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ABSTRACT

We have determined the theoretical predictions for the cross-sections of squark and gluino
production at p�p and pp colliders (Tevatron and LHC) in next-to-leading order of su-
persymmetric QCD. By reducing the dependence on the renormalization/factorization
scale considerably, the theoretically predicted values for the cross-sections are much more
stable if these higher-order corrections are implemented. If squarks and gluinos are dis-
covered, this improved stability translates into a reduced error on the masses, as ex-
tracted experimentally from the size of the production cross-sections. The cross-sections
increase signi�cantly if the next-to-leading order corrections are included at a renormal-
ization/factorization scale near the average mass of the produced massive particles. This
rise results in improved lower bounds on squark and gluino masses. By contrast, the
shape of the transverse-momentum and rapidity distributions remains nearly unchanged
when the next-to-leading order corrections are included.
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1 Introduction

The supersymmetric extension of the Standard Model [1] is a well-motivated step. In
supersymmetric theories the hierarchy problem of the Higgs sector can be solved [2].
Even in the context of very high energy scales, as required by grand uni�cation, it is
possible to retain fundamental scalar Higgs particles with low masses. This is a conse-
quence of pairing bosons with fermions in supersymmetric multiplets, which removes the
quadratic divergences due to these high scales from the quantum uctuations. Moreover,
the electroweak Higgs mechanism can be generated radiatively [3]. For a top mass in
the experimentally observed range, the theory can evolve from a symmetric phase at the
grand-uni�cation scale to a phase of broken electroweak symmetry at low energies, while
leaving the electromagnetic and colour gauge symmetry unbroken. Strong supporting
evidence for supersymmetry is provided by the successful theoretical prediction of the
electroweak mixing angle [4], sin2 �w = 0:2334� 0:0035, based on the particle spectrum of
the Minimal Supersymmetric extension of the Standard Model (MSSM). This prediction
is matched quite well by the measured value [5], sin2 �expw = 0:2317� 0:0004. Supersym-
metric extensions o�er solutions for many other problems that cannot be solved within
the Standard Model [see e.g. Ref. [6] for a comprehensive discussion].

In the MSSM [7] quarks and leptons are paired with squarks and sleptons, gauge and
Higgs particles with gauginos and higgsinos. Supersymmetric QCD (SUSY-QCD) is based
on the coloured particles of this spectrum: quarks and spin-0 squarks (~q = ~qL; ~qR), gluons
and spin-1/2 gluinos (~g). The magnitude of the SUSY-QCD interactions is set by the
gauge and Yukawa couplings gs and ĝs = gs, respectively; the two couplings are required
by supersymmetry to be equal. If supersymmetry were an exact symmetry, squarks and
quarks would have equal masses and gluinos would be massless. However, supersymmetry
is a broken symmetry, and the masses of the supersymmetric partners must exceed the
masses of the Standard-Model particles considerably. Even though the mechanism for
the breaking of supersymmetry is not identi�ed yet at the fundamental level, requiring
that no quadratic divergences be reintroduced into the theory by breaking the symmetry,
provides a powerful guiding principle [8]. In this approach, supersymmetry is broken
within SUSY-QCD by introducing heavy masses for squarks and gluinos, lifting the mass
degeneracy with quarks and gluons. In order not to ruin the solution of the hierarchy
problem, the masses of these particles should not exceed limits of O(1 TeV).

In the present analysis we will assume that the scalar partners ~q = (~qL; ~qR) of the
�ve light quark avours are mass degenerate. We defer the discussion of �nal-state stop
particles, with potentially signi�cant L{R mixing due to the large top{Higgs Yukawa
coupling, to a subsequent paper [9]. Stop masses in loop diagrams can be identi�ed with
the other squark masses since their impact is small. The masses of the �ve light quarks are
neglected, while the top-quark mass is set to mt = 175 GeV. [The set of Feynman rules
in SUSY-QCD, including an extensive discussion of the Majorana gluinos, is summarized
in Appendix A; more details are given in Ref. [10].]

The search for supersymmetric particles ranks among the most important experimen-
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tal endeavours of high-energy physics. The coloured particles, squarks and gluinos, can
be searched for most e�ciently at hadron colliders. As R parity is conserved in the QCD
sector of N = 1 supersymmetric theories, these particles are always produced in pairs.
Squarks and gluinos decay primarily into cascades of jets plus the lightest supersymmetric
particle (LSP), which escapes undetected. This particle is in general identi�ed with the
lightest neutralino ~�0

1
. Missing momentum is therefore one of the classical characteris-

tics of SUSY events. Pairs of gluinos can decay into like-sign dileptons plus two LSPs,
providing an almost background-free signal.

Squarks and gluinos can at present be searched for at the Fermilab Tevatron, a p�p
collider with a centre-of-mass energy of 1:8 TeV, which will be upgraded to 2 TeV in
the near future. Lower bounds on the squark and gluino masses have been set by both
Tevatron experiments, CDF and D0 [11, 12]. At the 95% con�dence level, the lower
bound for the gluino mass is 173 GeV, independent of the value of the squark mass. If
squarks and gluinos have the same mass, the lower limit is given as 225 GeV. Within
the theoretical set-up of the experimental analysis, no limit for squark masses can be
derived if the gluino mass exceeds 550 GeV. [The lower limits on squark masses obtained
at LEP are independent of this assumption.] This set of experimental bounds on squark
and gluino production has been obtained in the framework of supergravity models, in
which gluinos cannot be much heavier than squarks. If the supergravity relations are
relaxed to the supersymmetric GUT relations between the gaugino masses, the excluded
range in the gluino/squark-mass plane can be extended slightly. For gluino masses above
550 GeV, no bound on the squark masses can be obtained any more, since the LSP
~�0
1
becomes so heavy that the missing transverse momentum is insu�cient to generate

an observable signal. [Very light gluinos, which may have escaped detection at hadron
colliders, are improbable in the light of the observed topologies of hadronic Z decays; see
e.g. Ref. [13]]. In the near future the search for squarks and gluinos can be extended at
the upgraded Tevatron to masses between 300 GeV and 400 GeV. At the pp collider LHC
the mass range up to 1:5{2 TeV can be sweeped, which covers the canonical range of the
coloured supersymmetric particles, yet may not exhaust the parameter space entirely.

The cross-sections for the production of squarks and gluinos in hadron collisions were
calculated at the Born level already quite some time ago [14]. Only recently have the
predictions been improved by next-to-leading order (NLO) SUSY-QCD corrections for
squark{antisquark [15] and gluino-pair production [16] in p�p collisions2. In the present
paper we give a systematic analysis of the next-to-leading order SUSY-QCD corrections
of all possible supersymmetric pair channels,

p�p=pp �! ~q~q; ~q�~q; ~q~g; ~g~g +X (~q 6= ~t) (1)

in the proton{antiproton collisions at the Tevatron and the proton{proton collisions at
the LHC.

2The gluonic radiative corrections to gluino-pair production in gluon fusion are closely related to the
gluonic corrections for heavy-quark production [17], just requiring the appropriate change of the Casimir
invariants.
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Several arguments demand the NLO SUSY-QCD analysis in order to obtain adequate
theoretical predictions for the cross-sections:

(i) The lowest-order cross-sections depend strongly on the a priori unknown renormal-
ization/factorization scale. As a result, the theoretical predictions are uncertain within
factors of 2. By implementing the NLO corrections, this scale dependence is expected to
be reduced signi�cantly.

(ii) Drawing from the experience with similar hadronic processes [e.g. hadroproduction
of top quarks], the NLO corrections are expected to be positive and large, thus enhancing
the production cross-sections and raising the presently available (conservative) bounds on
squark and gluino masses.

(iii) When squarks and gluinos will be discovered, the comparison of the measured total
cross-sections with the theoretical predictions can be used to determine the masses of
the particles. Due to the two escaping LSPs that are produced in the �nal-state decay
cascades, the masses of squarks and gluinos cannot be determined by reconstructing
the original squark and gluino states. [Transverse-momentum spectra can eventually be
exploited to evaluate squark and gluino masses from the �nal-state distributions [18]].

Because of the large number of mechanisms, the calculation of the NLO corrections is
tedious but straightforward. The only non-straightforward component of the theoretical
set-up is one element of the renormalization program. To make maximal use of the
common infrastructure developed earlier for top-quark production [17], we have chosen
the MS renormalization scheme. However, this scheme leads in n 6= 4 dimensions to a
mismatch between the 2 fermionic gluino degrees of freedom and the (n � 2) transverse
gluon degrees of freedom. As a consequence, the gauge coupling gs(MS) and the Yukawa
coupling ĝs(MS) of the MS scheme di�er in higher orders by a �nite amount, even in
exact supersymmetric theories. The problem, however, can be solved by introducing a
proper counter term that restores the supersymmetry also in higher orders [19].

