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Abstract

Hadron therapy for cancer is greatly improved by the use of a gantry. A gantry makes

it possible to deliver the radiation dose to the tumour from di�erent directions, so that

the entry dose is spread out. The problem for the machine designer is to make the gantry

optics independent of the gantry rotation. This results in complicated matching conditions;

especially if the emittances in the two transverse phase spaces are unequal. We recapitulate

the theory of a rotator to feed a single gantry and we generalize to beam delivery systems

using one rotator to feed several gantries. We give some design examples for rotators and

outline some criteria that are important for keeping reasonable beam sizes in the rotators.

We give a modular design for a beam delivery system; these modules can be combined in

di�erent ways, to give systems consisting of one rotator and an arbitrary number of gantries.
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1 INTRODUCTION

In an accelerator facility for radiation therapy, using protons and light ions, the beam

delivery system (BDS) is particularly sophisticated. For conformal tumour treatment it is an

advantage to have variable incidence angles, which is achieved by the use of a gantry. A gantry

is a section of beam line, which can be rotated around the patient with respect to the horizontal

axis. This raises the optical problem of matching the beam coming from the accelerator to the

rotating gantry, so that the patient always \sees" the same beam.

Two ways of matching the rotating optics of the gantry to the �xed optics of the machine,

while keeping the beam behaviour in the gantry itself independent of the rotation angle, have

been proposed. The �rst, which we shall call the \symmetric beam method", severely restricts

exibility by imposing equal emittances, equal Twiss functions and zero dispersion at the entry

to the gantry. The second, which we shall call the \rotator method", avoids these restrictions.

A rotator is a section of bending-free transfer line that is rotated in proportion to the gantry

angle. The design of a rotator has to be done with great care to avoid problems with beam size,

alignment and chromaticity. The rotator method is less well known and to the authors' best

knowledge it was �rst proposed by Lee Teng [1].

For proton therapy one has a choice between a cyclotron and a synchrotron but for ions

(e.g. carbon or oxygen), the only practical solution is the latter. The cyclotron can deliver

beams of quasi-equal emittance in the two planes, suitable for the symmetric beam or the

rotator method, whereas a synchrotron, employing resonant extraction, delivers asymmetric

beams (small emittance in the plane of extraction) [2], which imposes the use of a rotator. Since

there is no restriction on the dispersion function when using a rotator, this has the fortuitous

advantage of simplifying the gantry design.

In this paper, we describe the principles of the rotator method, some design examples of

rotators are given (FODO, triplet, doublet/FODO) and the advantages of the di�erent structures

are discussed. Some draft-designs for the transfer lines and the gantry are presented and some

modular layouts of the transfer lines, that make it possible to run a complete complex with

just one rotator, are proposed. A formalism to describe the beam size in rotated structures is

derived. For completeness, the symmetric beam method is explained in Appendix A.

2 PRINCIPLES OF THE ROTATOR METHOD

2.1 Beam Rotator feeding one Gantry

In the face of the complex problem of matching to the gantry, the rotator provides

an e�cient solution, comprising a rotatable, bending-free section of transfer line with phase

advances of 2� and � in the two transverse planes. Consider the transfer matrix of a rotator (we

will call this matrixMI;�I to denote that the transfer matrix for the horizontal and the vertical

planes are the identity and minus-identity matrices, respectively):

MI;�I =

0
BBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1
CCCA : (1)

If this section is rotated physically by an angle � with respect to the �xed beamline coming

from the accelerator, the positions and angles of each particle at the junction can be transfered

into the local coordinate system, �xed to the rotator, by multiplication with the 4x4 rotation

matrix MR(�):

MR(�) =

0
BBB@

cos(�) 0 sin(�) 0

0 cos(�) 0 sin(�)

� sin(�) 0 cos(�) 0

0 � sin(�) 0 cos(�)

1
CCCA : (2)
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We now add a gantry directly after the rotator and the rotator is set to half the gantry angle

