak heavy
flavor decays. It was realized 20 years ago that the strong interaction effects in
heavy flavor hadrons can be treated within QCD. Yet the full power of theoretical
methods acquired in QCD was applied here only recently. They were developed
along two main directions, ‘symmetry-based’ and ‘dynamical’. These two lines in
the heavy quark theory were the counterparts of the basic theoretical strategy in
studying strong interactions: isotopic invariance and chiral symmetry on the one
hand, and asymptotic freedom on the other.

In heavy quark physics, the early period to the end of the 80s saw mostly the
dynamical approach applied at a simplified ‘intuitive’ level. The nonperturbative
effects were often thought to be small even in the decays of charm particles. The
following few years were dominated by ‘symmetry’ considerations; the operating
language for those analyses was the so-called Heavy Quark Effective Theory (HQET),
which incorporated some basic elements of the general heavy quark expansion in
QCD (HQE) but was limited only to certain classes of processes.

Finally, over the last few years a consistent well-defined dynamical approach
has been developed, which automatically respects the heavy quark symmetries in a
manifest way. Here the most precise determinations of |Vcb| and |Vub| were made.

The main effects in a weak decay of heavy quarks Q originate from distances
∼ 1/mQ ≪ 1/ΛQCD. Since αs(mQ) ≪ 1 they are tractable through perturbation
theory. The QCD interaction becomes strong only when the momentum transfer is
much smaller than the heavy quark mass, k ≪ mQ. Two basic ingredients of HQE
are thus elucidated:
• The nonrelativistic expansion, which yields the effects of ‘soft’ physics in the form
of a power series in 1/mQ.
• The treatment of the strong interaction domain based on the Operator Product

Expansion (OPE).
Unless an analytic solution of QCD is at hand, these two elements appear to be
indispensable for heavy quark theory.

The general idea of separating the two domains and applying different theoretical
tools to them was formulated long ago by K. Wilson [1] in the context of problems in
statistical mechanics; in the modern language, applied to QCD it is similar to lattice
gauge theories. The novel feature we face in the theoretical analysis of beauty de-
cays is that they often allow – and even demand by virtue of the existence of precise
experimental measurements – rather accurate predictions, requiring a simultaneous

treatment of perturbative and nonperturbative QCD effects with enough precision in
both. This problem is not new; the theoretical framework has been elaborated more
than 10 years ago [2], but its phenomenological implementation was not mandatory
until recently. Failure to incorporate it properly leads to certain theoretical para-
doxes and, unfortunately, some superficial controversy in the numerical estimates in
the literature.
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Figure 1: Exclusive B → D(∗) (a) and generic (b) semileptonic decays.

With significant progress made over the last years, the theory of the heavy flavors
is still not a completed field and is undergoing to further extensive development. I
will focus on a few selected topics that illustrate the theoretical framework, and
review the overall status of the heavy quark expansion, with the main emphasis on
the qualitative features. Some important theoretical applications are presented in
the lectures by C. Sachrajda [3] (exclusive decays), A. Ali [4] (rare b decays) and
M. Gronau [5] (CP violation) (these Proceedings). Additional theoretical aspects
are covered in the summarizing contribution by G. Martinelli [6], where recent ex-
perimental data are also discussed.

2 Semileptonic decays

The QCD-based heavy quark expansion can equally be applied to all types of heavy
flavor transitions. Semileptonic decays are the simplest case and I shall devote most
of the attention to them; for practical reasons I focus on b → c transitions. A brief
discussion of the b → u decays will be given later.

A typical semileptonic decay is schematically shown in Figs. 1. Generally, two
types of decay rates can be singled out: inclusive widths where any combination of
hadrons is allowed in the final state, and exclusive decays, when a transition into a
particular charmed hadron is considered, usually D or D∗.

2.1 Inclusive semileptonic width

The semileptonic width of a heavy quark has the form

Γsl =
G2

Fm5
b

192π3
|Vcb|

2 · z0

(

m2
c

m2
b

)

· æ , (1)

where z0 is the known phase space suppression factor and æ generically includes all
QCD corrections. In the heavy quark limit the difference resulting from using the
quark mass mb and the meson mass MB in eq. (1) disappears:

(MB − mb)/mb ∼ 1/mb . (2)
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For the actual b quark M5
B/m5

b amounts to a factor of 1.5–2, which formally con-
stitutes a power-suppressed effect. This demonstrates the necessity of a systematic
control of nonperturbative corrections even in decays of beauty particles.

The central result obtained by direct application of OPE to the inclusive decay
widths in QCD is the absence of 1/mQ corrections [7] – in contrast with the presence
of such terms in the hadron masses. The physical reason behind this fact is the
conservation of the color flow in QCD, which leads to the cancellation of the effects
of the color charge (Coulomb) interaction in the initial and final states. In terms of
nonrelativistic quantum mechanics (QM), it is the cancellation between the phase
space suppression caused by the Coulomb binding energy in the initial state, and the
Coulomb distortion of the final state quark wavefunctions. The inclusive nature of
the total widths ensures that they are sensitive only to the interaction on the time
scale ∼ 1/∆E ∼ 1/mb. The final-state-interaction effect is thus not determined by
the actual behavior of the strong forces at large distances, but only by the potential
in the close vicinity of the heavy quark. The cancellation therefore occurs universally,
whether or not a nonrelativistic QM description is applicable.