The paper is organized as follows. In the next section we recapitulate the lowest-order
cross-sections for the partonic subprocesses of squark and gluino production for the sake
of completeness and to de�ne the notation. In Section 3 we carry out the calculation of
the virtual SUSY-QCD corrections, followed by real-gluon radiation and the discussion of
�nal states including light quarks. In Section 4 we present the overall corrections at the
parton level and at the hadronic level for the total p�p and pp cross-sections. Furthermore,
the transverse-momentum and rapidity distributions for semi-inclusive squark/gluino �nal
states will be discussed briey. We conclude the paper with an assessment of the results.
Some useful technical details are collected in several Appendices.
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2 Squark and Gluino Production in Leading Order

To set the stage for the subsequent discussion of higher-order e�ects, it is useful to reca-
pitulate the lowest-order processes of squark and gluino production in quark and gluon
collisions [14]. Moreover, the main features of the production mechanisms will be briey
described.

The hadroproduction of squarks and gluinos in leading order (LO) of the perturbative
expansion proceeds through the following partonic reactions:

~q�~q production: qi+�qj �! ~qk+�~ql (2)

g +g �! ~qi+�~qi (3)

~q~q production: qi+qj �! ~qi+~qj and c:c: (4)

~g~g production: qi+�qi �! ~g +~g (5)

g +g �! ~g +~g (6)

~q~g production: qi+g �! ~qi+~g and c:c: (7)

The momenta of the two partons in the initial states are denoted by k1 and k2, those of
the particles in the �nal states by p1 and p2.

The chiralities of the squarks ~q = (~qL; ~qR) are not noted explicitly. The indices i{l
indicate the avours of the quarks and squarks. Also charge-conjugated processes (c:c:)
are possible, related to the reactions (4) and (7); for the sake of simplicity they are
not given explicitly. They will be taken into account properly when the hadronic cross-
sections are calculated. The Feynman diagrams corresponding to these partonic reactions
are displayed in Fig. 1. The production of squark{antisquark �nal states requires quark{
antiquark (a) or gluon{gluon (b) initial states. Squark pairs can only be produced from
quark-pair (c) initial states. Gluino pairs are produced from quark{antiquark (d) and
gluon{gluon (e) initial states. The squark{gluino �nal states can only be produced in
quark{gluon (f) collisions.

We use the Feynman gauge for the internal gluon propagators. For the external gluons
only the transverse polarization states are generated. In the axial gauge the polarization
sum for the external gluons is given by

P
��
i =

X
T

�
��
T (ki) �

�
T (ki) = �g�� +

n
�
i k

�
i + k

�
i n

�
i

(ni ki)
� n2i k

�
i k

�
i

(ni ki)2
: (8)

Here ni 6= ki is an arbitrary vector. This polarization sum obeys the transversality
relations

ki� P
��
i = P

��
i ki� = ni� P

��
i = P

��
i ni� = 0:
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Figure 1: Feynman diagrams for the production of squarks and gluinos in lowest order.
The diagrams without and with crossed �nal-state lines [e.g. in (b)] represent t- and u-
channel diagrams, respectively. The diagrams in (c) and the last diagram in (d) are a
result of the Majorana nature of gluinos. Note that some of the above diagrams contribute
only for speci�c avours and chiralities of the squarks.

6



Combining these transversality relations with the Slavnov{Taylor identities for on-shell
external particles, e.g.

k
�
i M�� =Mghost

� / kj� (9)

for two external gluons [labelled i and j], allows us to perform ghost subtraction. Because
of the transversality relations all terms proportional to k�i and k�j can be removed from
the LO matrix elements, resulting in the nulli�cation of the right-hand side of Eq. (9)
[ghost subtraction]. As a consequence, the polarization sum can e�ectively be replaced
by P ��

i = �g��.
The nf = 5 light quark avours and the gluons are treated as massless particles. Since

we have excluded the top-squarks from the �nal state, all squark-avour and chirality
states are considered to be mass degenerate with mass m~q. The gluino mass is denoted
by m~g. The set of kinematical invariants used for the description of the reactions (2){(7)
is given by

s = (k1 + k2)
2 (10)

t = (k2 � p2)
2 t1 = (k2 � p2)

2 �m2

~q tg = (k2 � p2)
2 �m2

~g

u = (k1 � p2)
2 u1 = (k1 � p2)

2 �m2

~q ug = (k1 � p2)
2 �m2

~g:

The Mandelstam invariants are related by s+t+u = p2
1
+p2

2
. All in- and outgoing particles

are assumed to be on their respective mass shells, i.e. k2i = 0, p2i = m2

~q for squarks, and
p2i = m2

~g for gluinos.

Applying the Feynman rules given in Appendix A, we obtain the following squared
lowest-order matrix elements jMBj2 in n = 4� 2" dimensions3:

X
jMB j2(qi�qj ! ~q�~q) = �ij

"
8nfg

4

s NCF

t1u1 �m2

~qs

s2
+ 4ĝ4s NCF

t1u1 � (m2

~q �m2

~g)s

t2g

� 8g2s ĝ
2

s CF

t1u1 �m2

~qs

stg

#
+ (1� �ij)

"
4ĝ4s NCF

t1u1 � (m2

~q �m2

~g)s

t2g

#

X
jMB j2(gg ! ~q�~q) = 4nfg

4

s

�
CO

�
1� 2

t1u1

s2

�
�CK

�"
1�"�2

sm2

~q

t1u1

 
1�

sm2

~q

t1u1

!#

X
jMB j2(qiqj ! ~q~q) = �ij

"
2ĝ4s NCF

�
t1u1 �m2

~qs
�� 1

t2g
+

1

u2g

�

+ 4ĝ4s m
2

~gs

�
NCF

�
1

t2g
+

1

u2g

�
� 2CF

1

tgug

�#

+ (1� �ij)

"
4ĝ4s NCF

t1u1 � (m2

~q �m2

~g)s

t2g

#

3The generalization to n 6= 4 dimensions is anticipated here in view of the renormalization and mass
factorization that will have to be performed in higher orders later on.
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X
jMB j2(q�q ! ~g~g) = 4g4s CO

"
2m2

~gs+ t2g + u2g

s2
� "

#

+ 4g2s ĝ
2

s CO

"
m2

~gs+ t2g

st1
+

m2

~gs+ u2g

su1
+ "

�
tg

t1
+

ug

u1

�#

+ 2ĝ4s

"
CO

 
t2g

t2
1

+
u2g

u2
1

!
+ CK

 
2
m2

~gs

t1 u1
�

t2g

t2
1

�
u2g

u2
1

!#

X
jMB j2(gg ! ~g~g) = 8g4s NCO

�
1�

tgug

s2

�"
s2

tg ug
(1� ")2 � 2 (1� ") + 4

m2

~gs

tgug

 
1�

m2

~gs

tgug

!#

X
jMB j2(qg ! ~q~g) = 2g2s ĝ

2

s

�
CO

�
1� 2

su1

t2g

�
� CK

�"
(�1 + ")

tg

s

+
2(m2

~g �m2

~q) tg

su1

 
1 +

m2

~q

u1
+

m2

~g

tg

!#
:

The QCD gauge coupling (qqg) is denoted by gs and the Yukawa coupling (q~q~g) by ĝs.
These couplings are identical. For squarks all chiralities and non-stop avours are summed
over4. As mentioned before, the charge-conjugate �nal states that are not denoted ex-
plicitly in the above listing, will be included in the hadronic cross-sections. The SU(3)
colour factors are given by N = 3, CO = N(N2 � 1) = 24, CK = (N2 � 1)=N = 8=3, and
CF = (N2 � 1)=(2N) = 4=3.

After performing the n-dimensional phase-space integration and taking into account
colour and spin averaging, we �nd for the lowest-order double-di�erential distributions:

s2
d2�B

dt du
= Kij

�S"

�(1� ")

�
(t� p2

2
)(u� p2

2
)� p2

2
s

�2s

�
�"

�( [t� p2
2
][u� p2

2
]� p2

2
s )

��(s� 4m2) �(s+ t+ u� p2
1
� p2

2
)
X

jMBj2: (11)

Here m denotes the average mass of the produced particles, i.e. m = (
p
p2
1
+
p
p2
2
)=2.

The averaging of the initial-state colours and spins is incorporated in the factor Kij:

Kqq = Kq�q =
1

4N2
; Kgg =

1

4(1� ")2(N2 � 1)2
; Kqg =

1

4(1� ")N(N2 � 1)
:

The gluons have (n � 2) degrees of freedom in n dimensions. The scale parameter �
accounts for the correct dimension of the coupling in n dimensions. The term S" =
(4�)�2+" follows from the angular integrations.

