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Coherent transverse dipole oscillations in colliding head-on non-rigid bunches are studied
using the Vlasov equation. The corresponding eigenvalue problem is solved numerically
in the case of round Gaussian bunches of equal size but with not necessarily equal
intensities. Transition from the weak-strong to the strong-strong cases is found at the
intensity ratio of about 600/0 when a discrete 1r-mode frequency emerges from continuum
of eigenfrequencies related to the beam-beam tunespread in the weaker bunch.

In the strong-strong case the large coherent beam-beam tuneshift dominates over
interchange processes between coherent and incoherent motion; it can switch off Landau
damping of dipole transverse oscillations, slows down incoherent emittance growth due
to external kicks on the beams. The consequences for the transverse feedback operation in
collision arc discussed.
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1 INTRODUCTION

Suppression of coherent oscillations and emittance growth in colliding
beams is essential for achievement of highest luminosities in large
hadron colliders like LHC. 1 Therefore it is important to understand the
effect of beam-beam interaction on decoherence and Landau damping
of coherent transverse oscillations. The previous analytical and
numerical studies2

,3 were carried out for the weak-strong case whereas
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in the future LHC a truly strong-strong regime of collisions is
envisaged.

An adequate approach to the strong-strong case was developed by
Yokoya et ale in Reference 4 where an eigenvalue problem for the
Vlasov equation was formulated and studied in the case of beams that
collide head-on. Spectrum of the w-component of dipole oscillations
was shown to consist of a discrete line shifted from the single particle
tune by 1.2~ (for round beams) and continuum (0, ~) corresponding to
the incoherent beam-beam tunespread, ~ being the linear beam-beam
parameter.

Due to the gap between coherent and incoherent tuneshifts the
beam-beam interaction in the strong-strong case not only fails to
produce Landau damping by itself, t but at sufficiently large values of ~
can switch off the stabilizing effect of momentum spread and the
machine nonlinearity. As the consequence even very weak transverse
instabilities may show up.

A question may arise why this effect has not been observed in the
existing hadron colliders (Tevatron, SPS). To answer it one should
examine transition from the weak-strong to the strong-strong case.
This is done in Section 3 where the discrete w-mode frequency is found
to emerge from the continuum of eigenfrequencies at the intensity ratio
of about 60% which may be considered as the boundary value. This
value normally is not surpassed in the existing machines.

Presence of the discrete w-mode in the strong-strong case drastically
changes the process of decoherence of dipole oscillations. As shown in
Section 5 only about 18% of the energy received from a kick at one of
the beams is imparted into the continuum of eigenmodes leading to
irreversible emittance growth. The other 82 % are carried by persistent
1:- and w-modes which may decohere only on a much longer time scale
due to nonlinear mode coupling (the 1:-mode can be damped also by
non-Gaussian tail particles).

The approach developed is used in subsequent sections in analysis of
the colliding beams emittance growth due to external noise and the
transverse feedback operating in different regimes.

t The absence of the Landau damping of coherent beam-beam oscillations was first
discussed by R. Talman (see Reference 5) basing on observations in CESR and numerical
simulations for flat beams.
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2 EQUILIBRIUM STATE
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Let us n1ake a number of simplifying assumptions:

(a) betatron tune spreads due to chromaticity and nonlinearity of the
machine magnetic elements are negligible as compared to the
bealn- beam tune spread;

(b) motions in x and y planes are uncoupled, with exception for non­
linear coupling via the beam-beam force, the emittances being
equal Cx == Cy == co;

(c) bean1s collide head-on and at only one interaction point (IP) in the
rIng;

(d) the non-perturbed beams are round at the IP with equal r.m.s. radii
a*;

(e) the working point on the tune diagram is chosen sufficiently far
from. low order resonances so that invariant tori are not destroyed
by the beam-beam interaction

First we introduce normalized to co action (lx, ly) and angle (c.px, c.py)
variables via the standard relations:

(1)

Here au, (3u are the Twiss parameters, Vxo, vyo are betatron tunes in
absence of collisions, R is the average machine radius.

The next step is to solve nonlinear dynamics in colliding (but sta­
tionary) beams. Due to assumption (e) new canonical variables (Iu, 'l/Ju)
can be found in which the unperturbed Hamiltonian acquires the
normal form

(2)
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where index k == 1,2 refers to either of the two beams. Then Ix, Iy are the
constants of motion, which can be employed in construction of the
equilibrium distribution function, which we presume to be Gaussian
(and normalized to unity):

1
Fo == --2exp( -Ix - Iy).

(21r)

To the first order in the beam-beam parameter

betatron tunes are given·by expressions

(3)

(4)

(5)

There are various representations of the function Qu(Ix, Iy ) (see
Reference 4 for example), here we will present without derivation one
more formula that is useful in practical calculations

Qx(Ix'/y) = 1~ r11
JI + ~:2 -1)1 exp [-~ (Ix +Iy1 + (;: -1)1)]

x IOUIy1 + (;: -1)1] . [Io(~Ix) - I1GIx)], (6)

where r == u;/u: is the beam aspect ratio (in the following r== 1), In(x) is
the modified Bessel function of order n.