The leading power corrections start with terms 1/m2
b ; they were calculated in [7]

and are expressed in terms of the expectation values of two operators of dimension
5, which have a transparent QM interpretation:

µ2
G ≃

1

2MB
〈B|b̄

i

2
σµνG

µνb|B〉 ↔ 〈B|~σb · gs
~Hg|B〉 ≃

3

4
(M2

B∗ −M2
B) ≃ 0.35 GeV2 (3)

µ2
π ≃

1

2MB

〈B|b̄(i ~D )2b|B〉 ↔ 〈B|~p 2|B〉 . (4)

The value of µ2
π is not yet known directly; a model-independent lower bound was

established in [8, 9]: µ2
π > µ2

G ; this puts an essential constraint on its possible
values. This bound is in agreement with QCD sum rule calculations [10], yielding
a value of about 0.5 GeV2 and with a more phenomenological estimate [11]. In the
absence of gluon corrections, as in simple QM models, the expectation value µ2

π

would coincide with the HQET parameter −λ1; they are different, however, in the
actual field theory, where both µ2

π and µ2
G depend on the normalization point.

Including the nonperturbative corrections, the semileptonic width has the follow-
ing form [7, 12, 13, 14]:

Γsl =
G2

Fm5
b

192π3
|Vcb|
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z0

(

1 −
µ2

π − µ2
G

2m2
b

)

− 2

(

1 −
m2

c

m2
b

)4
µ2

G

m2
b

−
2

3

αs

π
z

(1)
0 + ...







. (5)

The 1/m2
b corrections to Γsl are rather small, about −5%, and increase the value of

|Vcb| by 2.5%; the impact of the higher order power corrections is negligible.
Good control of the QCD effects in the inclusive semileptonic widths provides

the most accurate direct way to determine |Vcb| in a truly model-independent way.
It sometimes faces a traditional scepticism: which numerical value must be used
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Figure 2: Perturbative diagrams leading to the IR renormalon uncertainty in mpole
Q

of the order of ΛQCD. The contribution of the gluon momenta below mQ expresses
the classical Coulomb self-energy of the colored particle. The number of bubble
insertions into the gluon propagator can be arbitrary.

for mb and mc? This practical problem has deep roots; failure to understand them
is the major source of controversy about masses and inclusive widths found in the
literature. It will be briefly discussed below. In reality, the precise value of mb is
not too important, since the b → c width depends to a large extent on the difference
mb − mc rather than on mb itself; the former is constrained in the HQE:

mb − mc =
MB + 3MB∗

4
−

MD + 3MD∗

4
+ µ2

π

(

1

2mc

−
1

2mb

)

+ ... ≈ 3.50 GeV . (6)

It also independently enters lepton spectra in semileptonic decays [14] and can be
extracted from the data [15]. Numerically [8, 16], a change in mb by 50 MeV leads
only to a 1% shift in |Vcb|.

Heavy quark masses

The controversy about mb is due to the fact that HQET was popularly based on
the so-called ‘pole’ mass of the heavy quarks. Not only was it a starting parameter
of the HQET-based expansions, it is this pole mass that one always attempted to
extract from the experimental data. It turns out, however, that the pole mass of the
heavy quark is not a direct observable and its definition suffers from an irreducible
intrinsic theoretical uncertainty of order ΛQCD [17].

At first sight this looks paradoxical and counter-intuitive: for example, the value
of me quoted in the tables of physical constants is just the pole mass of the electron.
In QCD there is no ‘free heavy quark’ particle in the physical spectrum, and its pole
mass is not well defined. The problems facing the possibilities to extract the pole
mass from typical measurements were illustrated in Refs. [18] and [19].

The physical origin of the uncertainty δmpole
Q ∼ ΛQCD is the gluon Coulomb self-

energy of the static colored particle. The energy stored in the chromoelectric field
inside a sphere of radius R ≫ 1/mQ is given by

δECoulomb(R) ∝
∫

1/mb∼|x|<R

~E 2
c d3x ∝ const −

αs(R)

π

1

R
. (7)

The pole mass assumes that all energy is counted, i.e. R → ∞. Since in QCD the
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interaction becomes strong at R0 ∼ 1/ΛQCD, the domain outside R0 would yield an
uncontrollable and physically senseless contribution to the mass ∼ ΛQCD [17].

Being a classical effect originating at a momentum scale well below mQ, this
uncertainty can be traced in the usual perturbation theory, where it manifests itself
in higher orders as a so-called 1/mQ infrared (IR) renormalon singularity in the
perturbative series for the pole mass [20, 21], see Fig. 2.