4The �rst term of
P
jMB j2(qiqj ! ~q~q) corresponds to the production of squarks with di�erent

chiralities, whereas the second term corresponds to equal chiralities. When calculating cross-sections,
the second term will be weighted by a statistical factor of 1=2, since the squarks in the �nal state are
identical.
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The subsequent integration over the remaining invariants5 yields the total lowest-order
partonic cross-sections [14]:

�B(qi�qj ! ~q�~q) = �ij
nf��

2

s

s
�~q

"
4

27
�

16m2

~q

27s

#

+ �ij
��s�̂s

s

"
�~q

�
4

27
+

8m2

�

27s

�
+

 
8m2

~g

27s
+

8m4

�

27s2

!
L1

#

+
��̂2s
s

"
�~q

 
�
4

9
�

4m4

�

9(m2

~gs+m4

�
)

!
+

�
�
4

9
�

8m2

�

9s

�
L1

#

�B(gg ! ~q�~q) =
nf��

2

s

s

"
�~q

 
5

24
+

31m2

~q

12s

!
+

 
4m2

~q

3s
+

m4

~q

3s2

!
log

�
1� �~q

1 + �~q

�#

�B(qiqj ! ~q~q) =
��̂2s
s

"
�~q

 
�
4

9
�

4m4

�

9(m2

~gs+m4

�
)

!
+

�
�
4

9
�

8m2

�

9s

�
L1

#

+ �ij
��̂2s
s

"
8m2

~g

27(s+ 2m2

�
)
L1

#

�B(q�q ! ~g~g) =
��2s
s

�~g

 
8

9
+

16m2

~g

9s

!

+
��s�̂s

s

"
�~g

�
�
4

3
�

8m2

�

3s

�
+

 
8m2

~g

3s
+

8m4

�

3s2

!
L2

#

+
��̂2s
s

"
�~g

 
32

27
+

32m4

�

27(m2

~qs+m4

�
)

!
+

 
�
64m2

�

27s
�

8m2

~g

27(s� 2m2

�
)

!
L2

#

�B(gg ! ~g~g) =
��2s
s

"
�~g

 
�3�

51m2

~g

4s

!
+

 
�
9

4
�

9m2

~g

s
+

9m4

~g

s2

!
log

�
1� �~g

1 + �~g

�#

�B(qg ! ~q~g) =
��s�̂s

s

"
�

s

�
�
7

9
�

32m2

�

9s

�
+

 
�
8m2

�

9s
+

2m2

~qm
2

�

s2
+

8m4

�

9s2

!
L3

+

 
�1�

2m2

�

s
+

2m2

~qm
2

�

s2

!
L4

#
;

5The explicit boundaries of these integrations are given in Appendix B.
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with

L1 = log

�
s+ 2m2

�
� s�~q

s+ 2m2

�
+ s�~q

�
L2 = log

�
s� 2m2

�
� s�~g

s� 2m2

�
+ s�~g

�

L3 = log

�
s�m2

�
� �

s�m2

�
+ �

�
L4 = log

�
s+m2

�
� �

s+m2

�
+ �

�

�~q =

s
1�

4m2

~q

s
�~g =

s
1�

4m2

~g

s

m2

�
= m2

~g �m2

~q � =
q
(s�m2

~g �m2

~q)
2 � 4m2

~gm
2

~q

�s = g2s=4� �̂s = ĝ2s=4�:

Note that we have suppressed the theta-functions �(s� 4m2) for the production thresh-
olds. For identical particles in the �nal state [gluino-pair production or production of
squarks with identical chirality and avour] a statistical factor 1=2 has been taken into
account.

For the production of squark pairs or squark{gluino pairs only one initial state con-
tributes at lowest order. For squark{antisquark and gluino pairs both gluon{gluon and
quark{antiquark initial states are possible.

The total hadronic cross-sections are obtained by integrating the parton cross-sections
in the usual way over the parton distributions fi in the proton/antiproton:

�(ij ! ~q; ~g) =

Z
dx1 dx2 fi(x1) fj(x2) �

B(ij ! ~q; ~g; s = x1x2S); (12)

where the total centre-of-mass energy of the collider is denoted by
p
S.

To assess the relative weights of ~q�~q, ~q~q, ~g~g and ~q~g �nal states in p�p collisions at the
Tevatron and in pp collisions at the LHC, the relative yields are shown for a typical set
of mass parameters in Fig. 2 and Fig. 3. The relative yields of squarks and gluinos in
the �nal states depend strongly on the mass ratio m~q=m~g, for which we have chosen two
representative values, 0:8 and 1:6. If squarks are lighter than gluinos, the valence partons
give the dominant yield of squark{antisquark pairs/squark pairs at the Tevatron/LHC.
By contrast, if the gluinos are the lighter of the two species, their production is the most
copious.

3 SUSY-QCD Corrections

3.1 Virtual Corrections

In this subsection we will present the virtual QCD corrections to the partonic production
cross-sections of squarks and gluinos. The technical set-up of the calculation will be de-
�ned, including the renormalization of the ultraviolet (UV) divergences. The calculations
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Figure 2: The relative yields of squarks and gluinos in the �nal states at the Tevatron.
The mass ratio m~q=m~g is chosen to be (a) 0:8 and (b) 1:6. Also shown are the leading
parton contributions for (c) ~q�~q and (d) ~g~g �nal states. Parton densities: GRV 94 [20];
renormalization and factorization scale Q = m~q for squarks, Q = m~g for gluinos, and
Q = (m~q +m~g)=2 for squark{gluino pairs.

are carried out in the MS renormalization scheme, which requires a careful analysis of
the Yukawa (q~q~g) coupling ĝs in higher orders.

3.1.1 Technical Set-Up

The calculation of the O(�s) corrections to the reactions (2){(7) involves the evaluation
of the virtual corrections, i.e. the interference of the Born matrix element [after ghost
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Figure 3: The relative yields of squarks and gluinos in the �nal states at the LHC. The
mass ratio m~q=m~g is chosen to be (a) 0:8 and (b) 1:6. Also shown are the leading parton
contributions for (d) ~g~g �nal states. Parton densities: GRV 94 [20]; renormalization and
factorization scale Q = m~q for squarks, Q = m~g for gluinos, and Q = (m~q + m~g)=2 for
squark{gluino pairs. [Note that ~q~q=~q~g �nal states can only be generated by qq=qg initial
states so that diagram (c) is trivial and not shown.]

subtraction] with the one-loop amplitudes. The corresponding di�erential cross-section is
given by

s2
d2�V

dt du
= Kij

�S"

�(1� ")

�
(t� p2

2
)(u� p2

2
)� p2

2
s

�2s

�
�"

�( [t� p2
2
][u� p2

2
]� p2

2
s )

��(s� 4m2) �(s+ t + u� p2
1
� p2

2
)
X�MBMV � +MVMB�

�
: (13)
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The virtual (one-loop) amplitudes include self-energy corrections, vertex corrections, and
box diagrams. For the virtual particles inside loops we use the complete supersymmetric
QCD spectrum: gluons, gluinos, all quarks, and all squarks. In Fig. 4 we present a set
of typical virtual corrections. In (a) the gluino self-energy is given. The diagram with
reversed fermion-number ow contributes due to the Majorana nature of the gluinos. The
vertex corrections are exempli�ed by a gauge vertex (b) and a Yukawa vertex (c). Typical
examples for the di�erent types of box diagrams are depicted in (d), (e), and (f).

The divergences in the virtual corrections are regularized by performing the calcula-
tions in n = 4 � 2" dimensions. These divergences consist of ultraviolet6, infrared (IR),
and collinear divergences [also called mass singularities], and they show up as poles of the
form "�i (i = 1; 2). Since the virtual amplitudes are contracted with the Born matrix
elements, all loop momenta will be contracted with themselves or external momenta. This
leads to a great simpli�cation of the tensor integrals appearing in the one-loop corrections.
These tensor integrals are evaluated in n dimensions by means of an adapted version of
the standard Passarino{Veltman tensor integral reduction [21], and they are expressed
in terms of scalar integrals. The coe�cients of these scalar integrals are �nite, and they
have to be calculated up to O("2). The divergences are contained in the scalar integrals.
We have calculated these, using two di�erent techniques. One is based on the Feynman
parametrization, the other proceeds via the computation of the absorptive part by apply-
ing the Cutkosky cutting rules in n dimensions, followed by the use of dispersion-integral
techniques to get the real part. All analytical manipulations were performed with the
help of the symbolic computer program FORM [22].

The case of equal masses for squarks and gluinos is calculated separately, in view of
additional singularities. Divergent terms of the form log[(m2

~g�m2

~q)=m
2

~q] lead to additional
1=" poles. It has been checked explicitly that the �nal cross-sections are nevertheless
continuous at this point of the mass-parameter space.