3 EIGENMODES OF TWO COLLIDING BUNCHES
COHERENT OSCILLATIONS

Now let us introduce some perturbation of particle distribution and
expand everything in series w.r.t. its amplitude so that for the kth beam

00

P(k) == R + ""'" Jl:k)o ~ n'
n=l

00

Irk) == L H~k) .

n=O
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Limiting our consideration to the first order in ~ (and in the pertur­
bation as well) we can use (1) with Ju == I u, 'Pu == 'l/Ju in calculation of the
perturbative part of the Hamiltonian due to beam-beam interaction:

Hik) = 21r~~k)(1 + r) 2: 8(0 - 21rn) JIn[( j2L sin 'l/Jx - Vfif: sin 'l/J~)2
n

For a while we will ignore other coherent forces created by impedances
and feedback.

Generally the solution of the linearized Liouville equation

can be sought as expansion in the Fourier series

where the factor exp[-(Ix + Iy )/2] was taken out in order to symmetrize
the resulting integral equation. But up to the first order in ~ there is no
coupling between terms with different mx , my. Also, the assumption (e)
rules out the possibility of a higher order term to become large due to
small resonant denominator (such a case was considered in Reference 6).
Therefore we may retain in the sum (9) only one term, namely that with
m x == 1, my == 0, since we are interested in the horizontal dipole oscilla­
tions. These indices will be omitted in the following.

The made assumptions also permit to average the periodic 8-function
in (7) replacing it with 1/21L

Now taking average in (8) over betatron phases, introducing the
integral operator

(10)

with the kernel defined in the Appendix and assuming without loss of
generality the first beam to be the weaker one so that I~ll) I ~ 1~12) I, we
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obtain the system of integro-differential equations

(11 )

where

f= (V;~(l)), A= (-~Go -~~o), r~ = ~f; = ~: ~ 1,

(12)

the function Qx is given by (6). Assumingf r'V exp( -i~11) .\B) we finally
arrive at the eigenvalue problem formulated in Reference 4:

.\f== AI (13)

The operator A acts in space DA of 2-tuples X == (Xl, X2)T whose
components are functions of the action variables of the corresponding
beam. The scalar product defines a metric on this space:

(14)

Some general properties of the operator Aallow making conclusions
concerning its spectrum. This operator is self-conjugate and bounded
(but not compact owing to the multiplicative Q-part) so that its
eigenvalues are real, bounded and form a continuous set (possibly with
a discrete addition).

One particular solution of (13) can be found analytically. It can be
verified (see Reference 4) that the function

(15)

satisfies the integral equation

(16)

Accordingly, (13) has a solution

(17)
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with A== 0. This eigenvalue belongs to the discrete part of the spectrum
since the corresponding eigenfunction has a finite norm (we have
chosen V2). Physically it corresponds to the rigid ~-mode in which the
beams oscillate in phase at the IP without changing their shape.

The other solutions can be found numerically. Let us start with a
simpler case of equal intensities, rt;, == 1, when due to the symmetry
between the beams space D A splits into an orthogonal direct sum of two
invariant subspaces corresponding to ~-modes1(1) ==1(2) ==I(+) and 1r­
modes 1(1) == -/(2) ==I(-). Defining projecting matrices

(18)

we can present operator Ii in the form

(19)

Accordingly, system (13) is reduced to decoupled eigenvalue problems
for ~- and 1r-modes:

(20)

Owing to the Q-term each of Eqs. (20) has a solution for any
AE (0,1). To get a notion of the form of the corresponding eigenfunc­
tions it is convenient to introduce new variables q == Qx(Ix, Iy),

X == arctan(Ix/ly). It is obvious then that an arbitrary function heX) will
generate a pair of eigenfunctions satisfying the equations

w~±) = =fp.V.~ . G 0 w~±) +h(x) ·8(>' - q). (21)
/\-q

Therefore every eigenvalue from the continuum A E (0,1) has an infinite
multiplicity. Choosing an appropriate set of functions {hn(X)}, where
n == 1, 2, ... is the number of nodes, we can construct two families of
eigenfunctions satisfying the orthonormality condition

(22)

The physical meaning of these eigenmodes can be understood on the
analogy of the Schottky noise. The term with heX) in the r.h.s. of (21)
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gives some prime perturbation of particles with a particular tune while
the first term describes collective response of the other particles. So
these modes are incoherent in their origin.

As found in Reference 4 there is a discrete eigenvalue,:j: A== Ao ~ 1.214
in the case of round beams (r == 1), for the 7[-oscillations as well which
corresponds to a truly coherent motion.~ To understand the character
of this mode let us introduce function d(x, y) which describes non­
rigidity of bunch oscillations. With its help the charge density of the
perturbed beam can be expressed through the equilibrium density as

p(x, y) == po(x - xcd(x,y),y),

where Xc is displacement of the beam barycenter. For the beam shifted
as a whole d(x,y) == 1. Figure 1 shows function d(x,y) for the discrete 7[­
mode obtained by the Fourier-Laguerre expansion method of Refer­
ence 4. The maximum value is d(O, 0) == 3.27.

FIGURE 1 Contour plot of function d(x,y) of the discrete 1r-mode. Shown are levels
with a step 0.25 starting from the value 0.5.

:j: In principle there could have been a larger (but fini.te) number of discrete eigenvalues.
, Tuneshifts of (1.2-1.3)~were obtained for individual particles in simulation described

in Reference 5 but attributed to the incoherent oscillations. In fact each particle parti­
cipates in both incoherent and coherent motion (especially particles with small ampli­
tudes) so spectrum of its oscillations contains information on both tunes.