Nonetheless, the inclusive widths can be theoretically calculated since they are
governed, instead, by well-defined short-distance running masses mQ(µ) with the
Coulomb energy originating from distances ∼> 1/µ peeled off. It is precisely this
short-distance running mass that can be extracted from experiment with, in prin-
ciple, unlimited accuracy: the pole mass does not enter any genuine short-distance
observable at the level of nonperturbative corrections [20].

Applied to the inclusive widths, it suggests certain information about the impor-
tance of higher order perturbative corrections: if masses entering eq. (5) are the pole
masses, the perturbative series

Γpert
sl = Γ0æ

pert = Γ0

(

1 + a1(αs/π) + a2 (αs/π)2 + ...
)

(8)

is poorly behaved, with coefficients ak factorially growing, which makes the radiative
correction factor uncalculable in principle with an accuracy ∼ ΛQCD/mb. In contrast,
if one uses the short-distance masses, the higher-order corrections become smaller
and the factor æpert becomes calculable with the necessary precision [20, 22].

This seemingly academic observation, in reality proved to underlie the pattern of
the corrections from the very first terms. Remarkably, the actual model-independent
calculations of Γsl through observables measured in experiment are very stable
against perturbative corrections. Including O(α2

s) terms in the extraction of the
b pole mass from, say, the e+e− → b̄b threshold region [23] noticeably increases
its value. However, the parallel perturbative improvement in calculating the width
yields an essential suppression of the perturbative factor, æ, so that the two effects
offset each other almost completely [16].

This conspiracy is not unexpected: the appearance of large corrections at both
stages is an artefact of using the ill-defined pole mass in the intermediate calculations.
The situation is peculiar since the actual nonperturbative effects appear only at the
level 1/m2

Q, whereas the pole mass is infrared ill-defined already at an accuracy of
1/mQ. The failure to realize this fact led to the superficial suggestion [24] that even
in beauty particles the perturbative corrections may go out of theoretical control; a
more careful analysis [16, 25] showed that this is not the case.

Moreover, the OPE requires using short-distance running masses mb,c(µ) normal-
ized at µ ∼ 1 GeV [20]. It has been done in [16] and demonstrated that neither these
masses nor the perturbative corrections to the width æ show significant contributions
from higher orders.

To summarize, the idea that the perturbative corrections in the extraction of |Vcb|
from Γsl(B) are large comes from an inconsistent usage of ill-defined pole masses:
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• It is ‘difficult to extract’ accurately mpole
b from experiment; in any given calcu-

lation it is easy to identify the effects that were left out, which can change its value
by ∼ 200 MeV. This uncertainty leads to a ‘theoretical error’ δI in Γsl(B) of ∼ 10%.

• When routinely calculating Γsl(B) in terms of the pole masses, there are sig-
nificant higher order corrections δII ≈ 10%.

The naive conclusion drawn from such experience [26] is that one cannot reliably
calculate the width without ∼ 20% uncertainty:

δΓsl/Γsl = δI + δII ≃ 20% ↔ δ|Vcb|/|Vcb| ≃ 10% .

On the contrary, theory predicts a strong anticorrelation between δI and δII in a
consistent perturbative calculation, and that was explicitly checked in [16, 25]. The
net impact of the calculated (presumably dominant) second-order O(α2

s) corrections
on the value of |Vcb| appeared to be less than 1% ! Moreover, just neglecting all

perturbative corrections altogether, both in the semileptonic width and in extracting
mb from experiment, yields a |Vcb| smaller by less than 5% [27].

Recently, all-order corrections associated with the running of αs in one-loop dia-
grams (referred to as BLM approximation) were calculated in [25]. Using the most
accurate model-independent determination of mb [23], one gets [16]

|Vcb| = 0.0413

(

BR(B → Xcℓν)

0.105

)
1

2
(

1.6 ps

τB

)

1

2

×

(

1 − 0.012
(µ̃2

π − 0.4 GeV2)

0.1 GeV2

)

·

(

1 − 0.006
δm∗

b

30 MeV

)

. (9)

The main source of theoretical uncertainty is the exact value of µ2
π (marked with

a tilde in eq. (9), indicating that a particular field-theoretic definition is assumed),
which enters through the value of mb − mc, eq. (6) . A dedicated analysis of the
lepton spectra will reduce this uncertainty. At the moment a reasonable estimate of
the uncertainty in µ2

π is about 0.2 GeV2, leading to a 2.5% uncertainty in |Vcb|.
The dependence on mb is minor; since we rely here on the well-defined short-

distance mass m∗
b , there is no intrinsic uncertainty in it. The analysis [23] estimated

δm∗
b ≃ 30 MeV; even for δm∗

b ≃ 60 MeV, the related uncertainty in |Vcb| is only 1.2%.
As previously explained, the actual impact of the known perturbative correc-

tions when relating the semileptonic width to other low-energy observables is very
moderate, and there is no reason to expect the higher-order effects to be significant.
With the a priori dominant all-order BLM corrections calculated [25], one may be
concerned only with the true two-loop effects O(α2

s). These have not been calculated
completely yet; however, the recent O(α2

s) calculation [28] in the small velocity kine-
matics suggested that they must be small. There are some enhanced higher-order
non-BLM corrections that are specific to the inclusive widths [29]. They have been
accounted for in the analyses [8, 16], but went beyond those in [30, 25]. Thus it seems
unlikely that as yet uncalculated second-order corrections can change the width by
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more than 2–3%; therefore, assigning an additional uncertainty of 2% in |Vcb| is a
quite conservative estimate.