The singularity structure of the scalar integrals in n dimensions can be summarized as
follows. The non-vanishing scalar one-point and two-point functions only give rise to UV
poles. The derivative of the on-shell two-point functions7, and the three- and four-point
functions are UV �nite and give rise only to IR and collinear singularities. IR poles appear
when a massless particle is exchanged between two on-shell particles; collinear poles show
up when a massless particle splits into two massless collinear particles. Double poles are
generated only when IR and collinear singularities are present at the same time.

The 5 Dirac matrix, entering the calculation through the quark{squark{gluino Yukawa
couplings, is treated in the `naive' scheme. In this scheme the 5-matrix anticommutes
with the other �-matrices. This is a legitimate procedure at the one-loop level for
anomaly-free theories.

We have excluded the top-squarks from the �nal states, as discussed in the intro-
duction. However, to carry out the NLO calculation consistently, we have to take into

6As expected, no quadratic UV divergences are generated in softly broken supersymmetric models.
7In the top{stop loop contributing to the gluino self-energy we insert widths for top, stop, and gluino

states.
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Figure 4: A selected set of Feynman diagrams for the virtual corrections. (a) Gluino self-
energy, (b) quark{quark{gluon vertex [gauge coupling], (c) quark{squark{gluino vertex
[Yukawa coupling], (d) two-point boxes, (e) three-point boxes, and (f) four-point boxes.
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account the top-squarks inside loops. For the sake of simplicity we take them to be mass
degenerate with the other squarks. For the top quark we use the mass mt = 175 GeV.
Thus, the �nal results will depend on two free parameters: the squark mass m~q and the
gluino mass m~g.

The de�nitions of the invariant energies and momentum transfers, and the gauge
choices for internal and external gluons are the same as in lowest order. Faddeev{Popov
ghost contributions have therefore to be taken into account in the gluon self-energy and
in the three-gluon vertex corrections.

3.1.2 Renormalization of UV Divergences

The UV divergences can be removed by renormalizing the coupling constants and the
masses of the heavy particles. The external self-energies are multiplied by a factor 1=2
to properly account for the transition from Green's functions to the S-matrix. For the
renormalization of the QCD coupling constant one usually resorts to the MS scheme,
which involves n-dimensional regularization, i.e. �elds, phase space, and loop momenta
are de�ned in n dimensions. The UV 1=" poles are subtracted, together with speci�c tran-
scendental constants, at an arbitrary subtraction point QR, the charge-renormalization
scale.

In supersymmetric theories, however, a complication occurs. In n 6= 4 dimensions the
MS scheme introduces a mismatch between the number of gluon (n� 2) and gluino (2)
degrees of freedom. Since this O(") mismatch will result in �nite non-zero contributions,
the MS scheme violates supersymmetry explicitly in higher orders. In particular, the
Yukawa coupling ĝs, which by supersymmetry should coincide with the gauge coupling
gs, deviates from it by a �nite amount at the one-loop level. Requiring the physical
amplitudes to preserve this supersymmetric relation, a shift between the bare Yukawa
coupling and the bare gauge coupling must be introduced in the MS scheme:

ĝs = gs

�
1 +

�s

4�

�
2

3
N � 1

2
CF

��
= gs

h
1 +

�s

3�

i
; (14)

which e�ectively subtracts the contributions of the false, non-supersymmetric degrees of
freedom [also called " scalars].

The need for introducing a �nite shift is best demonstrated for the e�ective [one-loop
corrected] Yukawa coupling, which must be equal to the e�ective gauge coupling in an
exact supersymmetric world with massless gluons/gluinos and equal-mass quarks/squarks.
For the sake of simplicity we de�ne the e�ective couplings �e�(Q2) and �̂e�(Q2) in the
limit of on-shell quarks/squarks and almost on-shell gluons/gluinos, with virtuality Q2 �
m2

~q = m2

q; in this limit the couplings do not contain gauge-dependent terms. In the
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MS scheme we �nd, after charge renormalization:

MS : �e�(Q2) = gs

�
1 +

�s

4�
N

�
�1
�"
� log

�
�2

m2

~q

�
� 1

2
log

�
Q2

m2

~q

�
+
7

6

��
(15)

�̂e�(Q2) = ĝs

�
1 +

�s

4�

�
N

�
�1
�"
� log

�
�2

m2

~q

�
� 1

2
log

�
Q2

m2

~q

�
+
1

2

�
+
CF

2

��
:(16)

The singular term 1=�" represents the combination 1=" � E + log(4�). The remaining
1=" poles are IR and collinear singularities. Inspecting �e� and �̂e�, it is easy to prove
that the di�erence between the two e�ective couplings coincides with the shift in Eq. (14).
Taking into account this �nite shift of the bare couplings in theMS scheme, both e�ective
couplings become identical at the one-loop level. In this way supersymmetry is preserved
and the MS renormalization becomes a consistent scheme.

An alternative renormalization scheme is the modi�ed Dimensional Reduction (DR )
scheme in which the �elds are treated in four dimensions, but the phase space and loop
momenta in n dimensions. In this scheme no mismatch between bosonic and fermionic
degrees of freedom is apparently introduced and supersymmetry is preserved ab initio. At
the level of the e�ective couplings �e� and �̂e�, this is reected in the equalities

DR : �e�(Q2) = gs

�
1 +

�s

4�
N

�
�1
�"
� log

�
�2

m2

~q

�
� 1

2
log

�
Q2

m2

~q

�
+ 1

��
(17)

= �̂e�(Q2): (18)

As a result, both couplings are identical order by order. [It should be noted that the
transition from the e�ective gauge coupling in MS to the gauge coupling in DR involves
a well-known �nite renormalization �sN=(24�) = �s=(8�) [23].]

In the following we use the MS renormalization scheme, supplemented by the �nite
shift of the Yukawa coupling. In this way supersymmetry is preserved on the one hand,
while on the other hand the de�nition of the strong gauge coupling corresponds to the
usual Standard-Model measurements.

Below we list the various renormalizations needed for the production of squarks and
gluinos. In order to preserve the form of the Ward identity given in Eq. (9), non-zero
particle masses have to be renormalized in an on-shell scheme. We have opted for a real
mass renormalization, involving the subtraction of the real part of the on-shell self-energies
at the real-valued pole masses. In the case of squarks and gluinos, this is equivalent to
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replacing the bare masses in the lowest-order propagators by

�
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The parameters m~q and m~g are the pole masses.

As discussed above, the couplings are renormalized in the MS scheme, including the
�nite shift of the bare Yukawa coupling given by Eq. (14). This leads to the following
replacements of the bare couplings in the LO expressions:

(gs)
bare ! gs(Q

2

R)
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1 +
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2
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The �rst coe�cient �0 of the SUSY-QCD � function can be decomposed into a sum of
contributions from light and heavy particles:

�0 =

�
11

3
N � 2

3
nf

�
+

�
�2
3
N � 2

3
� 1

3
(nf + 1)

�
= �L

0
+ �H

0
: (19)

In addition to the poles, also some logarithms are subtracted in order to decouple the heavy
particles [top quark, squarks, gluinos] from the running of �s(Q

2

R). In this decoupling
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scheme the Q2

R evolution of the strong coupling is determined completely by the light-
particle spectrum [gluons and nf = 5 massless quarks]:

@ g2s(Q
2

R)

@ log(Q2

R)
= gs(Q

2

R)�(gs) = ��2

s(Q
2

R) �
L
0
: (20)

The methods described above to renormalize the UV divergences lead to cross-sections
that are UV-�nite. Nevertheless, there are still divergences left. The IR divergences will
cancel against the contribution from soft-gluon radiation. The collinear singularities,
�nally, will be removed by applying mass factorization. These steps will be discussed in
detail in the next subsections.

3.2 Real-Gluon Radiation

Two important aspects of the real-gluon radiation, the split-up of the phase space in soft-
and hard-gluon regimes, and the renormalization of collinear divergences by means of
mass factorization, will be discussed in detail in the following subsections.

3.2.1 Matrix Elements and Phase Space

In order to complete the NLO evaluation of squark and gluino production we need, in
addition to the afore-mentioned virtual SUSY-QCD corrections, also the corrections from
real-gluon radiation. They are obtained from the LO partonic reactions by adding a gluon
to the �nal state:

qi+�qj �! ~qk+�~ql+g (21)

g +g �! ~qi+�~qi+g (22)

qi+qj �! ~qi+~qj+g (23)

qi+�qi �! ~g +~g +g (24)

g +g �! ~g +~g +g (25)

qi+g �! ~qi+~g +g: (26)

Again, the momenta of the initial-state partons are denoted by k1; k2, while the particles
in the �nal states carry momenta p1; p2, and k3. The charge-conjugate �nal states, which
are not given here explicitly, will be taken into account when the hadronic cross-sections
are calculated. A representative set of Feynman diagrams, contributing to the real-gluon
amplitude MR, is given in Fig. 5. We display some diagrams for (a) squark{antisquark
production in quark{antiquark annihilation, (b) gluino-pair production in gluon fusion,
and (c) squark{gluino production in quark{gluon collisions. The internal and external
gluon lines, and the 5 Dirac matrix, are treated in the same way as before.
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Figure 5: A representative set of Feynman diagrams corresponding to real-gluon radia-
tion: squark{antisquark production (a), gluino-pair production (b), and squark{gluino
production (c).