�. In order to describe the positions and angles of all particles in the local coordinate system of

the gantry, one needs the overall transfer matrixMO from the end of the �xed beam line to the

entry of the gantry, which is obtained by multiplying the component matrices:

MO =

0
BBB@

cos(�
2
) 0 sin(�

2
) 0

0 cos(�
2
) 0 sin(�

2
)

� sin(�
2
) 0 cos(�

2
) 0

0 � sin(�
2
) 0 cos(�

2
)

1
CCCA

0
BBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1
CCCA

0
BBB@

cos(�
2
) 0 sin(�

2
) 0

0 cos(�
2
) 0 sin(�

2
)

� sin(�
2
) 0 cos(�

2
) 0

0 � sin(�
2
) 0 cos(�

2
)

1
CCCA =

0
BBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1
CCCA :

The righthand side shows the gratifying result that the normal modes [3] of the �xed,

incoming beamline map directly into the normal modes of the gantry, independent of the gantry

angle.

MO = MR

�
�

2

�
�MI;�I �MR

�
�

2

�
= MI;�I : (3)

It is worth stressing that this result is mathematically exact under all conditions when

considering �rst-order transfer matrices through perfectly aligned structures. In fact, the above

derivation imposes no conditions on the Twiss parameters, dispersion functions or emittances at

the junctions between the di�erent parts of the line (incoming line, rotator, gantry). However, the

above does not always ensure a practical solution from the point of view of alignment tolerances,

aperture requirements and chromatic aberrations. For these reasons it is prudent to design the

rotator junctions with equal, or approximately equal Twiss functions, �x ' �y and �x ' �y,

to avoid any exotic beam behaviour. This will be discussed further in the following sections for

di�erent rotator designs.

2.2 Generalization to a BDS with several Gantries

The aim of this section is to show that, with appropriate generalizations, the above idea

can be extended in order to construct BDSs consisting of one rotator, feeding several gantries.

For such systems, extension sections, with optical properties similar to the rotator, are inserted

between rotator and gantries.

First, we note that it is su�cient, but not necessary, that the transfer matrix from the

entrance of the rotator to the entrance of the gantry is MI;�I . One of our main interests is to

simplify the gantry design by allowing �nite dispersion at the gantry entry and this requires

the same horizontal transfer matrix of I or -I from the rotator to all the gantries. However, the

choice in the vertical plane between I or -I is free for each gantry. We loose no generality by

choosing the horizontal transfer matrix to be unity. Thus we ask the overall transfer matrix to

be either MI;�I or MI;I . If extension modules, with horizontal and vertical transfer matrices

being any combination of I and �I , are inserted, it is always possible to �nd an appropriate

rotation angle � for the rotator that gives the required overall transfer matrix of MI;�I or MI;I .

The four possible extension modules are tabulated in Table 1 with the corresponding overall

transfer matrices to the gantry and the relevant rotator angles, expressed in terms of the gantry

angle �.

Inserting an extension module with the transfer matrix MI;I is trivial and the particle

distribution remains unchanged at the entrance to the gantry. We will consider in more detail

the second case in Table 1. To get the overall transfer matrix from the entrance of the rotator

to the entrance of the gantry, the following matrices have to be multiplied in beam order:

� Matrix, describing the rotation at the entry to the rotator (�).

� Rotator transfer matrix (MI;�I).
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Extension Rotator Overall

module angle � transfer MO

MI;I �=2 MI;�I

MI;�I ��=2 MI;I

M
�I;I � � �=2 MI;I

M
�I;�I � + �=2 MI;�I

Table 1: Characteristics of single-rotator, multi-gantry delivery systems

� Matrix, describing the reverse rotation at the exit of the rotator and entry to the extension

module (��).

� Transfer matrix through the extension module (in this case MI;�I).

� Matrix, describing the rotation (�) of the gantry with respect to the �xed extension mod-

ule.