DIPOLE OSCILLATIONS IN COLLIDING BEAMS

1.2

1.15

1.1

1.05

51

0.8 1

FIGURE 2 Largest eigenvalue Amax vs. intensity ratio re;'

As can be seen in Figure 1 in this mode of oscillations mainly par­
ticles with small incoherent betatron amplitudes participate which are
strongly affected by the movements of the opposing beam. This
explains the large value of the coherent tune shift.

It is clear that in the weak-strong case (r~ ~ 0) such a mode does not
exist (in contradistinction to the discrete ~-mode which exists at any
value of the intensity ratio r~). Therefore it seems interesting to trace at
what r~ the discrete eigenvalue emerges from the continuum A~ (0, 1)
which corresponds to the incoherent tune spread in the weaker beam.
Figure 2 shows dependence on r~ of the largest eigenvalue Amax found
by numerical integration of (13). The trapezoid rule was used for
integration with the number of points in (Ix, Iy)-plane equal to
Np ~ 17x 18 ~ 306 (the number of points in Ix-direction was less by one
since it had been possible to exclude points with Ix ~ 0 where all
eigenfunctions tend to zero).

Nascence of the discrete eigenvalue is clearly seen at 0.55 < r~ < 0.6.
Starting from the value Amax ~ 0.978 corresponding to the maximum
Qx value in the mesh points with the chosen Np , Amax keeps practically
constant§ until r~ ~ 0.55 where a steep rise begins. Transition of Amax

from continuum to point spectrum can be confirmed by the dependence
on Np of the scalar product of the corresponding eigenfunction with a

§ In contrast to what was found in Reference 4. The difference may be a consequence of
a slow convergence of the Laguerre-Fourier series used in Reference 4 for the continuum
modes.
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well-behaved function, e.g. the 2-tuple (wo, -wo). For the continuum
modes this product should behave approximately as Np-

I
/
2

, whereas for
a discrete mode it should be practically independent of Np . According
to this criterion the discrete eigenvalue appears at rt;, ~ 0.6.

4 SPECTRAL DECOMPOSITION

Since the operator A is not degenerate its eigenfunctions form a com­
plete basis in DA. We will limit the following analysis to the case rt;, == 1
only. In this case the eigenmodes split into ~- and 1r-families with
spectrum of each farnily comprising continuum A E (0,1) and one dis­
crete eigenvalue, A== 0 for ~-modes and A == Ao ~ 1.214 for 1r-modes.
Every eigenvalue from the continuum has infinite but countable mul­
tiplicity. Correspondingly, the spectral decomposition of operator A
(and its powers including the identity operator i) is the Stieltjes integral

where the weight functions

(23)

{

0,
W+(A) == 1 + A,

2,

A < 0,
o::; A < 1,
1 ::; A,

A < 0,
o::; A < 1,
1 ::; A < Ao,
Ao ::; A

(24)

and the projecting integral operators

E(±) of == "" w(±) (I I) JW(±) (I' I' )l/'fI' I') dI'dI' (25)
A ~ An x, Y An x' Y '.J \ x' Y x Y

n

were introduced. The sum in (25) is reduced to one term if A belongs to
the point spectrum.
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Using representation (23) we can perform expansion in terms of the
operator A eigenfunctions:

where the scalar product is defined by (14) and

(27)

are eigenvectors of the projecting matrices (18). Solution of the initial­
value problem for (11) is then given by (26) and

a(±) (()) == e-i~Aea(±) (0)
An An'

t == t(1) == t(2)
":, - ":,x ":,x· (28)

As a rule it is not the distribution function itself, which presents the
most interest but some integral characteristics of the beams, such as the
barycenter displacement, emittance etc.

To describe the barycenter motion let us introduce the complexified
Courant-Snyder variable

x + i(!3xPx + (Xxx)
TJ== v!3xco .

(29)

Making use of (1), (9), (15), we obtain the following expression, correct
to the first order in ~, for the centroid of the kth beam:

TJtJ = JTJF](kJd'ljJxd'ljJydlxdly = 2v'27?ie-i</>x(oJ

x JiIJo(Ix,/y)f(kJ(Ix'/y, ()) dlx dly (30)

= 2v'27?ie-i
</>xC

O
J [a6+J

(()) - (_l)kJdw_(.X)· ~Cn(A)at)(())]

where

(31 )
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Since W0 is the eigenfunction corresponding to the discreteL:-mode, the
other (continuum) L:-modes being orthogonal to Wo do not enter (30).

The coefficients (31) play the key role in the subsequent analysis. It
will be shown that the sum

S(A) == L C~(A)
n

(32)

describes spectral density of dipole oscillations. With the use of the
particular property (16) of function Wo a few moments of SeA) can be
found analytically

Js('x)dw_('x) = J\]i~dlxdly = 1,

J'xs('x)dw_('x) = 2JQx\]i~dlxdly = 1, (33)

J,X2s('x)dw_ (,X) = 4JQ~\]i~ dlx dly ~ 1.09907,

(the first one being just the Parseval identity) to serve for the accuracy
control of numeric calculations.

When eigenfunctions are found numerically, their coefficients exhibit
chaotic dependence on the eigenvalue (see Figure 3) since eigenfunc­
tions for close but different A should describe all variations in X that are
possible with the given number of mesh points Np . Hence to obtain a

C
2(A)XI03

.
6 . ...
4 .. .. ..•... . .
2

0.2 0.4 0.6 0.8 1
A

FIGURE 3 Eigenmode coefficients vs. eigenvalues from the continuum range (0, 1)
obtained with Np = 306.
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FIGURE 4 Spectral density of dipole oscillations.

smooth function SeA) one should perform summing over sufficiently
large intervals ~A.