To evaluate the squared real-gluon matrix elements jMRj2 we de�ne the following
kinematical invariants [17]:

s = (k1 + k2)
2 s5 = (p1 + p2)

2 (27)

s3 = (k3 + p2)
2 �m2

~q s4 = (k3 + p1)
2 �m2

~q

t = (k2 � p2)
2 t0 = (k2 � k3)

2

u = (k1 � p2)
2 u0 = (k1 � k3)

2

u6 = (k2 � p1)
2 �m2

~q u7 = (k1 � p1)
2 �m2

~q:
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For the sake of convenience we will use the following additional invariants:

s3g = s3 +m2

~q �m2

~g s4g = s4 +m2

~q �m2

~g

s4x = s4 +m2

~q � p2
1
= 2(k3 p1)

t1 = t�m2

~q tg = t�m2

~g

u1 = u�m2

~q ug = u�m2

~g

u6g = u6 +m2

~q �m2

~g u7g = u7 +m2

~q �m2

~g:

The squared matrix elements must be evaluated in n = 4� 2" dimensions up to O("2).
After performing the n-dimensional three-particle phase-space integration, we �nd for

the double-di�erential distributions

s2
d2�R

dt du
= Kij

S2

"�
2"

2�(1� 2")

�
(t� p2

2
)(u� p2

2
)� p2

2
s

�2s

�
�"

�( [t� p2
2
][u� p2

2
]� p2

2
s )

��(s� 4m2)
(2k3p1)

1�2"

(2k3p1 + p2
1
)1�"

�(2k3p1)

Z
d
n

X
jMRj2; (28)

with 2(k3p1) = s+ t+u� p2
1
� p2

2
� 0. The n-dimensional angular integration is given ex-

plicitly by
R
d
n =

R �
0
sin1�2"(�1) d�1

R �
0
sin�2"(�2) d�2 [see Appendix B]. To perform the

angular integrations, we isolate the coe�cients of the form (s0)k(s00)l. The variables s0 and
s00 denote kinematical invariants of the list in Eq. (27), and k and l are integer numbers.
One of those invariants should contain both integration variables (�1; �2), whereas the
second should depend only on �1. This can be achieved by means of partial fractioning,
exploiting the fact that only �ve of the kinematical invariants are in fact independent8.
The angular integrals are therefore of the form

I(k;l)n =

Z �

0

sin1�2"(�1) d�1

Z �

0

sin�2"(�2) d�2(a+b cos �1)
�k(A+B cos �1+C sin �1 cos �2)

�l:

(29)

Explicit analytical expressions for these angular integrals can be found in Ref. [17]. In
Appendix B we demonstrate how the kinematical invariants can be expressed in terms of
the angular variables.

3.2.2 Soft- and Hard-Gluon Radiation

To identify the IR singularities, the phase space for gluon radiation is split into two distinct
regimes, one describing soft gluons and the other describing hard gluons. This separation
can be de�ned by introducing a cut-o� parameter � in the invariant mass s4x = 2(k3p1),
corresponding to the radiated gluon and one of the heavy particles in the �nal state. The

8The relevant relations between the various invariants are given in Appendix B for the process of
squark{gluino production, which represents the most general case.

20



cut-o� parameter is chosen so small that it can be neglected with respect to any other
mass scale in the process. In terms of the single-di�erential distribution d�=dt the split-up
takes the form

d�R

dt
=

Z smax
4x

0

ds4x
d2�R

dt du
=

Z
�

0

ds4x
d2�S

dt du
+

Z smax
4x

�

ds4x
d2�H

dt du
: (30)

The �rst term on the right-hand side of Eq. (30) represents the regime of soft-gluon
radiation. In this regime the momentum of the radiated gluon, k3, tends to zero and an
eikonal approximation can be applied, i.e. neglecting k3 whenever possible. In the limit
k3 ! 0, the (2 ! 3) kinematics is reduced to (2 ! 2) kinematics, and the kinematical
invariants of Eq. (27) take the form

s5 ! s 2(k3p1)! 0 2(k3p2)! 0 t0 ! 0 (31)

u0 ! 0 u6=u6g ! u1=ug u7=u7g ! t1=tg;

while the remaining invariants are not a�ected.

After integration over the angles and over the invariant mass s4x, singular expressions
of the form "�i (i = 1; 2) are generated. The double poles correspond to con�gurations
where IR and collinear singularities coincide. When the single-di�erential soft-gluon dis-
tribution d�S=dt is added to the virtual corrections, the sum is IR-�nite. This sum,
however, is not free of divergences until the collinear singularities are removed by means
of mass factorization.

The second term on the right-hand side of Eq. (30) represents the regime of hard-gluon
radiation. In this regime only collinear singularities occur, generated when the radiated
gluon is collinear with one of the initial-state massless particles. They show up in jMRj2
as terms proportional to 1=t0 or 1=u0, which behave as 1=[1� cos(�i)] (i = 1; 2) and lead
to 1=" poles after the angular integration. Also these collinear singularities have to be
removed by means of mass factorization.

As a result of the split-up of the phase space, terms of the form logi(�=m2) (i = 1; 2)
occur in both the soft and hard cross-sections. They come from the same terms that
generate the IR singularities. If soft and hard contributions are added up, however, any
� dependence disappears from the cross-sections in the limit �! 0.

3.2.3 Mass Factorization

The collinear divergences, generated by the radiation of gluons [or massless quarks], have
a universal structure. The partonic cross-sections �ij, which contain the collinear singu-
larities, have the following form, factorized to all orders of perturbation theory:

s2
d2�ij(s; tx; ux; �

2; ")

dtx dux
=

Z
1

0

dx1

x1

Z
1

0

dx2

x2

X
l;m

�li(x1; Q
2

F ; �
2; ") �mj(x2; Q

2

F ; �
2; ")

� ŝ2 d
2�̂lm(ŝ; t̂x; ûx; Q

2

F )

dt̂x dûx
(32)
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tx = �2(k2p2) ux = �2(k1p2) ŝ = x1x2s t̂x = x2tx ûx = x1ux:

The indices i{m characterize the initial-state partons. The universal splitting functions
�ij, representing the probability of �nding, inside the parent particle j at the scale Q2

F , a
particle i with fraction x of the longitudinal momentum, contain the collinear divergences.
They can be absorbed into a rede�nition of the parton densities at NLO [24], in general
called mass factorization. Since the subtraction point of the mass-factorization procedure
is arbitrary, the splitting functions will depend on the factorization scale QF . Adopting
the MS mass-factorization scheme we can write to O(�s)

�ij(x;Q
2

F ; �
2; ") = �ij �(1� x) +

�s

2�

�
�1
�"
+ log

�
Q2

F

�2

��
Pij(x); (33)

with 1=�" = 1="� E + log(4�) as before. The hard-scattering (reduced) cross-sections �̂ij
are free of collinear divergences. They depend, like the splitting functions, on the scale
QF . In NLO they have the form
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The Altarelli{Parisi kernels Pij(x) [25] are given by [Tf = 1=2]

Pgg(x; �) = 2N
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�
2 log � +

3

2

�
�(1� x) (36)

Pgq(x) = CF

1 + (1� x)2

x
(37)

Pqg(x) = Tf
�
x2 + (1� x)2

�
: (38)

The parameter � is related to the IR cut-o� parameter � through relations of the form
� = �=(s + tx) or � = �=(s + ux), as can be read o� from Eq. (34) by solving the �-
functions in the LO distributions. For the mass factorization of the collinear divergences
related to gluon radiation, only the diagonal splitting functions �ii are required. [In
SUSY-QCD, additional splitting functions are realized in the �nal-state distributions at
very high energies. For the sake of completeness they are collected in Appendix C.]

After performing the mass factorization in this way, the �nal results for the virtual
corrections plus gluon radiation are free of collinear divergences.
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We will use the standard MS mass-factorization scheme in which most of the ex-
perimentally determined parton densities have been parametrized. The transition to the
DR scheme is non-trivial and involves a careful matching for gluon-initiated heavy-particle
production. [This was �rst observed for top production within standard QCD [17] and is
not related to supersymmetry aspects.]

3.3 Final States with an Additional Massless Quark

In this subsection we shall discuss the partonic reactions that can only be realized in
next-to-leading order of the SUSY-QCD perturbative expansion. These reactions involve
�nal states with an additional massless (anti)quark. In such reactions, explicit particle
poles show up inside the allowed phase space, requiring the careful isolation of on-shell
squark and gluino production and a subsequent subtle subtraction procedure of the poles.