Now the rotation angle � of the rotator has to be chosen in such a way that the overall transfer

matrix is either MI;I or MI;�I . It follows directly that for the chosen extension module � = �
�
2

and one obtains:

MO = MR(�
�

2
) �MI;�I �MR(

�

2
) �MI;�IMR(�) =MI;�I :

The overall transfer matrix is independent of the rotation angle � of the gantry and indeed of

the required form (MI;I or MI;�I).

3 BEAM SIZES AND �-MATRIX FORMALISM

In this section we recapitulate briey the �-matrix formalism as given in References

[3, 4]. The method is then applied to rotating sections of transfer line and demonstrated by

computing the beam size inside the rotator (Section 4.2). The same technique can be applied to

the extension modules in which a very similar situation exists. Although the extension modules

are �xed, there is a changing correlation between the two transverse phase spaces according to

the gantry angle.

Let ~� = (x; x0; y; y0) be a position vector, containing the transverse phase space coordinates

of a particle. The statistical average of any distribution of particles in phase space is then given

by the �-matrix, de�ned as: �ij :=< �i�j > i.e.

� =

0
BBB@

< x2 > < xx0 > < xy > < xy0 >

< xx0 > < x02 > < x0y > < x0y0 >

< xy > < x0y > < y2 > < yy0 >

< xy0 > < x0y0 > < yy0 > < y02 >

1
CCCA

where the brackets <> mean the expectation values. It can be shown that the �-matrix propa-

gates under the action of any linear transformation matrix S according to:

�ij ) Sil�lSjm�m = Sil�lmS
T
mj : (4)

For the present purpose of calculating beam sizes along the rotator, S will take the forms of a

transfer matrix M , a rotation matrixMR, or any multiplication of these matrices.

To make the liaison between the Twiss parameters and emittances of the incoming beamline

and the �-matrix formulation, we make the following equivalences for both transverse phase

spaces:

"x =
p
< x2 >< x02 > � < xx0 >2
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�x =
<x 2 >

"x
�x = �

<xx 0 >

"x
x =

<x 02 >

"x

For an uncoupled beam, i.e. no correlations between the two transverse phase spaces, all elements

of the �-matrix, coupling the horizontal and the vertical phase space, vanish and thus, the �-

matrix reduces to two 2 � 2 matrices which can be written in terms of the Twiss parameters

and the 1�-emittances, using the equivalences above.

�n:c: =

0
BBB@

"x�x �"x�x 0 0

�"x�x "xx 0 0

0 0 "y�y �"y�y
0 0 �"y�y "yy

1
CCCA : (5)

In our case we assume the beam to be uncoupled when extracted from the accelerator. Inside

the rotator and the extension modules, the beam is coupled, but because of the special optical

properties of these sections, the beam is again uncoupled inside the gantry.

Following this formalism the �-matrix at any point in the beam line can be computed from

the �-matrix at the beginning by using the appropriate matrices M and MR. The horizontal

and vertical beam sizes are simply given as the square roots of the elements �11 and �33.

4 ROTATORS

4.1 Optical Designs

In the matrix proof given in Section 2.1, the rotator is represented by its 4x4 transfer

matrix and 4x4 rotation matrices at the entry and exit. In the �nal result, the overall transfer

matrix maps the incoming normal modes to those of the gantry without cross terms. The only

constraint for rotator design derived by this formalism is that the normal modes in the rotated

structure must advance by 2� in one plane and by � in the other. This may give the impression

that designing a rotator is a simple task. But one has to be aware of the fact that the overall

transfer matrix cannot give any information about beamsizes, chromatic e�ects, etc. inside the

structures.