Adding up these uncertainties we arrive at

(δ|Vcb|/|Vcb|) |th ∼< 5% . (10)

The theoretical accuracy in extracting of |Vcb| appears to be better than its cur-
rent experimental counterpart. This method can be improved further in a model-
independent way. I think that the 2% level of a defensible theoretical precision can
be ultimately reached here; an essential improvement beyond that is questionable,
because of effects of higher-order power corrections and possible violations of duality.

Similarly, |Vub| is directly related to the total b → u semileptonic width [16]:

|Vub| = 0.00458 · [BR(B → Xuℓν)/0.002]
1

2 (1.6 ps/τB)
1

2 . (11)

Recently, ALEPH announced [31] a model-independent measurement of the inclusive
b → u ℓν width: BR(B → Xuℓν) = 0.0016 ± 0.0004. I cannot judge the reliability
of the quoted error bars in this sophisticated analysis; it certainly will be clarified
soon. Accepting this input literally, I arrive at the model-independent result

|Vub|/|Vcb| = 0.098 ± 0.013 . (12)

The theoretical uncertainty in converting Γ(B → Xu ℓν) into |Vub| is a few times
smaller.

Let me briefly comment on the literature. It is sometimes stated [26, 32] that the
uncertainty in Γsl is at least 20%. The origin of such claims is ignoring the subtleties
related to using the pole mass in the calculations and considering separately the
perturbative corrections to the pole masses, and to the widths expressed in terms of
mpole

Q . This is inconsistent on theoretical grounds [20], whose relevance was confirmed
by the concrete numerical evaluations [16, 25]. The dependence on mb and mb −mc

used to determine the uncertainty in |Vcb| was calculated erroneously in [26] (cf. [16]),
apparently because of an arithmetic mistake that led to a significant overestimate.
Finally, no argument was given to justify a sevenfold boosting of the theoretical
uncertainty in mb obtained in the dedicated analysis [23].

2.2 Exclusive zero recoil B → D∗ ℓν rate

Good control of all QCD effects in Γsl was due to the fact that removing constraints
on the final state to which decay partons can hadronize, makes such a probability
a short-distance quantity amenable to a direct OPE expansion. A similar approach
to the exclusive zero-recoil decay rate B → D∗ ℓν yielded quite an accurate deter-
mination of |Vcb| as well [8, 18], though with a more significant irreducible model
dependence and a larger intrinsic uncertainty. The limitation is twofold: constraining
the decays to a specific final state makes the transition not a genuinely short-distance
effect; it also suffers from a larger expansion parameter, namely 1/mc vs. 1/mb.
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Near zero recoil the decay is governed by the single hadronic formfactor FD∗ . In
the infinite mass limit FD∗ = 1 holds; for finite mb,c it acquires corrections:

FD∗ = 1 − (1 − ηA) + δ1/m2 + ... . (13)

The effect of the nonperturbative domain starts with the terms ∼ 1/(mc, mb)
2 [33,

34], but otherwise is rather arbitrary, depending on the details of the long-distance
dynamics in the form of wavefunction overlap. This opened the field for speculations
and controversy [35].

The situation as it existed by 1994 was summarized in reviews by Neubert [36]:

ηA = 0.986 ± 0.006 δ1/m2 = (−2 ± 1)% , (14)

yielding FD∗ ≃ 0.97, and was assigned the status of “one of the most important and,
certainly, most precise predictions of HQET”. Nowadays we believe that the actual
corrections to the symmetry limit are larger, and the central theoretical value lies
rather closer to 0.9 [8, 18]. Perturbative-wise, it has been pointed out [37] that the
improvement [38] of the original one-loop calculation was incorrect, and the proper
estimate is ηA ≈ 0.965 ± 0.025; subsequent calculations of the higher-order BLM
corrections [25, 39] confirmed it: ηA ≈ 0.965±0.02. The purely perturbative chapter

was closed recently with the complete two-loop O(α2
s) result [28] η

(2 loop)
A = 0.960 ±

0.007; however, the inherent irreducible uncertainty of the complete perturbative
series for ηA exceeds the quoted one by a factor of three [25, 41, 42].

If the mass of the charm quark were a few times larger, in practice the two-
loop calculation would have been the whole story for FD∗ . In reality, the power
corrections originating from the domain of momenta below ∼ 0.6 GeV appear to be
more significant. Not much can be said about them without model assumptions;
they have been shown to be negative and exceed about 0.04 [8, 18] in magnitude.