Figure 4 shows function SeA) in the continuum range which was
obtained with ~A == 0.025 from the numerical data presented in Figure 3
in such a way that integration of functions SeA), AS(A), A2S(A) by the
Simpson rule gives locally the same result with direct summation of
coefficients over each paired step 2~A. The total values of moments
(33) found numerically with Np == 306 were 0.9995, 0.9993, 1.0980.
Oscillations of SeA) in Figure 4 have no physical implication and can be
reduced by increasing the number of points Np and/or integration
intervals ~A.

For the discrete 7r-mode **

So == S(AO) == C
2 (AO) ~ 0.645.

5 BEAM RESPONSE TO A KICK

(34)

Let us consider the effect of a kick received by one of the beams (the
first one for certainty) at 0 == 00 assuming its magnitude, 8px, to be
independent of particle position. Extracting the part linear in 8px from

** The cited value is specific for round beams. The coefficient So is the weight with
which the discrete 7f-mode is excited by an external force. Its knowledge is essential for
interpretation of the observed in References spectra of the beam-beam oscillations.
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the perturbed distribution function taken just after the kick

pI) (x, Y,Px,Py 00 ) == Fo(x, y,Px - 8px,py 00 )

2(3x(Oo)Ix [ ]
== Fo(Ix, Iy) - 8px cos ¢x(Oo) - vxoOo + 1Px

EO

dFo 2
x dl

x
(Ix,/y) + 0[(bpx) ], (35)

we obtain the associated jump in the normalized first order distribution
function which we present in vector notations to make provision for kick
on the other beam:

where Wo is given by (15). For the particular perturbation

~2 == 0.

It is obvious that ~ is just excited by the kick oscillation amplitude
taken in the beam a's.

The corresponding variation in the expansion coefficients is

8a(+)(Oo) = u+ ·K ei<px((}o) x { 1,
An 4V21r2 0,

8a(-) (0
0

) = u_ ·K ei<px((}o) C (A)
An 4V21r2 n

A == 0,

A#O,
(37)

with Cn(A) defined by (31). For the beam barycenter motion from (30),
(32) and (37) follows

'Tf~k) (()) = i ~I e-i[<px((})-<Px((}o)] [1 - (-1/Je-i~A((}-(}O)s(A)dw- (.X)J.
(38)

where the first term in the square brackets corresponds to the discrete
(rigid) ~-mode and the second one describes contribution from all
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7f-modes. Figure 5 shows envelope (absolute value) of the 7f-modes
contribution (and separately contribution from the continuum modes
only) as a function of I~IN where N is the number of turns N == BI27f.
Contribution from the continuum modes smears out in N~ 1/1~1 turns
leaving the discrete 7f-mode with amplitude c2(Ao)Ll I /2. Envelopes of
the total centroid displacements shown in Figure 6 exhibit beatings due
to tune-split between the discrete 7f- and ~-modes.

To find emittances of perturbed beams let us first note that in
the considered case of horizontal dipole oscillations the first order

0.4

0.3

0.2

- contribution from all1t-modes

o.1 - contribution from the continuum

1 2 3
I~W

4 5

FIGURE 5 Envelope of the 7f-component of the beam centroid oscillations.

1 2 3
l~lN

4 5

FIGURE 6 Envelopes of the total centroid displacements after a kick at one of the
beams.
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Liouville equation can be rewritten as

8H(k) 1 (8F(k) 8F(k)) 8H(k)
__1_== 1_+

Vx
_l- 1_

8'ljJx Fo 80 8'ljJx 8'ljJy ,
(39)

where Fa is the equilibrium distribution (3). Now we have up to the
second order in ~

d (k) 8
~~ == J(F, + p(k)) dlx dD = - J F(k) _H(k) dfl
EO dO 0 1 dO 1 8'ljJx 1

== ~~J~(F(k))2dfl == 41r4~J If(k)1 2dI dI (40)
2 dO Fo 1 dO x y,

where dfl == d'ljJxd'ljJydlxdly. In the particular case of initial condi­
tions (37)

(1,2)Ll
2

{ J J}10:0 = 1 +--t 1 ± 2 cos[~A(B - BO)]S(A) dW_(A) + s(A)dw_(A) .

(41 )

The first and the third terms in curly brackets (equal due to the Parseval
identity (33)) describe relative partition of energy between ~- and 1r­
modes, the second term being the interference term which cancels out in
the sum for two beams. The total increment of emittance is Lli/2. As
follows from (41) only a small fraction of energy, namely (l-sa)/2~

180/0, is imparted into the continuum modes leading to the irreversible
emittance growth, the other 82% are carried by discrete modes which in
principle can be damped by a feedback system.

6 LANDAU DAMPING

Now let us include in the consideration linear elements reacting on the
barycenter motion of the beams, assuming them to be identical in both
rings so that E- and 1r-modes remain uncoupled. Also, for the present
purposes we may uniformly distribute these elements over the ring
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circumference and 'write for the elementary kicks produced by them

l(B) == -i(ijc dB, (42)

where (is a complex parameter related to integrated transverse imped­
ance ~(3xZl- and/or feedback gain factor.