The following Figs. 1-3 show the geometry and �-functions of three di�erent rotators with

the prerequisite phase advances (for simplicity we consider �x = 2� and �y = �).
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Figure 1: �-functions in a three-cell regular FODO rotator (a) not rotated (b) rotated by �
2

Fig. 1 shows a regular FODO-structure consisting of three cells. The quadrupoles are in two

families. The horizontal and vertical phase advances per cell are (2=3) � and (1=3) �. This section

was matched to �x = 2:2m, �x = 1:8, �y = 3:7m and �y = �1:8. Fig. 1a shows the �-functions

for the unrotated structure (the design case of the line) whereas Fig. 1b shows the �-functions

for the same structure, rotated by �
2 . Comparison of (a) and (b) dramatically illustrates the
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problem, inherent in this type of structure. The rotation is equivalent to a change from focusing

to defocusing in the unrotated structure and leads to exceedingly large uctuations of the �-

functions compared to the design case. This behaviour arises due to the opposite signs of the

�-functions at the input. Note, this is not a mismatch. Both cases map the input to the output

correctly, con�rming the mathematics.
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Figure 2: �-functions in a three-cell regular triplet rotator

A regular triplet structure avoids this problem. Fig. 2 shows a structure with three triplets.

As for the previous FODO structure only two power supplies are needed. The phase advances

per triplet are the same as above but because of the symmetry �x and �y are always zero at

the input and inter-cell positions. The structure was matched to �x = �y = 2:1m. This type

of rotator, matched with equal Twiss parameters at the entry, ensures well controlled Twiss

functions at any rotation angle.

The third rotator, shown in Fig. 3, uses a doublet to match symmetric Twiss parameters

in the two transverse planes into a short FODO channel of only three quadrupoles. The two

doublets succeed in matching the beam into this channel in such a way, that the exotic beam

behaviour seen in the FODO rotator (Fig. 1) is completely subdued. The structure was matched

to �x = �y = 0 and �x = �y = 4m. The central FODO channel gives the required phase

advances of 2� horizontal and � vertical. One advantage of this rotator, compared to the triplet

structure, is that only seven quadrupoles are needed. On the other hand, the triplet is working

with only two power supplies, whereas this structure requires four.
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Figure 3: �-functions in a composite doublet/FODO rotator

4.2 Beam Sizes

Inside the rotator, we may be tempted to focus strongly, in order to get a large phase

advance in a short distance, but small beam sizes usually lead to large sizes elsewhere and in a
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transfer line we would like to maintain moderate beam sizes for several reasons :

� Apertures of magnets and the vacuum chamber

� Chromatic aberrations

� Alignment tolerances and power supply speci�cations

The following Figs. 4, 5 and 6 show the beam sizes in the three rotator examples. The

calculations have been made using the theory given in Section 3. In each case there are two

plots showing the 1�-beam size seen in the local coordinates, �xed to the rotator, as a function

of the rotation angle. As already mentioned in the introduction, a slow extracted beam from a

synchrotron usually has a signi�cantly smaller transverse emittance in the extraction plane and

to take this e�ect into account a horizontal emittance of 2 � 10�6� m and a vertical emittance of

10 � 10�6� m were assumed.

The FODO structure of Fig. 4 exhibits the extreme ratio of the maximum to minimum

beam size of 43, whereas the other two structures in Figs. 5 and 6 control this ratio to less than

3.3. This smoother behaviour gives a more regular phase advance and provides structures which

are less sensitive to alignment tolerances and chromatic errors. It is indeed quite remarkable

that these structures can provide a behaviour which is comparable to a static line. In fact in a

practical design, the aperture requirements of the rotator would probably be no more demanding

than the requirements in the various matching quadrupoles after extraction. Table 2 summarizes

the maximal and minimal beam sizes at 0o, 45o and 90o for the three rotators.

FODO Triplet Doublet/FODO

0o 45o 90o 0o 45o 90o 0o 45o 90o

�h;max[mm] 3.4 14 28 2.2 3.9 5 3.3 5.4 7

�h;min[mm] 1.1 1.3 0.65 1.1 2 2.5 1 1.9 2.4

�h;max=�h;min 3 11 43 2 2 2 3.3 2.8 2.9

�v;max[mm] 8.4 15 13.3 9.1 7 4.1 10 8 4.6

�v;min[mm] 4 3.5 0.9 4.5 3.5 2 3.3 2.6 1.5

�v;max=�v;min 2.1 4 15 2 2 2 3 3.1 3

Table 2: Maximal and minimal beam sizes in rotators
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Figure 4: Horizontal (a) and vertical (b) beam sizes in a FODO rotator
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Figure 5: Horizontal (a) and vertical (b) beam sizes in a triplet rotator
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Figure 6: Horizontal (a) and vertical (b) beam sizes in a doublet/FODO rotator
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5 DESIGN OF A MODULAR BEAM DELIVERY SYSTEM WITH