3.3.1 Crossing

The reactions that involve the radiation of a massless (anti)quark only contribute at NLO:

g +�qj �! ~qk+�~ql+�qi (39)

qi+g �! ~qk+�~ql+qj (40)

qi+g �! ~qi+~qj+�qj (41)

g +�qi �! ~g +~g +�qi (42)

qi+g �! ~g +~g +qi (43)

g +g �! ~qi+~g +�qi (44)

qi+�qj �! ~qk+~g +�ql (45)

qi+qj �! ~qk+~g +ql: (46)

Again, the momenta of the initial-state partons are denoted by k1; k2, while those of
the particles in the �nal states are denoted by p1; p2, and k3. In Fig. 6 we give a few
selected Feynman diagrams for (a) the squark{antisquark{quark �nal state and (b) the
gluino{gluino{quark �nal state.

In fact, only the matrix element for process (45) requires a new calculation. The
squared matrix elements for the other reactions can be related to subprocesses (21), (23),
(24), (26), and a posteriori (45) by means of crossing. This involves the interchange of
the particles with either the momenta k1 and k3 (1$ 3) or k2 and k3 (2$ 3).

The (1 $ 3) crossing corresponds to the replacement k1 $ �k3. In terms of the
kinematical invariants of Eq. (27), this is equivalent to the exchanges

s$ t0 s3=s3g $ u1=ug s4=s4g $ u7=u7g; (47)
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whereas the other invariants are not a�ected. In view of the di�erent sign of the quark
momentum inside the spinor sum, the resulting squared matrix elements have to be mul-
tiplied by a factor (�1).

Analogously, the (2$ 3) crossing corresponds to the replacement k2 $ �k3. In terms
of the kinematical invariants of Eq. (27), this is equivalent to

s$ u0 s3=s3g $ t1=tg s4=s4g $ u6=u6g; (48)

whereas the other invariants are not a�ected. Again the resulting squared matrix elements
have to be multiplied by a factor (�1).

The double-di�erential distributions are de�ned by Eq. (28). In parallel to real-gluon
radiation, the integrand is cast into the appropriate form by means of partial fractioning
before the angular integrals are performed. Since no IR divergences are generated, the
split-up into soft and hard regimes is not needed.

However, the distributions contain initial-state collinear singularities, which can be
removed by means of mass factorization [Eq. (34)]. The non-diagonal splitting functions
are needed, together with the LO distributions with one gluon more or one gluon less in
the initial state. At this point the di�erence in the degrees of freedom for the gluons and
quarks in n dimensions starts to play a role, leading to �nite contributions to the reduced
cross-sections.

3.3.2 On-Shell Intermediate Squark/Gluino States

Quarks in the �nal state can be decay products of on-shell squarks (~q ! ~gq) if m~q > m~g,
or of on-shell gluinos (~g ! �~qq) if m~g > m~q. Since these processes occur at lowest order

(a)

(b)

1

p2 − mq̃
2

Figure 6: Selected set of Feynman diagrams for subprocesses that involve additional
massless quarks in the �nal state. Squark{antisquark production (a), and gluino{gluino
production (b).
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and since the branching ratios for the decays are large, these channels are the dominant
production channels for quarks in the �nal state. If the squarks and gluinos are o�
shell, cf. Fig. 6, the production cross-section is suppressed by the strong coupling �s and
classi�ed as a higher-order correction. However, by inspecting Fig. 6, it is obvious that
some of the higher-order amplitudes are smoothly connected with the Born amplitudes.
Formally they are marked by singularities, 1=(p2�m2

~q) or 1=(p
2�m2

~g), if the momentum
ow approaches the squark or gluino mass. These problems can easily be solved by
introducing the non-zero widths of squarks/gluinos and regularizing in this way the higher-
order amplitudes. After subtracting the Breit{Wigner pole contributions from the higher-
order diagrams, which are already accounted for by the Born diagrams, the cross-section
for the production of squarks and gluinos is de�ned properly and no double-counting
occurs.

To exemplify this procedure we restrict ourselves to the case in which the squarks are
heavier than the gluinos so that the `stable' �nal states, with respect to SUSY-QCD, are
2-gluino �nal states. This example exhibits the full scope of subtleties inherent in the
regularization and subtraction procedures. [The singularities generated in the other case
in which the gluinos decay to squarks, are treated in a similar way.] To be speci�c, we
consider the subprocess qg! ~g~gq.

The last diagram of Fig. 6b gives rise to a particle pole if the squark momentum
approaches them~q mass shell; the other diagrams correspond to continuum ~g~g production.
The pole is regularized by introducing the non-zero squark width �~q, substituting for the
propagator the Breit{Wigner form

1

p2 �m2

~q

! 1

p2 �m2

~q + im~q�~q

: (49)

Denoting the on-shell resonance contribution to the matrix element, de�ned for p2 = m2

~q,
by Mres, and the sum of the o�-shell resonance contribution and the gluino continuum
contribution byMrem, the squared matrix element can be decomposed into the resonance
part and a remainder,

jMj2 = jMresj2 + 2Re [M�

resMrem] + jMremj2: (50)

Integrating over the entire phase space of the ~g~gq �nal state, the resonance contribution to
the cross-section represents the ~q~g Born cross-section [including the branching ratio �(~q !
q~g)=�~q], while the remainder is to be attributed to the O(�s) higher-order corrections to
~g~g production9.

The particle pole 1=(q2�m2

~q) associated with the other �nal-state gluino can be treated
in a similar way. The presence of complex masses in the p and q propagators gives rise
to real contributions from the interference of the two imaginary parts. This requires a
careful treatment of the angular integrations [see Appendix B]. Single poles in jMj2 of the
form 1=(p2 �m2

~q) or 1=(q
2 �m2

~q), corresponding to con�gurations with only one on-shell

9Technical details on the separation of the resonance contribution are deferred to the Appendices.
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propagator, give rise to principal-value integrals, resulting in �nite contributions to the
cross-sections. In these contributions we use a very small decay width for the squarks
instead of the physical width �~q. The inuence of the actual size of the squark width was
found to be very small.

Adding the O(�s) corrections to the process qg ! ~q~g, the �nal result for the cross-
section �(qg ! ~g~gq) including all radiative corrections to O(�s), may therefore be written
as:

�(qg ! ~g~gq) = �res(qg ! ~q~g ! ~g~gq [LO + NLO]) + ��(qg ! ~g~gq [rem:]); (51)

with �� denoting the interference term and the continuum contribution in Eq. (50). By
de�nition we will attribute �res to ~q~g production, but �� to ~g~g production.

For squark{antisquark and squark{squark �nal states, similar procedures have to be
followed if the gluinos are heavier than the squarks. For squark{gluino �nal states the
subtraction procedure is required for m~q > m~g as well as for m~g > m~q.

After all singularities have been removed, we end up with well-de�ned double-di�eren-
tial distributions for the irreducible squark{antisquark, squark{squark, gluino{gluino, and
squark{gluino �nal states. These irreducible �nal states include only those topologies in
which the lightest of the coloured SUSY particles is not produced in on-shell decays of
the heavier particle.

4 Results

4.1 Partonic Cross-Sections

We �rst present the NLO SUSY-QCD results at the parton level for the production of
squarks and gluinos in quark and gluon collisions. To classify the contributions it is con-
venient to decompose the partonic cross-sections into scaling functions. In contrast with
the double-di�erential cross-sections, these scaling functions for the total cross-sections
can in general not be presented in analytic form. Nevertheless, for two kinematical limits,
at high energies and close to the production threshold, compact analytical expressions
can be derived.

4.1.1 Scaling Functions

The partonic cross-sections can be calculated from the double-di�erential distributions,
discussed in the previous subsections, by integration over the Mandelstam variables t and
s4. The exact boundaries for the integration can be found in Appendix B. For a detailed
analysis of the partonic cross-sections we introduce scaling functions

�̂ij =
�2

s(Q
2)

m2

�
fBij (�; r) + 4��s(Q

2)

�
fV+S
ij (�; r; rt) + fHij (�; r) +

�fij(�; r) log

�
Q2

m2

���

26



� =
s

4m2
� 1 r =

m2

~g

m2

~q

rt =
m2

t

m2
: (52)

The indices i; j = g; q; �q indicate the partonic initial state of the reaction. As before,
m = (

p
p2
1
+
p
p2
2
)=2 is the average mass of the produced particles. The centre-of-mass

energy of the partonic reaction
p
s is absorbed in the quantity �, which is better suited

for analyzing the scaling functions in the various regions of interest. Note that we have
identi�ed the renormalization and factorization scales, Q = QR = QF , properly justi�ed
in the next subsection. For identical particles in the �nal state, i.e. gluino pairs or
squark pairs with equal avours and chiralities, we have taken into account the statistical
factor 1=2. The scaling functions are divided into the Born term fB, the sum of virtual
and soft-gluon corrections fV+S, the hard-gluon corrections fH , and the scale-dependent
contributions �f . In this context it should be noted that the logi(�=m2) terms (i = 1; 2)
are removed from the soft-gluon corrections and added to the hard-gluon part. The hard-
gluon corrections are therefore independent of the cut-o� for �� m2.