The Liouville equation will now include a term associated with these
kicks

af . A 8f
aB == -l~Af+ dB' (43)

where 8fis of the form (36) with l given by (42). Expanding (43) in the
eigenmodes we obtain for the coefficients

(44)

where the slow varying coherent amplitudes were introduced

(45)

From (30), (44) follow integral equations for coherent amplitudes
(45). Solution for the rigid ~-mode is simply

(46)

so that ( is just multiplied by -i single-beam coherent tune shift.
Equation for the 'IT-component of barycenter motion can be solved
using the Laplace transformation:

(47)
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where the dispersion function was introduced:

(48)

This function is analytical in the complex domain ofP with exception of
the point p == -i~Ao where it has the first order pole, and the cut on
imaginary axis P E (0, il~I). Zeros of the dispersion function (if any) give
tune shifts (generally complex) of free 7r-oscillations in colliding beams.
In the limiting case 1(1 « I~I « 1 there is the unique solution

Po ~ -i~Ao + (so (49)

which shows some 35% reduction in the effect of external elements on
the 1r-mode in comparison with that on the ~-mode (and a single beam
oscillations as well). This reduction is merely the consequence of par­
tition of energy delivered by elementary kicks (42) between the discrete
and continuum 7r-modes and is not a form of the Landau damping.

It is important to note that although the continuum eigenmodes
receive about 35% of energy from every elementary kick, in the case of
instability (Re ( > 0) there is no appreciable build up of energy in these
modes since the kicks are not in phase due to the large (compared to 1(1)
gap between the discrete 7r-mode tune and the boundary of continuum.
In the limit () ---+ 00 from (44), (47) follows for the ratio of expansion
coefficients

(50)

Correspondingly, in the considered limiting case 1(1 « I~I contribution
of the continuum modes to the beam emittance growth (40) is negligible,
the latter being completely determined by the discrete mode amplitude
which testifies once more the absence of the Landau damping.

As follows from the above discussion the beam-beam tune spread
does not provide the Landau damping up to the first order in~. In a real
beam, however, the ~-mode can be damped by non-Gaussian tail
particles if there are other sources of tune spread, i.e. the lattice non­
linearity and chromaticity. This additional tune spread is of the order
of 10-4 in machines like LHC, which is marginally sufficient for sup­
pression of the transverse instabilities at the top energy. But it is
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insufficient to span the gap between the discrete 7r-mode and incoherent
tunes which has the order of 10-3

. As the consequence the discrete 7r­
mode can become unstable when beams are put into collision. The
possibility of damping this mode due to nonlinear coupling to the
continuum modes is yet to be studied.

In conclusion of this section let us consider a hypothetical situation
when interaction with some external elements (e.g. reactive feedback)
produce sufficiently large positive coherent tune shift, ~v == _(" ==
-Im(>(Ao-l)I~I, in order to bring the coherent tune within the
continuum range. Looking for the solution of the dispersion relation
D(p, () == °in the form p == a - i~JL and making use of the Sohotsky
formula

D±(-i~JL, () == D( -i~JL ± 0, ()

. ([ So (I s(A)dA . ]
= 1-10 .\0 _ J..L + p.v. Jo .\ _ J..L =f 1l1S(J..L) (51 )

we obtain in the limit lod« I~I for imaginary and real parts of the
dispersion relation

(52)

where it was assumed that JL defined by the first equation falls within
the range (0,1). For (' < 7rs(J1)1(12/1~1 the second equation (hence the
dispersion equation on the whole) has no solution which means that the
7r-mode is completely Landau damped. But one should realize that
large positive coherent tune shift due to external elements would switch
off the Landau damping of the ~-mode (if there had been any).

7 EMITTANCE GROWTH IN PRESENCE OF LOW GAIN
LINEAR FEEDBACK

The developed formalism can be employed in analysis of emittance
growth in collision regime due to noise and its suppression by a
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feedback system. The damping effect of a low gain linear feedback on a
single beam in absence of collisions can be described by simply putting
(== -g/47f in (42), where g is the feedback gain factor. We will assume
that both rings have independent feedback systems with equal gain
factors.

Let us first consider the evolution of the modes after a kick. The
dependence of the expansion coefficients on time can be found from
(44)-(48) with initial conditions given by (37). Solution for the ~-mode
is just exponential fall-off. The Laplace transform of the 7f-mode
coefficient is

For all A including the discrete eigenvalue AO it has a pole in the left
half-plane, Re P < 0, corresponding to zero of the dispersion function
Po. For A from the continuum (0,1) there is also a pole at PA == -i~A lying
strictly on the cut (see Figure 7), whereas for A == AO there is no addi­
tional pole since the denominator in (53) does not vanish at P -t -i~Ao.

Therefore in the limit () -t 00 only the continuum modes persist, both ~­

and 7f-discrete modes are damped to zero.
To determine the asymptotic behavior of the continuum modes at

() -t 00 let us deform the path of integration in the complex p-plane as

I....... ../
JI\ •••••• • ~

I ..