The idea of this dynamical approach was to consider the sum over all hadronic
states in the zero recoil kinematics; such a rate sets an upper bound for the pro-
duction of D∗. This inclusive quantity is of a short-distance nature and can be
calculated in QCD using the OPE. The result through order 1/m2 is

|FD∗|2 +
∑

ǫi<µ

|Fi|
2 = ξA(µ) −

µ2
G

3m2
c

−
µ2

π − µ2
G

4

(

1

m2
c

+
1

m2
b

+
2

3mcmb

)

, (15)

where Fi are the transition formfactors to charm states i with the mass Mi = MD∗ +
ǫi, and ξA is a perturbative factor (the role of µ will be addressed later). Considering
a similar sum rule for another type of ‘weak current’, say c̄iγ5b , yields

∑

ǫ̃k<µ

|F̃k|
2 =

(

1

2mc

−
1

2mb

)2
(

µ2
π − µ2

G

)

(16)

with the tilde referring to the quantities occurring in the transitions induced by this
hypothetical current. These sum rules (and similar ones at arbitrary momentum
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transfer), established in [8, 18], have been subjected to a critical scrutiny for two
years, but are now accepted and constitute the basis for currently used estimates of
FD∗ .

Since eq. (16) is the sum of certain transition probabilities, it results in a rigorous
lower bound

µ2
π > µ2

G ≃ 0.4 GeV2 . (17)

The sum rule (15) then leads to the model-independent lower bound for δ1/m2 :

− δ1/m2 >
(

M2
B∗ − M2

B

)

/8m2
c ≃ 0.035 . (18)

The actual estimate depends essentially on the value of µ2
π. It was suggested in [8]

to estimate the contribution of the excited states in the l.h.s. of the sum rule (15)
from 0 to 100% of the power corrections in the right-hand side:

− δ1/m2 = (1 + χ)

(

M2
B∗ − M2

B

8m2
c

+
µ2

π − µ2
G

8

(

1

m2
c

+
1

m2
b

+
2

3mcmb

))

, 0 ≤ χ ≤ 1 .

(19)
If so, one arrives at [8]

−δ1/m2 = (5.5 ± 1.8)% at µ2
π = 0.4 GeV2

− δ1/m2 = (6.8 ± 2.3)% at µ2
π = 0.5 GeV2 (20)

−δ1/m2 = (8.1 ± 2.7)% at µ2
π = 0.6 GeV2

The QM meaning of the sum rules is transparent [18]. The act of a semileptonic
decay of the b quark is its instantaneous replacement by a c quark. In ordinary QM
the overall probability of the produced state to hadronize to something is exactly
unity. Why are there nonperturbative corrections in the sum rule? The answer is
that the ‘normalization’ of the weak current c̄γµγ5b is not exactly unity and depends,
in particular, on the external gluon field. Expressing the QCD current in terms of
the nonrelativistic fields used in QM one has, for example, through order 1/m2:

c̄γkγ5b ↔ σk −

(

1

8m2
c

(~σi ~D)2σk +
1

8m2
b

σk(~σi ~D)2 −
1

4mcmb

(~σi ~D)σk(~σi ~D)

)

. (21)

The last term just yields the correction seen in the r.h.s. of the sum rule. Let me note
that in the standard HQET analysis, the first two terms in the brackets are missing
(see, e.g., Ref. [35]) and the dominant effect ∼ 1/m2

c is lost; the nonrelativistic
expansion was correctly done in the works by the Mainz group [43].

The inequality µ2
π > µ2

G in QM expresses the positivity of the Pauli Hamiltonian
1

2m
(~σ i ~D )2 = 1

2m
((i ~D) 2 − i

2
σG) [9]. It is interpreted as the Landau precession of a

charged (colored) particle in the (chromo)magnetic field where one has 〈p2〉 ≥ | ~B|.

Although the QM average of ~B in the B meson is suppressed, the chromomagnetic
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field is proportional to the spin of the light degrees of freedom and is thus essentially
non-classical, which enhances the bound and makes up for the suppression.

The perturbative factor ξA is not equal to η2
A [18, 20] and depends on the sep-

aration scale µ. Unlike ηA, which in principle cannot be defined theoretically with
better than a few percent accuracy, ξA(µ) is well-defined; no significant uncertainty
is associated with it, ξA ≃ (0.99)2.