ROTATORS

In this section we are presenting a design of a BDS which incorporates the ideas developed

above. In the design of the BDS we assumed, that the width � := �p=p of the momentum

distribution is small enough that it does not have an excessive impact on the beam size. More

quantitatively we would like,

D2+ 2�DD0 + �D02 <
�

"

�2
: (6)

Note, that the above expression is invariant in bending-free regions and it varies only slightly

inside the extension modules with bending. If there is a large momentum spread (this might

occur, when a �xed-energy cyclotron is used, since this implies the use of absorbers for energy

adjustment), the dispersion may contribute dominantly to the beam size. In this case, the con-

siderations about the optics must be reviewed and the contributions of the dispersion and the

betatron oscillations merged. The earlier conclusion, that a FODO rotator results in exotic beam

behaviour still applies. Here we concentrate on a BDS accepting a small momentum spread and

thus we can apply directly the principles from Section 4.

The minimum possible bending radius of the entire BDS is 1:6m (in the gantry), this is

compatible with the use of conventional magnets for delivering protons (say with a kinetic

energy T = 250MeV =) beam rigidity p=q = 2:43Tm =) maximal �eld 1:5T ). We assumed

that the emittances to be transfered are "x = 2 � 10�6� m, "y = 5 � 10�6� m. At the treatment

volume, the following constraints are applied to the optical parameters:

� Twiss �-functions of �x = 2m, �y = 0:80m to have a round beam with (1�) equal 2mm.

� Dispersion D = 0, so that the beam size is not increased and to prevent a strange shape

of the voxel, i.e. a correlation of the position x and the longitudinal coordinate. This

constraint linked to a requirement for zero disperion at the entry to the gantry is mainly

responsible for the considerable length of some other designs [5, 6].

� Derivative of the dispersion D0 = 0. This constraint is not very stringent and is one that

has been removed by other authors e.g. Ref. [6]. However, no signi�cant improvements for

the present design were found and the constraint has been maintained.

� Parallel scanning of the tumour by the beam is preferred (to reduce the entry dose) al-

though it is not absolutely necessary. In the speci�ed gantry, parallel scanning is im-

plemented in the horizontal plane. In the vertical plane the e�ective source to isocentre

distance is 8m.

The following design features were implemented:

� Use of a rotator to allow unequal emittances in the two transverse planes and �nite dis-

persion at the entry to the gantry. Thus, it is no longer necessary to close the dispersion

bump inside the gantry, so facilitating the optics design.

� Addition of extension modules, whose phase advances are multiples of �, to serve several

gantries with a single rotator.

� Equal Twiss parameters in both transverse planes at the entry to the rotator (the Twiss

functions are then automatically equal at all junctions between rotator, extension modules

and gantries).

We foresee an overall modular layout of the BDS. The di�erent modules are:

� Matching from the accelerator to the BDS : Note that this section will depend on the

output of the accelerator and will have to be redesigned for a speci�c machine. Twiss

functions and the dispersion along the line are shown in Fig. 7.

� Matching to the rotator and launching the dispersion for the gantry: This module matches

the Twiss parameters needed for the rotator (which the gantry must accept) and provides
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the correct dispersion for the gantry (which the rotator must be able to transmit). The 1:1

or 1:-1 mappings of the subsequent modules mean that the dispersion and also the Twiss

functions are transmitted directly to the gantry. Twiss functions and the dispersion along

the line are shown in Fig. 8.

� Rotator consisting of a doublet matching into a FODO channel and a doublet: phase ad-

vance 2� and � in the horizontal and vertical planes; at entrance/exit the Twiss parameters

are symmetric in both transverse phase spaces with � = 4m and � = 0. Twiss functions

and dispersion along the line are shown in Fig. 9.