Imp

Rep

FIGURE 7 The integration path.
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shown in Figure 7, threading it into and out of the cut and encircling
the pole at p,,\ == -i~'\. For D(p, () inside the cut we must take its ana­
lytic continuation from the right side of the cut where it is given by the
Sohotsky formula (51) with the upper sign. In the limit () -+ 00 con­
tribution from the parts of the contour lying in the left halfplane vanish
leaving us with the residue in the pole p,,\,

Now with the help of (26), (40) we can calculate the final emittance
values after the kick, which turn out to be equal for both beams no
matter which one was kicked (the first beam assumed beneath). The
emittance increment can be written in the form

~c(1,2) 11 2 ~2
_x_ -+ 47r4 lim Lla~~)((})1 d,\ == -81 (1 - so)S(g/27r1~1), (55)

co ()-HXJ 0 n

where

S( )
= _1_ (I S(A)dA

X 1 io 2 .
- So 0 [1 + (7rX/2)S(A)]2+(x2/4) [SO/(AO - A) + p.v. Jd (s(J-l) dJ-l)/(J-l - A)]

(56)

Let us explain the factors in the r.h.s. of (55). The two beams share the
total energy imparted by the kick, which makes ~T/4 for each beam (on
average over the beatings period). This value is divided equally between
~- and 7r-modes. Due to the feedback with whatever small but finite
gain factor the discrete ~- and 7r-modes are damped so that only the
continuum 7r-modes can contribute to the emittance growth; their
relative share in the kick energy being initially equal to (1 - so)/2. The
function S(g/27r1~1) which graphics is shown in Figure 8 describes the
effect of the feedback on the continuum modes. With an accuracy
of better than 18 % at all values of x the following approximation is
valid

1
S(x) ~ 2.

(1 + x)
(57)
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FIGURE 8 Continuum mode suppression factor due to feedback.

These results can be compared with the weak-strong case formulas
of Reference 2, which in the present notations look as

A (weak) A 2
ticx til

== -2 Sw_s(g/21f1~1),
co (58)

(strong) _ ()I rv ~-2 rv 0.12
~cx - 0, Sw-s X x2»1 rv 2 Qx rv 2'

X X

where the bar denotes averaging over the weak beam. It can be seen
that the feedback system in the strong-strong case is by an order of
magnitude less efficient in suppression of the continuum modes so that
in the limit g» 21f1~1 the emittance growth in each beam appears to be
almost as high as that in the weak beam of the weak-strong pair. This
lack of the feedback efficiency is caused by interference from the dis­
crete 1f-mode which drastically increases the effective tune spread.

The present analysis can be extended on the case of multiple kicks
received by both beams. Then the Laplace transform of the mode
expansion coefficients will be given by a superposition of terms of the
form (53) with the corresponding values for 00 and E. If the noise is a
continuous process then the discrete modes being sustained by suc­
cessive kicks do not vanish but remain bounded whereas the continuum
modes may grow until nonlinear effects come into force.

Let us consider the growing modes limiting ourselves to the case
when the noise is introduced by a single short element located at 0 == 00

in one of the rings. Denoting by ~ik) the normalized kick magnitude
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(see (36) for definition) received at the (k + l)th turn we obtain for the
growing part of the expansion coefficient (54)

where N == Integer[(O - Oo)/21f] + 1 is the number of passages through
the noisy element. We will proceed further in the assumption that the
noise can be described as a stationary stochastic process with the
normalized correlation function R(O):

R(O) == 1, (60)

where brackets mean averaging over realizations. Introducing the noise
spectral density II(v) by the relations

we get from (59)

Making use of the formula for periodic 8-function

lim 1 sin
2

(-JrXN) = f: 8(x + k)
N-+ooN sin2 (1fx) k=-oo

we obtain for the average rate of the emittance growth

(63)

1 dE11
,2) ~211 s('\) 00

--.- == - 2 II(vxo +~,\ - k) . d'\.
EO dN 8 0 ID+( -io.,-g/41f)I k~OO

(64)

Therefore only noise in narrow bands around combination frequencies
contribute to the emittance growth. When the noise is due to the
ground motion only the term with k closest to the betatron tune may be
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retained in the sum since the spectral density rapidly falls off with the
frequency as v-2

.
5 (see Reference 7 and references therein).

In the case of the "white" noise

R(0) == lim e- 1B1 / T
,

T~O
II(v) = lim! I T 2 2

T~07r + V T
(65)

all terms in the sum of (64) must be retained. Their summation with
subsequent passage to the limit lead to the result

1 dc~1,2) ~2
--- == -(1 - so)S(g/27r1~1)
co dN 8

(66)

which can be obtained directly noticing that in this case the correlation
function over n turns is just the Kronecker symbol: R(21fn) == Dna.

When there are uncorrelated noise sources of equal intensity in both
rings the growth rate (66) should be doubled. If a common element
introduces the noise to both beams element the correlation should be
taken into account (keeping in mind that the same 00 means for the two
beams different, mirror symmetric points).

An important source of noise is the feedback system itself. This noise
originates mainly from random errors in measurement of the beam
position, DBPM, which is transferred into the feedback kicker error

~ DBPM
upx == g .

J fJkicker fJBPM
(67)

Assuming the noise sources in both rings to be uncorrelated and equal
in strength and adding the feedback noise due to the BPM errors with
the normalized dispersion

(68)

we can finally write for the emittance growth rate

1 dc~l,2) 1 - So 2 2 2
co dN == -4- (~ + g ~BPM)S(g/21f1~1)· (69)
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Let us take LHC for numerical example. There is a number of rea­
sons which make transverse feedback indispensable in the collision
mode. The first one is the lack of the Landau damping discussed in
Section 6 which leaves undamped slow instabilities, such as the resistive
wall transverse instability. Its rise time at the top energy can be esti­
mated from data of Reference 8 as Tr.w. ~ 0.2 s. Another reason arises
from the necessity to put the so-called PACMAN bunches (see
Reference 9 for definition) into the common orbit with the help of a
pulsed system which will introduce noise due to pulse-to-pulse jitter.