Allowing a very moderate variation of µ2
π between 0.4 GeV2 and 0.6 GeV2 only,

we see that −δ1/m2 varies between 3.5% and 11%; moreover, since there are no
model-independent arguments to prefer any part of the interval, the whole range
must be considered equally possible. Adding small perturbative corrections we end
up with the reasonable estimate FD∗ ≈ 0.9 . It is curious to note that at a ‘central’
value χ = 0.5 the dependence of the zero-recoil decay rate on µ2

π through δ1/m2 effect
practically coincides with that of Γsl(B) (see eq. (9) ) although they actually vary
in opposite directions. The typical size of the 1/m2

Q corrections to the exclusive
zero-recoil decay rate is thus significant, around 15%, which is expected since they
are driven by the scale mc ≃ 1.3 GeV. It is evident that 1/m3

c corrections in FD∗ not
addressed so far are at least about 1

2
(0.15)3/2 ≃ 2–3%.1

Thus, I believe that the current theoretical technologies do not allow to reliably
predict the zero recoil formfactor FD∗ with a precision better than 5–7% in a model-
independent way; its value is expected to be approximately 0.9, although a correction
to the symmetry limit twice smaller, as well as larger deviations, are possible. It
is encouraging that the ‘educated guess’ FD∗ ≃ 0.9, which emerged from the first –
and so far the only – dynamical QCD-based consideration [8, 18], yielded a value of
|Vcb| close to a less uncertain result obtained from Γsl(B).

Future, more accurate data will enable us to measure FD∗ with a theoretically
informative precision using |Vcb| from Γsl(B), and thus provide us with deeper insights
into the dynamics of strong forces in the heavy quark system.

Certain statements in the literature deserve comments. Neubert claimed [40,
41] that the sum rule (15) cannot be correct, since 1/m2 renormalons allegedly
mismatch in it. It was failed to realized in these papers that in Wilson’s OPE the
IR renormalons are always absent from any particular term. On the other hand, IR
renormalon calculus can still be applied if the OPE relation is considered in the pure
perturbation theory itself, and formally setting µ = 0. In particular, this amounts
to subtracting a ‘perturbative piece’ from the observable probabilities. However, in
this way the perturbative terms appear in the left-hand side as well, and these terms
were ignored in Refs. [40, 41].

It was suggested in Ref. [44] that the higher-order radiative corrections to the
sum rules are too large and allegedly make them next to useless. Such conclusions
emerged from a theoretically inappropriate treatment. The concrete numerical anal-
ysis in the OPE quoted below, on the contrary, suggests a quite moderate impact

1This is consistent with the fact that the 1/m3
Q IR renormalon ambiguity in η2

A constitutes 5%

at ΛMS
QCD ≃ 220 MeV [42].
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of radiative corrections. According to [44], the perturbative corrections to the sum
rule of the type of eq. (16) weaken the bound for the expectation value of the kinetic
operator to such an extent that it becomes non-informative. One must realize that,
in the quantum field theory, the renormalized operators can be defined in different
non-equivalent ways; −λ1 addressed in [44] is known to be different from µ2

π. More-

over, the only field-theoretic definition of the kinetic operator Q̄(i ~D )2Q given so far
was made in [18] and, for it, µ2

π > µ2
G always holds. As for −λ1, a parameter in

HQET, its definition beyond the classical level has never been given; the procedure
adopted in Ref. [44] reduces to an attempt to completely subtract the ‘perturbative
piece’ of µ2

π(µ):

− λ1 = µ2
π(µ) − c1 (αs(µ)/π)µ2 − c2 (αs(µ)/π)2 µ2 − ... (22)

(the method to calculate ci was elaborated in [18]). Yet it has been known for a
long time [2] that such a program theoretically cannot be performed: the series in
eq. (22) is factorially divergent and cannot be assigned a meaningful number. No
wonder the second-order BLM correction calculated in [44] seemed to be dangerously
large: there can be no bound established for a quantity that is not defined. Moreover,
the situation is clear in the BLM approximation, where all ci are readily calculated:
the series, whose second term was discussed in [44], is divergent and sign-varying,
so using merely the second term is misleading for any numerical estimate.

The above subtleties are peculiar to the field-theory analysis. Inequality µ2
π > µ2

G

must hold in any QM model relying on a potential description without additional
degrees of freedom, if the heavy quark Hamiltonian is consistent with QCD. Unfor-
tunately, a failure to realize this fact is seen in a number of recent analyses.

A second-order BLM analysis of the sum rule (15) for FD∗ was also attempted
in [44] and claimed to destroy its predictive power (the first-order calculation had
been performed in [18]). This calculation, however, was not done consistently, and
the actual effect is smaller [42]. Let me define ηA(µ) ≡ ξA(µ)1/2; the quantity ηA(µ)
must be added to δ1/m2 in the framework of the OPE instead of ηA in the model

calculations. Then, at a reasonable choice µ ≃ 0.5 GeV, Λ
(V )
QCD = 300 MeV, one has

ηA(µ) = 1 tree level (23)

ηA(µ) = 0.975 one loop (24)

ηA(µ) = 0.99 all-order BLM (25)

Clearly, the effect of the calculated perturbative corrections is not drastic and ηA(µ)
is very close to the value of 0.98 adopted in the original analysis [8].

Conceptually, the deficiency of the alternative application of the original sum
rules of Refs. [8, 18] adopted in [44], is to gauge ξA on the value of η2

A as it has been
defined in the HQET (the idea that ξA is to be identified with η2

A ascends to [41, 40]).
However, it is ηA that is ill-defined, and only for this reason must the difference
between the stable Wilson coefficient ξA and η2

A suffer from large corrections. It is
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worth noting that, in reality, ηA cannot be equal to a matching coefficient of c̄γµγ5b
to a corresponding current in any effective field theory.