The scaling functions for squark{antisquark production are displayed in Fig. 7. Unless
stated otherwise, we use m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV as mass-
parameter input, representing an allowed mass con�guration close to the present exclusion
boundaries. In LO the only possible initial states are gluon{gluon (a) and quark{antiquark
states [with equal (b) and di�erent (c) avours]. The gluon{quark (d) channel is only
realized at NLO.

In Fig. 8 we present the scaling functions for squark-pair production. To lowest order,
the �nal states are generated exclusively in quark{quark collisions [with equal (a) and
di�erent (b) avours]. At NLO the gluon{quark (c) initial state starts to contribute.

The scaling functions for gluino-pair production are displayed in Fig. 9. In LO this �nal
state can only be produced in gluon{gluon (a) and quark{antiquark (b) reactions. Yet
again, the gluon{quark (c) initial state is possible at NLO. The adopted mass con�guration
[with m~q > m~g] allows an on-shell intermediate squark{gluino state, with subsequent
decay of the squark into a gluino and a massless quark. As discussed in Section 3.3.2,
the associated singularity has to be subtracted in order to avoid double counting. After
the subtraction is performed, a remaining, though integrable, singularity shows up in
the scaling function fHgq at the threshold for squark{gluino production. This integrable
singularity is regularized by using a small non-zero squark width.

The scaling functions corresponding to gluino{squark production are given in Fig. 10.
Solely the gluon{quark (a) initial state contributes at LO. All other initial states, i.e.
gluon{gluon (b), quark{antiquark (c), and quark{quark (d), appear only at NLO. The
singularities associated with on-shell squark{(anti)squark intermediate states are sub-
tracted, leaving behind an integrable remnant.

The comparison of the various scaling functions reveals that contributions involving at
least one gluon in the initial state and at least one gluino in the �nal state are dominant.
This is a straightforward consequence of the large colour charge of particles in the adjoint
representation.
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Figure 7: The scaling functions [Eq. (52)] for squark{antisquark production from (a) gg,
(b) q�q, (c) q0�q, and (d) gq initial states. Flavours and chiralities of the squarks are summed
over. Mass parameters: m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV.
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Figure 8: The scaling functions [Eq. (52)] for squark-pair production from (a) qq, (b) q0q,
and (c) gq initial states. Flavours and chiralities of the squarks are summed over. Mass
parameters: m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV.
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Figure 9: The scaling functions [Eq. (52)] for gluino-pair production from (a) gg, (b)
q�q, and (c) gq initial states. The (integrable) singularity in (c) is the result of on-shell
intermediate squark{gluino states; this singularity is regularized by using a small non-zero
squark width. Mass parameters: m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV.
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Figure 10: The scaling functions [Eq. (52)] for squark{gluino production from (a) gq, (b)
gg, (c) q�q, and (d) qq initial states. Flavours and chiralities of the squarks are summed
over. The (integrable) singularities in (b) and (c) are caused by on-shell intermediate
squark{antisquark states, in (d) by on-shell intermediate squark{squark states; these sin-
gularities are regularized by using a small non-zero squark width. Mass parameters:
m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV.
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Figure 11: The variation of the scaling functions [Eq. (52)] for q�q ! ~g~g over a squark-mass
interval around m~q = m~g: m~g = 200 GeV and (a) m~q = 175 GeV, (b) m~q = 200 GeV, (c)
m~q = 225 GeV.

Noteworthy is the squark-mass dependence of the cross-section for gluino-pair pro-
duction from quark{antiquark annihilation. This dependence is exempli�ed in Fig. 11
for the scaling functions, using the mass parameters m~g = 200 GeV, as before, and
m~q = 175; 200; 225 GeV. In the region of almost mass-degenerate squarks and gluinos,
the maximum of the LO scaling function fB decreases with increasing squark mass. By
contrast, the virtual and soft corrections fV+S increase for small and intermediate ener-
gies [� . 10], as is also evident from Fig. 9b. The hard-gluon corrections fH are nearly
independent. The ratio of the higher-order correction over the lowest-order cross-section
will therefore vary rapidly for gluino-pair production in the range where gluino and squark
masses are of the same order.

4.1.2 Threshold Region

The energy region near the production threshold is the base for an important part of the
contributions to the hadronic cross-sections. This region is characterized by the small
velocity � of the produced heavy particles in their centre-of-mass system [� � 1]. Two
sources of large corrections can be identi�ed in this threshold region, the leading terms of
which can be calculated analytically at NLO. These analytical expressions provide pow-
erful checks of the numerically integrated NLO corrections for arbitrary mass parameters.

First of all, the exchange of (long-range) Coulomb gluons between the slowly moving
massive particles in the �nal state [see Fig. 12a] leads to a singular correction factor
� ��s=�, which compensates the LO phase-space suppression factor � [26]. The scaling
function fV+S therefore tends to a non-zero constant at threshold. It should be noted,
however, that the screening due to the non-zero lifetimes of the squarks/gluinos reduce
this e�ect considerably.
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(b)
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(c)

Figure 12: Generic diagrams leading to (a) the Coulomb singularity, (b) the large thresh-
old logarithms, and (c) the high-energy plateau. The solid external lines represent glu-
ons/(anti)quarks, the dashed ones respresent gluinos/(anti)squarks.

Secondly, as a result of the strong energy dependence of the cross-sections near thresh-
old, large positive \soft" corrections � logi(�2) (i = 1; 2) are observed in the initial-state
gluon-radiation contribution [see Fig. 12b]. They can in fact be resummed [27, 28]. In
our analysis we will, however, stick to the strict NLO corrections.

Near threshold the scaling functions can be expanded in �, leading to the following
analytical expressions [suppressing �(�)]:
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For squark{antisquark �nal states the scaling functions for equal and di�erent avours
are identical (fq0�q = fq�q) near threshold.

Squark{Squark:
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Gluino{Gluino:
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The LO and NLO threshold cross-sections for gluino-pair production from quark{antiquark
annihilation vanish if the squarks and gluinos are mass degenerate. This follows from the
destructive interference between the three LO diagrams. In Fig. 11 this phenomenon is
clearly visible.

Squark{Gluino:
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Note that for squark{gluino production the leading corrections factorize only partly in
terms of the LO cross-section. This in contrast to the other production processes, which
involve equal-mass �nal-state particles.

4.1.3 High-Energy Region

At high energies the NLO partonic cross-sections can asymptotically approach a non-zero
constant, rather than scaling with 1=s as the LO cross-sections:

�̂ � �2

s

s
(LO) (57)

�̂ � �3

s

m2
(NLO): (58)
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This is caused by almost on-shell, soft gluons in space-like propagators, associated with
hard-gluon/quark radiation [see Fig. 12c]. Since the splitting probabilities q ! qg and
g ! gg are scale-invariant mod. logarithms, the size of the NLO cross-section is set by
the centre-of-mass energy of the subprocess induced by the virtual gluon (marked \Born"
in Fig. 12c). For the dominant contributions this centre-of-mass energy is of the order
of the squark/gluino masses, i.e. not far above the threshold. It should be noted that
these high-energy plateaus only have a marginal inuence on the hadronic cross-sections,
as the main part of the contributions originates from the partonic energy region near the
production threshold.

Exploiting the factorization in the transverse gluon momentum at high energies [29],
the high-energy scaling functions can be determined analytically.

Squark{Antisquark:

fHgg =
2159

4320�
fHgq=

2159

19440�
(59)

�fgg =� 11

72�
�fgq=� 11

324�
:

The ratio of the fgg and fgq scaling functions is given by 2N : CF = 9 : 2. This ratio
corresponds to the probability of emitting a soft gluon from a gluon [� N , 2 sources] or
a quark (� CF , 1 source).

Squark{Squark: The squark-pair production cross-section does not exhibit a high-
energy plateau, since no space-like gluon-exchange diagrams are possible at NLO.

Gluino{Gluino:

fHgg =
1949

800�
fHgq=

1949

3600�
(60)

�fgg =�
177

160�
�fgq=�

59

240�
:

The ratio of the fgg and fgq scaling functions is given again by 2N : CF = 9 : 2.