The total beam-beam parameter for two head-on and a number of
long-range collisions can be as high as I~I == 0.01. For the feedback gain
factor let us take the typical value g == 0.2. Imposing then the require­
ment on the emittance, growth to be limited by a factor of two in 8 h
(3.24· 108 turns) and allowing the feedback system to make an equal
contribution with the other sources of noise we get the limitations
~:S;5·10-4, ~BPM:S;2.5·10-3. With co==5·10- 10m, ,BBPM==200m
(o-x==0.316mm) these correspond to the absolute r.m.s. values of the
betatron amplitude excited by the external noise and the BPM error

8x :s; 0.16 J.lm, (70)

For the sake of completeness let us assess the contribution from the
discrete modes into the beam emittance. Amplitude of the ~-mode can
be easily found with the help of(37) and (46) with (== -gj41f, that of the
1f-mode is given by the residue of the superposition of coefficients (53)
in the pole Po (see Figure 7). For the figures from the above example

which is completely negligible.

8 FEEDBACK WITH A STEPWISE TRANSFER FUNCTION

A rather stringent limitation (70) on the BPM resolution in the case of
linear feedback revived interest to the idea proposed in Reference 10 to
damp the beam oscillations with kicks of a fixed amplitude which are
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applied when the beam center-of-mass displacement exceeds a certain
threshold, Xth. This would allow holding the coherent amplitude within
the specified limit without introducing the incessant noise.

Let us examine emittance growth with such a feedback in the colli­
sion mode considering the two different mechanisms of the coherent
oscillations growth: (i) some slow instability when the elementary
external kicks are correlated over a period of time much longer than the
decoherence time and (ii) the white noise when the kicks are completely
uncorrelated.

As was emphasized in Section 6 in the case of a slow instability there
is no appreciable build-up of energy in the continuum modes hence no
irreversible emittance growth, the latter being caused mainly by the
stabilizing kicks. We will consider this case with simplifying assump­
tions that:

(a) a single bunch motion is unstable with the instability rise time
TO ~ 0.2 s (ignoring the fact that the resistive wall instability is really
a multibunch effect);

(b) only the 1f-modes are excited (which requires the kickers in both
rings to be fired simultaneously);

(c) the feedback threshold is much larger than the BPM resolution
error, Xth» DBPM'

Figure 9 illustrates the damping scenario. When the barycenter
amplitude reaches the threshold, Xth, the kickers are actuated putting it
down to zero with a small error due to assumption (c). What is
important is the mode contents of the beam motion before and after the
kick. Before the kick (let us choose its moment for () == 0) the barycenter

.~!~••••••••••.•••••••••••••••••••••••••••••••

FIGURE 9 Damping scenario in the slow instability case.
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motion is determined mainly by the discrete 7f-mode.§§ Taking into
account 7f/2 phase advance from the BPM to the kicker we can derive
from (30) the mode expansion coefficient

where (Ix == (cOfJBPM)I/2 is the r.m.s. beam size at the BPM location, the
barycenter amplitude b_(O) being defined by (45). The normalized kick
amplitude necessary to put the beams into their equilibrium orbits is
just ~ 1 == ib_(-0), ~2 == - ~ 1. The corresponding jump of the 7f-modes
expansion coefficients can be calculated with the help of (37):

Accordingly, for the barycenter motion after the kick we have

so that when the continuum decoheres we are left with (1 - so) ~ 35%
of the threshold amplitude. Due to the instability the threshold will be
reached again in the period of time equal (with account of the growth
rate reduction (49)) to

1 1
T == To-In--.

So 1 - So
(74)

Due to the BPM error there will be some jitter around this value, which
should destroy phase correlation between consecutive jumps of the
mode coefficients (72). Adding them up quadratically we will obtain
from (40) the average emittance growth rate

(75)

§§ In the general case the ~-mode will also contribute.
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Having required again no more than doubling emittance in 8 h we
obtain from (74), (75) with TO ~ 0.2 s the following limitation on the
threshold amplitude

(76)

One might conclude from the present consideration that the period T

could be substantially increased and the emittance growth rate lowered
by raising the kick amplitude by a factor of 1/So, so that the discrete
7[-mode expansion coefficient were cancelled rather than the beam dis­
placement. However, the ~-mode which is present in the real situation
would be overdamped then. So we must accept limitation (76) which,
together with the assumption (c) of this section, implies that require­
ment (70) to the BPM resolution cannot be significantly alleviated.

Let us consider now the white noise case assuming each beam to
receive a kick every turn with normalized r.m.s. magnitude ~. Since the
kicks are not correlated, the squared absolute values of the mode
coefficients grow on average linearly with the number of turns N. From
(37) follow relation between the 7[- and ~-modecoefficients growth rate

la~+)(N)12 = la~+)(O)12 + 1~~ N,

(77)

where ab+) (0) is the ~-mode coefficient value left after the preceding
damping kick.

With the first of (77) we can find the rate of the continuous emittance
growth due to noise. It is complemented by the emittance growth due to
damping kicks. Let us find their repetition rate. These kicks occur when
the discrete 7[- and ~-modes contribute to the barycenter displacement
with either the same or the opposite phases rendering one of the beams
displacement maximum equal to Xth. Neglecting the continuum con­
tribution we have from (30) just before the kicker actuation

(78)

The jump in the mode coefficients due to a damping kick is given by
(37) with ~1 == -Xth/O"x, ~2 == 0 (or vice versa if the second kicker was
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actuated). Noticing now that at all times the approximate equality
la6-) I ~ c(Ao)la6+) I holds we obtain for the maximum and minimum
amplitudes

and for the number of turns between consecutive damping kicks

( )

2
N ~ 3 - So Xth

2(1 + so)~()x .