Smaller theoretical uncertainty, 2.5% and 3%, is now quoted by Neubert for δ1/m2

and FD∗ , respectively. The former was obtained in Ref. [40], in what he calls a “hy-
brid approach”, which reduces to assigning the fixed value µ2

π = 0.4 GeV2 and using
it in the sum rule (15) within the same model assumption of eq. (19) as suggested in
[8]: 0 ≤ χ ≤ 1.2 Correspondingly, the quoted number for δ1/m2 practically coincided
with the first line of eqs. (20). In reality, allowing µ2

π to vary within any reason-
able interval significantly stretches the uncertainty. Moreover, the analysis [40] was
based on using ηA as a perturbative factor assuming, literally, that in the proper
treatment the final result would not be changed numerically – which is just the case
according to Ref. [44]. On top of that, the uncertainty in the definition of ηA due to
1/m2 and 1/m3 IR renormalons constitutes 2–3% each and is an additional one in
the adopted usage of the sum rules. Altogether, the stated theoretical confidence of
those estimates cannot be accepted as realistic.

Recently, Ref. [45] claimed to have established an intriguing relation between the
slope and the curvature of the formfactor near the zero recoil point, using analyticity
and unitarity of the amplitudes. If correct, this would reduce the experimental
uncertainties in extrapolating the rate to the zero recoil. However, both the below-
threshold contribution to the dispersion integral and the 1/mc power corrections
[46] to the heavy quark symmetry relations were grossly underestimated; therefore
the relation stated in [45] rather should not be used for deriving model-independent
experimental results.

3 The semileptonic branching fraction

The QCD-based HQE provides a systematic framework for calculating the total
widths of heavy flavors, which are not amenable to the traditional methods of HQET.
The difference between nonleptonic and semileptonic widths appears only at a quan-
titative level. The only assumption is that the mass of a decaying quark (actually,
the energy release) is sufficiently large; for a review, see [47].

The overall semileptonic branching ratio BRsl(B) seems to be of a particular
practical interest: while the simple-minded parton estimates yield BRsl(B) ≃ 15%
[48], experiments give smaller values BRsl(B) ≃ 10.5–11.5%. The leading 1/m2

Q

effects in the nonleptonic widths were calculated in [7, 12, 13]; they exhibit some
cancellations and one literally gets [49] a downward shift ∼< 0.5%. Estimated 1/m3

b

corrections do not produce a significant effect either [50]. As a result, most of the
attention was paid to a more accurate treatment of the perturbative corrections,

2I disagree with the statements of [40], reiterated in later papers, suggesting that the original
analysis [8, 18] missed some elements of the heavy quark spin-flavor symmetry; on the contrary,
it was stated in the latter paper that all these relations automatically emerge from the sum rules
that replace the QM wavefunction description in the quantum field theory.
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including the effect of the charm mass in the final state. It was found [51, 52] that
the nonleptonic width is indeed boosted up.

Since the inclusive widths are expanded in inverse powers of energy release, one
expects larger corrections or even a breakdown of the expansion and violation of
duality in the channel b → cc̄s(d); however, this channel can be isolated via charm
counting [7]. The original experimental estimate nc ∼< 1.15 did not allow one to
attribute the apparent discrepancy to it, and gave rise to the so-called ‘BRsl versus
nc’ problem.

The perturbative corrections in the b → cūd itself cannot naturally drive BRsl

below 12.5%; the calculation for the b → cc̄s(d) channel is less certain and, in
principle, admits increasing the width by a factor of 1.5–2, leading to nc ≃ 1.25–1.3.
In the latter case a value of BRsl as low as 11.5% can be accommodated.

The experimental situation with nc does not seem to be quite settled yet: nc =
1.134 ± 0.043 (CLEO), nc = 1.23 ± 0.07 (ALEPH). In a recent analysis [53] it was
argued that consistency requires a major portion of the final states in b → cc̄s to
appear as modes with kaons but Ds, which previously escaped proper attention.
This allows for a larger value nc ≃ 1.3 needed to resolve the problem with BRsl.
The dedicated theoretical analysis [54] shows that, indeed, the dominance of such
modes is natural and does not require violation of duality. Thus, if a larger value of
nc ≃ 1.25 is confirmed experimentally, the problem of BRsl will not remain.

In my opinion, however, we cannot consider even this successful scenario as a
complete QCD-based theoretical prediction of BRsl; a strong enhancement of a tree-
level-unsuppressed channel raises doubts about the trustworthiness of its one-loop
calculations. The possibility to get the necessary enhancement should be rather
viewed as an indication of the presence of large effects working in the right direction.

4 Lifetimes of beauty particles

A thoughtful application of the HQE to charm lifetimes demonstrated that the
actual expansion parameter appeared to be too low to ensure a trustworthy accurate
description, so that a priori one expects only emergence of the qualitative features.
Surprisingly, in most cases the expansion works well enough even numerically (for a
recent review, see [55]).