� Extension modules with phase advances 2� and �. An extension module comprises a

straight-through channel or a deected channel, which is chosen by powering a pair of

dipoles.

{ Extension without deection : the same optics as for the rotator is used (Fig. 9).

{ Extension with deection : an optics similar to the rotator is used with bending mag-

nets, inserted at appropriate positions between the doublets and the FODO channel,

in order to make a closed dispersion bump. Twiss functions and the dispersion along

the line are shown in Fig. 10.

� Isocentric gantry:

{ No optical elements or transverse scanning system after the last deection towards

the patient; otherwise the radius of the gantry is enlarged.

{ There are two transverse scanning magnets; one for each plane (see Fig. 12).

{ For the moment, we imagine conventional magnets. If superconducting dipoles are

used for the last bending, the edge focusing has to be replaced by a quadrupole

between the two dipoles.

{ This particular gantry design is intended for fast scanning in both transverse planes

and slow energy scanning. This system is adapted for a synchrotron.

The dispersion at the entrance to the gantry is not zero, because we pro�t from the fact,

that the dispersion is rotated by the rotator. Twiss parameters and the dispersion along

the gantry are shown in Fig. 11.

The modules listed above can be combined in di�erent ways, resulting in more or less com-

plicated BDSs. Two possible combinations are illustrated. The simplest con�guration is a single

gantry directly following a rotator. This is shown in Figs. 13 and 14. A more complicated BDS,

that comprises 3 gantries in a row is shown in Figs. 15 and 16. When the beam is delivered, for

example to the second gantry, it passes the rotator, one extension module without bending and

one with bending, to �nally reach the gantry (powered elements are shown with dark shading).
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Figure 7: Twiss functions and dispersion in the module matching the extraction to the BDS;
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Figure 8: Twiss functions and dispersion in the module generating the dispersion and matching

to the rotator
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Figure 9: Twiss functions and dispersion in the rotator
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Figure 10: Twiss functions and dispersion in the extension module with deection.
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Figure 11: Twiss functions and dispersion in the gantry

Figure 12: Envelopes inside the gantry for horizontally and vertically scanned beam
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Figure 13: 3D view of the minimal BDS with only one gantry connected directly to the rotator;

the gantry is rotated by 60 degrees

10 m

Figure 14: Top view of the minimal BDS with only one gantry connected directly to the rotator;

the gantry is rotated by 60 degrees
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Figure 15: 3D view of a modular BDS with 3 gantries in a row

10 m

Figure 16: Top view of a modular BDS with 3 gantries in a row
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6 CONCLUSIONS AND OUTLOOK

The theory for using a rotator to match a beam into a gantry has been reviewed. This

scheme is generalized to one rotator feeding several gantries. Some design principles about rota-

tors and a formalism to calculate the beam size, when this device is rotated, are presented. In

particular, it was pointed out, that a regular FODO structure is not well suited for a rotator;

but structures with symmetry of the Twiss functions between the two transverse planes (at the

entry and the exit of the rotator) are proposed.

A modular design for a BDS is shown. The di�erent modules can be combined, giving sys-

tems with one or several gantries and various geometries. In this report we concentrate on a

BDS for beams with relatively small momentum spreads. We have tried to keep reasonable

�-functions throughout the designs and expect, therefore, that chromatic aberrations and align-

ment tolerances will be acceptable. However, as one of the next steps, the chromatic e�ects and

sensitivity to alignment errors, especially in the rotating structures, need to be evaluated.