(79)

(80)

Since the damping kicks have random phases for the continuum
modes they add up quadratically to the emittance growth almost
doubling its rate

As the consequence in the present case limitation on the noise ampli­
tude is nl0re stringent than with a linear feedback, in the LHC example
~:::; 1.4.10-4 .

9 SUMMARY

The major results obtained in the present paper can be summarized as
follows.

• A natural criterion of transition from the weak-strong to the
strong-strong case is established which consists in emergence of the
discrete spectral line of dipole oscillations; for round beams of equal
sizes at the interaction point it takes place at the intensity ratio of
about 60 %

•

• Large beam-beam tunespread fails to provide the Landau damp­
ing of the coherent dipole oscillations in the strong-strong case;
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moreover, the beam-beam interaction can switch off stabilizing
effect of other tunespreads.

• In a perturbation caused by an external kick the discrete modes get
about 82% of the delivered energy and only the remaining 18% is
imparted into the continuum modes leading to the irreversible
emittance growth due to decoherence of these modes.

• The discrete 1[- and ~-modes, being unaffected by the decoherence
process, can be damped by a linear feedback system with a small gain
factor and practically do not contribute to the emittance growth.
However, the feedback system is less efficient in damping the con­
tinuum modes, which makes the emittance growth rate almost as high
as in the weak-strong case under the same conditions.

• Feedback with a stepwise transfer function does not alleviate lim­
itation on the BPM resolution in comparison with the linear case.
Moreover, it allows smaller external noise intensity not only being
unable to damp the continuum modes but even increasing their
growth by the stabilizing kicks.
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APPENDIX. REPRESENTATION OF THE
GREEN FUNCTION

73

Making use of (7) for the perturbed Hamiltonian and performing
averaging in the Liouville (8) one can obtain the integral operator (10)
kernel in the form

G(I I I' I') == (1 + r) . e-(Ix+ly+I~+I;)/2B(I I I' I') (A.I)x, y, x' y x, y, x' y ,

B = - (2~)4JIn [ ( V2E sin 7/Jx - m xsin 7/J~) 2

+ r2
( yfii; sin 7/Jy -~ sin 7/J;) 2] sin 'ljJxsin 7/J~ d7/Jx d7/J~ d7/Jy d7/J;,

(A.2)

where integration over period 21f by all angle variables is implied. By
performing integration by parts the kernel can be brought into the form
presented in Reference 4.

Without loss of generality we may assume that Ix ::; I~ and introduce
notations

ax = Jlx/I~, ay = rJly/I~, a; = rJI;/I~,

b . f)/' ,. f)/,!== a y SIn lfIy - a y sIn lfIy'

Integrating by parts in (A.2) by VJx we can present B in the form

ax J cos
2

VJx sin VJ~ "
B == 8-<1 Re . 7/J' "7/J "b d7/Jx d7/Jxd7/Jy d7/Jy"

7r . SIn x - ax sIn x-I

(A.3)

(A.4)

One integration in (A.4) (that by VJ~ being the most convenient) can be
performed analytically by transition to the contour integral in the
domain of complex variable z == Izl exp(iVJ~) leading to the result

B = ax [1 + 4~3 1mJJ 1 - (ax sin 7/Jx + ib)2 sin 7/Jx d7/Jx d7/Jy d7/J;l
(A.5)
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where the sign of the radical should be chosen so that its real part be of
the same sign with b. The triple integral in (A.5) can be evaluated either
by numerical integration or via the asymptotic expansion:

[
2 00 ( -1 )n (ax) 2n 00 1 (ay<) 2m (

B=ax l-;:~n!(n+l)! 2 ~(m!)2 2 U2n+2m+l(ay»

_ ~(_ )n+l (2n + 2/- 3)!!(2n + 2/- 1)!![(2m - 2/- 1)!!]2)]
L......t 1. a2m-21+1 '
1=1 y>

(A.6)

where ay< == min[ay,a~], ay> == max [ay, a~] and

(A.7)

A few first of the functions Un(a) found with the help of Mathematica
are

U 1(a) == ArcTan[a];

U 3 (a) == - a*(3 + a"2)j(1 + a"2)"2;

Us(a) == a*(45 + 5*a"2 + 11 *a"4 + 3*a"6)j(1 + a"2)"4;

U7(a) == - 3*a*(525 - 525*a"2 + 378*a"4 + 222*a"6 + 89*a"8

+ 15*a"10)j(1 + a"2)"6;

U9 (a) == - 9*a*(-11025 + 33075*a"2 - 32193*a"4 - 10629*a"6

- 9659*a"8 - 4863*a"10 - 1395*a"12 - 175*a"14)j(1 + a"2)"8;

Ull (a) == - 45*a*(218295 - 1285515*a"2 + 2192652*a"4

- 136620*a"6 + 571010*a"8 + 459350*a"10 + 263100*a"12

+ 98884*a"14 + 22015*a"16 + 2205*a"18)j(1 + a"2)"10;

U 13 (a) == - 675*a*(-2081079 + 20117097*a"2 - 56189133*a"4

+ 30791475*a"6 - 18419830*a"8 - 13164918*a"10

- 11456106*a"12 - 7172650*a"14 - 3192195*a"16

- 958755*a"18 - 174489*a"20 - 14553*a"22)j(1 + a"2)"12.