Applying the expansion to beauty particles one expects a decent numerical ac-
curacy, although the overall scale of the effects is predicted to be small, making a
challenge to experiment:

τB−/τB0 ≃ 1 + 0.04
(

fB

180 MeV

)2
[50] EXP: 1.04 ± 0.04

τBs
/τB0 ≃ 1 + O(1%) [50] EXP: 0.97 ± 0.05

(τBL
s
− τBS

s
)/τBs

≃ 0.18
(

fBs

200MeV

)2
[56]

τΛb
/τB0 ≈ 0.9 EXP: 0.78 ± 0.06

(26)
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These differences appear mainly as 1/m3
b corrections and, depending on certain four-

fermion matrix elements, cannot be predicted at present very accurately, in partic-
ular in baryons. For mesons the estimates are based on the vacuum saturation
approximation, which cannot be exact either. The impact of non-factorizable terms
has been studied a few years ago in [57] and possibilities to directly measure the
matrix elements in future experiments were suggested.

The apparent agreement with experiment is obscured by reported lower values of
τΛb

. Since the baryonic matrix elements are rather uncertain, a few model estimates
have been done [58]. All seem to fall short; however, this might be attributed to
deficiencies of the simple quark model. Nevertheless, it was shown [59] that irre-
spective of the details one cannot have an effect exceeding 10–12% while residing in
the domain of validity of the standard 1/mQ expansion itself; the natural ‘maximal’
effects that can be accommodated are ∼ 7% and ∼ 3% for weak scattering and
interference, respectively.

Thus, if the low experimental value of τΛb
is confirmed, it will require a certain

revision of the standard picture of the heavy hadrons and of convergence of the 1/mQ

expansion for nonleptonic widths with the offset of duality in beauty particles.
Recently, the problem of the accuracy of the calculations of δτB based on the

factorization was emphasized again in [60]. It is difficult to agree, however, with
the wide intervals, up to ±20% allowed for the difference between τB+ and τB0 ; the
constraints discussed in [57, 59] were missed. One can see that the values of hadronic
parameters saturating such large differences would move one beyond the domain of
applicability of the whole expansion used in [60].

5 1/mQ expansion and duality violation

Duality violation attracts more and more attention in the context of the heavy
quark theory; a recent extensive discussion was given in [61]. The expansion in
1/mQ is asymptotic. There are basically two questions one can ask here: what
is the onset of duality, i.e. when does the expansion start to work? The most
straightforward approach was first undertaken in [62], and no apparent indication
toward an increased energy scale was found. Another question, of how is the equality
of the QCD parton-based predictions with the actual decay rates achieved, was rarely
addressed. An example of such a problem is easy to give.

The OPE states that no terms ∼ 1/mQ can be in the widths and the leading
terms start with 1/m2

Q. However, the OPE per se cannot forbid a scenario where,
for instance,

δΓHQ
/ΓHQ

∼ C sin (mQρ)/(mQρ) , ρ ∼ Λ−1
QCD . (27)

In the actual strong interaction, mb and mc are fixed, so from the practical viewpoint
these types of corrections are not too different – but the difference is profound theory-
wise! It is a specific feature of the OPE in Minkowski space, and it can hardly be
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addressed, for example, in lattice calculations. Their complete control requires a
deeper understanding of the underlying QCD dynamics beyond the knowledge of
first few nonperturbative condensates.

The literal corrections of the type of eq. (27) are hardly possible; the power
of 1/mQ in realistic scenarios is larger, and they must be eventually exponentially
suppressed though, probably, starting at a higher scale [61]. But a theory of such
effects is still in its embryonic stage and needs an experimental input as well.

The possibility has been discussed for some time [63] to have certain unidentified
corrections to the (nonleptonic) widths, eventually leading to the dependence

Γnl
HQ

∼ M5
HQ

(28)

and manifesting an explicit 1/mQ effect:

δΓHQ
/ΓHQ

≃ γ δMHQ
/MHQ

, γ ≃ 5 . (29)

Such scaling in the intermediate energy domain cannot literally contradict OPE if
the offset of duality has not been passed yet. But is this possibility natural?

Leaving aside the QCD-based arguments completely, one must still account for
the charm mass in the final state, and thus differentiate between MD and MΛc

in
the decays of B and Λb, respectively. Although MΛb

is notably larger than MB, MΛc

exceeds MD by almost the same amount! Counting only the phase space factors in
analogy with the free quark decay one would get for the b → c transitions γ ∼< 2
[16], which thus seems to be a more natural value in the ‘poor man on the street’
hypothesis [6] considered in [63]. It is worth noting that the fit of γ in charm par-
ticles does not convincingly indicate favoring γ = 5: incorporating the calculated
1/m2

c and 1/m3
c corrections destroys it – while discarding them as a part of the ‘poor

man’ philosophy makes it impossible to explain the very different values of τD and
BRsl(D). The short Λb lifetime thus still seems to constitute an important problem
for the whole heavy quark theoretical community.
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