Another possible generalization concerns the design of a beam delivery system for a larger

momentum spread. In this case, zero dispersion at the treatment volume becomes more impor-

tant and consequently the advantages of the rotator more obvious. The beam size in the rotator,

the subsequent lines and the gantry, may be dominated by dispersive e�ects. Considerations

about the beam sizes have to be revised in the sense that the betatron oscillations and the

dispersive e�ects have to be merged, leading to some \e�ective" emittance and �-functions.
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Appendix

A SYMMETRIC BEAM METHOD

In the symmetric beam method, the gantry is matched directly to the �xed beam line

coming from the accelerator. In order to obtain always the same optics inside the gantry, inde-

pendent of its angle, the beam has to be symmetric with respect to rotations at the entry to the

gantry. To derive the necessary conditions we will use the �-matrix formalism given in Section

3. We compute the �-matrix at the entrance to the gantry as a function of the rotation angle

and require, that the result is independent of this angle. The �-matrix for the uncoupled beam

before the rotation is of the form given in Equation 5 and the matrix, describing the rotation

of the gantry is given in Equation 2. For the �-matrix at the gantry entrance, i.e. immediately

after the rotation one obtains :

MR(�) � �n:c: �M
T
R (�) =

=

0
BBB@

cos2(�)"x�x+sin2(�)"y�y � cos2(�)"x�x�sin2(�)"y�y cos(�) sin(�)(�"x�x+"y�y) cos(�) sin(�)("x�x�"y�y)

� cos2(�)"x�x�sin2(�)"y�y cos2(�)"xx+sin2(�)"yy cos(�) sin(�)("x�x�"y�y) cos(�) sin(�)(�"xx+"yy)

cos(�) sin(�)(�"x�x+"y�y) cos(�) sin(�)(�"x�x+"y�y) sin2(�)"x�x+cos2(�)"y�y � sin2(�)"x�x�cos2(�)"y�y

cos(�) sin(�)(�"x�x+"y�y) cos(�) sin(�)(�"xx+"yy) � sin2(�)"x�x�cos2(�)"y�y sin2(�)"xx+cos2(�)"yy

1
CCCA

From the above �-matrix one can deduce, that a beam distribution independent of the gantry

rotation angle � can only be obtained, if the following constraints are ful�lled at the entry to

the gantry:

Equal emittances "x = "y
Equal Twiss parameters �x = �y

�x = �y
) x = y

The optical constraint, to have the same Twiss parameters for both, the horizontal and the

vertical phase space, turned out to be not very limiting in practice, i.e. it is relatively easy to

ful�ll. The constraint, that the emittances in the two transverse planes have to be identical is a

severe problem, if the gantry is to be used with beam extracted resonantly from a synchrotron.

Although a linac and a cyclotron can in principle deliver equal emittances, it is not easy to prove

that this is the case. On-line emittance measurements at low intensity are not trivial and even

under ideal conditions emittance is a more di�cult quantity to measure than say beam position.

It may be that a rotator would be an advisable addition to all systems.
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B MAD INPUT FILE FOR ALL MODULES OF THE BDS

In order to give the exact geometry and the beam optics parameters of the modular

BDS we give the Input-File for a MAD [7] run. The following is the Input File feeding the

second gantry in the BDS comprising 3 gantries in a row; all modules are contained and thus

the generalization to other combinations of the modules is straightforward.

TITLE, S="Modular Beam Delivery to three Gantrys"

bet = 30*RADDEG ! Gantry rotation angle : 30 degrees

G_rot : SROT, ANGLE= bet ! rotation angle of the gantry

R_roti : SROT, ANGLE= 0.5 * bet ! rotation of rotator

R_roto : SROT, ANGLE=-0.5 * bet ! rotation back to line fixed in space

M_D3 : DRIFT, L=0.30

M_QF : QUADRUPOLE, L=0.40, K1= 1.3761

M_D2 : DRIFT, L=0.30

M_QD : QUADRUPOLE, L=0.40, K1=-1.3753

M_D1 : DRIFT, L=3.0

! Matching Accelerator - section to 'produce' the dispersion

ADAP : LINE = ( M_D1, M_QD, M_D2, M_QF, M_D3 )

D_D3 : DRIFT, L=0.25

D_QD : QUADRUPOLE, L=0.40, K1=-0.7421

D_D2 : DRIFT, L=2.9610

D_QF : QUADRUPOLE, L=0.40, K1= 0.4560

D_D1 : DRIFT, L=0.5385

D_BEN : SBEND, L=66*RADDEG, ANGLE=33*RADDEG, E1=16.5*RADDEG, E2=16.5*RADDEG

D_DB : DRIFT, L=0.20

! Matching to the rotator - 'produce' the dispersion needed at gantry entrance

DISP : LINE = ( D_BEN, D_DB, D_DB, D_BEN, D_D1, D_QF, D_D2, D_QD, D_D3 )

R_rot : SROT, ANGLE=0.3446

R_Dr : DRIFT, L=0.20

R_QFD : QUADRUPOLE, L=0.40, K1= 2.9332

R_DD : DRIFT, L=0.15

R_QDD : QUADRUPOLE, L=0.40, K1=-3.0883

R_Di1 : DRIFT, L=1.6344

R_QF : QUADRUPOLE, L=0.40, K1= 2.8577

R_Di2 : DRIFT, L=2.75-R_Di1[L]

R_QD : QUADRUPOLE, L=0.20, K1=-2.3382

! Rotator (and (1:1)/(1:-1) prolongation section)

ROTA : LINE = ( R_Dr, R_QFD, R_DD, R_QDD, R_Di1, R_QF, R_Di2, R_QD, &

R_QD, R_Di2, R_QF, R_Di1, R_QDD, R_DD, R_QFD, R_Dr )

B_Dr : DRIFT, L=0.20

B_QFD : QUADRUPOLE, L=0.40, K1= 2.6610

B_DD : DRIFT, L=0.15

B_QDD : QUADRUPOLE, L=0.40, K1=-2.5152

B_Di11 : DRIFT, L=0.2112

B_Ben : SBEND, L=2.0*PI/6., ANGLE=PI/6., E1=PI/12., E2=PI/12.

B_Di12 : DRIFT, L=0.75-B_Di11[L]

B_QF : QUADRUPOLE, L=0.40, K1= 3.0182

B_Di2 : DRIFT, L=0.95

B_QD : QUADRUPOLE, L=0.20, K1=-2.5073

! prolongation section with deflection

B_1TO1 : LINE = ( B_Dr, B_QFD, B_DD, B_QDD, B_Di11, B_Ben, B_Di12, &

B_QF, B_Di2, B_QD, &

B_QD, B_Di2, B_QF, B_Di12, B_Ben, B_Di11, B_QDD, &

B_DD, B_QFD, B_Dr )
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EC = 0.2924

EE = 0.4078

G_DF : DRIFT, L=1.40

G_DH : DRIFT, L=0.50

G_B2 : SBEND, L=1.60*PI/3., ANGLE=PI/3., E1=EC, E2=EE

G_B1 : SBEND, L=1.60*PI/3., ANGLE=PI/3., E1=EE, E2=EC

G_DSC1 : DRIFT, L=2.1935

G_DSC2 : DRIFT, L=0.40

G_QF2 : QUADRUPOLE, L=0.50, K1= 1.1507

G_DD2 : DRIFT, L=0.25

G_QD : QUADRUPOLE, L=0.50, K1=-2.8055

G_DD1 : DRIFT, L=0.25

G_QF1 : QUADRUPOLE, L=0.50, K1= 1.6336

G_DUP : DRIFT, L=4.242562-G_DD1[L]-G_DD2[L]-G_DSC1[L]

G_BUP : SBEND, L=1.60*PI/6., ANGLE=-PI/6., E1=-PI/12., E2=-PI/12.

! the gantry itself

GANTRY : LINE = ( G_BUP, G_DUP, G_QF1, G_DD1, &

G_QD, G_DD2, G_QF2, &

G_DSC1, G_DSC2, G_B1, G_DH, G_DH, G_B2, G_DF )

ALL2 : LINE = ( ADAP, DISP, R_roti, ROTA, R_roto, ROTA, B_1TO1, &

G_rot, GANTRY )

USE, ALL2

SELECT, TWISS, FULL

SURVEY

TWISS, BETX=1.50, BETY=1.50, COUPLE
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