Squark{Gluino:

fHqg =
517

864�
fHq�q =f

H
q0�q=

517

1944�
fHqq =f

H
q0q =

517

972�
(61)

�fqg =�
5

18�
�fq�q = �fq0�q=�

10

81�
�fqq = �fq0q = �

20

81�
:

These (simple) high-energy limits are derived for equal squark and gluino masses; the
results for arbitrary masses are very complicated and are therefore not given explicitly.
The ratio of the fqg, fq�q, and fqq scaling functions is given by N : CF : 2CF = 9 : 4 : 8,
irrespective of the precise values for the squark and gluino masses.
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4.2 Hadronic Cross-Sections

Finally we discuss in this subsection the hadronic cross-sections for the production of
squarks and gluinos. The analyses are performed for the Fermilab p�p collider Tevatron
with a centre-of-mass energy of

p
S = 1:8 TeV, and for the CERN pp collider LHC with

a centre-of-mass energy of
p
S = 14 TeV. In analogy to the experimental analyses, we

consider the following four hadronic production processes

p�p=pp ! ~q�~q (62)

p�p=pp ! ~q~q; �~q�~q (63)

p�p=pp ! ~g~g (64)

p�p=pp ! ~q~g; �~q~g: (65)

As before the chiralities and avours of the squarks (e.g. ~uL; ~dR) are implicitly summed
over. Yet stop production is not taken into account; these �nal states will be analyzed in
a forthcoming report [9]. The charge-conjugate �nal states are now properly taken into
account in the reactions (63) and (65). From now on we will refer to these two hadronic
reactions, for simplicity, as ~q~q (squark{squark) and ~q~g (squark{gluino) production, re-
spectively.

Various aspects of the above reactions will be presented in detail. First of all, the
dependence of the cross-sections on the renormalization/factorization scale and parton
densities is investigated. Then the NLO corrections are studied for a default choice of
scale and parton densities. We discuss the NLO e�ects on the di�erential distributions
with respect to the rapidity y and transverse momentum pt of one of the outgoing particles.
Finally we describe the NLO e�ects on the total cross-sections and their implications on
the experimental search for squarks and gluinos.

4.2.1 Scale and Parton-Density Dependence

The total hadronic cross-sections are obtained by convoluting the partonic cross-sections
with the relevant parton densities [in the proton or antiproton]:

�(S;Q2) =
X

i;j=g;q;�q

Z
1

�

dx1

Z
1

�=x1

dx2 f
h1
i (x1; Q

2) fh2j (x2; Q
2) �̂ij(x1x2S;Q

2)
���
�=4m2=S

(66)

The partons i and j carry fractions x1 and x2 of the original momenta of the hadrons h1
(= p) and h2 (= �p=p), respectively. The integrations in Eq. (66) are performed numerically,
using the Monte Carlo integration routine VEGAS [30]. The parton densities fhi have been
extracted from a large variety of experiments and are available in various parametrizations.
To estimate the associated uncertainty, we compare the results for a sample of three
di�erent parametrizations.
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As a �rst step, we present for reactions (62){(65) the dependence of the total cross-
section on the renormalization and factorization scale Q = QR = QF in Figs. 13 and
14. We have checked that the separate variation of the factorization scale QF and the
renormalization scale QR leads to a variation of the next-to-leading order cross-section
(roughly) within the band generated by Q. We can therefore keep the discussion to this
simpli�ed case without loss of generality. The scale is restricted to Q . 1 TeV, as the
parton densities are not available beyond this value.

The results for the Tevatron are given in Fig. 13, using the mass parameters m~q =
280 GeV, m~g = 200 GeV, and mt = 175 GeV. For a consistent comparison of LO and
NLO results, we calculate all quantities [�s(Q

2

R), the parton densities, and the partonic
cross-sections] in LO and NLO, respectively. In LO we use the parton densities of GRV94
[20]10 and CTEQ3 [32] with the corresponding QCD couplings. At NLO this is compared
with the parton densities of GRV94 [20], CTEQ3 [32], and MRS(A') [33]. In LO the scale
dependence is steep and monotonic. Changing the scale from Q = 2m to Q = m=2, the
cross-section increases by 100{120%. In NLO the scale dependence is strongly reduced, to
about 40{50% in this interval. At the same time the cross-section is signi�cantly enhanced
at the central scale (Q = m). The uncertainty originating from the various parametriza-
tions of the parton densities in NLO amounts to . 10% at the central scale. An exception
is the squark{squark cross-section, which is dependent on the badly determined sea-quark
distribution.

The results for the LHC are given in Fig. 14, using the mass parametersm~q = 600 GeV,
m~g = 500 GeV, and mt = 175 GeV. Here, too, a strong reduction of the scale dependence
is observed by taking into account the NLO corrections, as well as a clear enhancement of
the cross-section at the central scale. In the interval between Q = m and Q = m=2 the LO
cross-section increases by about 35%, whereas the variation for the NLO results is reduced
to only 5{10%. At the LHC the dependence on the factorization scale is very weak and
the residual scale dependence is dominated by �s [in contrast with the Tevatron where
fairly large x values in the parton distributions give rise to a stronger factorization-scale
dependence]. The uncertainty due to di�erent parametrizations of the parton densities in
NLO amounts to . 13% at the central scale. This is a result of the prominent role played
by the gluon densities at the LHC.

In conclusion, for all four reactions and for both hadron colliders the scale dependence
is reduced by a factor of 2.5{4 when the theoretical predictions are improved by taking
into account the next-to-leading order SUSY-QCD corrections. Even a broad and shallow
maximum develops at scales near one third of the central scale. In the following we will
adopt GRV94 parton densities and take Q = m as the default scale; this results in a
conservative estimate of the cross-sections.

10For charm and bottom quarks we use the earlier GRV distributions [31].
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Figure 13: The dependence on the renormalization/factorization scale Q of the LO and
NLO cross-sections for (a) squark{antisquark, (b) squark{squark, (c) gluino{gluino, and
(d) squark{gluino production at the Tevatron (
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S = 1:8 TeV). Parton densities: GRV94
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4.2.2 Di�erential Distributions: Transverse Momentum and Rapidity

The hadronic di�erential distributions are obtained by convoluting the partonic double-
di�erential distributions with the relevant parton densities. We consider the distribu-
tions with respect to the transverse momentum pt and rapidity y of one of the outgoing
squarks/gluinos. The corresponding double-di�erential hadronic distribution is given by11

d2�

dptdy
= 2ptS

X
i;j=g;q;�q

Z
1

x�
1

dx1

Z
1

x�
2

dx2 x1f
h1
i (x1; Q

2) x2f
h2
j (x2; Q

2)
d2�̂ij(x1x2S;Q

2)

dt du
:

(67)

The de�nitions of pt and y and of the integration boundaries can be found in Appendix B.
Squarks and antisquarks are not distinguished in the �nal state. So, for ~q�~q, ~q~q, and ~g~g
�nal states we have to add the distributions with respect to both �nal-state particles.
The rapidity distributions, as presented in Figs. 16 and 18, are de�ned as the sum of the
contributions of positive and negative rapidity. The distributions are normalized to unity.

In Fig. 15 the normalized pt distribution is given for the Tevatron. The input mass
parameters are m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV. For the scale Q and
for the parton densities we take the default settings [Q = m and GRV94]. In order to
perform a consistent comparison of LO and NLO results, the parton densities are used
with the associated values for �s. In Fig. 16 the normalized y distribution is shown. The
corresponding distributions for the LHC can be found in Figs. 17 and 18, elaborated for
m~q = 600 GeV, m~g = 500 GeV, and mt = 175 GeV.

The normalized pt distributions are hardly a�ected by the transition from LO to NLO.
In total, the NLO corrections render the distributions a little softer. This is caused by
the fact that for high-energetic massive particles the probability of losing energy through
radiation is large. The normalized rapidity spectra in LO and NLO are identical for all
practical purposes.

In conclusion, the properly normalized distributions of the squarks and gluinos in
transverse momentum and rapidity are described quite well by the lowest-order approxi-
mation.

11The preferred scalesQ are the transverse masses; however, for convenience we have chosen the particle
masses, as for the total cross-sections.
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Figure 15: Normalized transverse-momentum distributions in LO (dotted) and NLO
(solid) at the Tevatron (

p
S = 1:8 TeV). Parton densities: GRV94, with scale Q = m;

mass parameters: m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV.

0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2

0

0.5

1

1.5

2

0 0.5 1 1.5 2

(a) p p̄ → q̃/q̃
−
 ( +X)

1/σ dσ/dy
NLO
LO

y

(b) p p̄ → q̃ ( +X)
1/σ dσ/dy

y

(c) p p̄ → g̃ ( +X)
1/σ dσ/dy

y

(d) p p̄ → g̃ (q̃ +X)
1/σ dσ/dy

y
0

0.5

1

1.5

2

0 0.5 1 1.5 2

Figure 16: Normalized rapidity distributions in LO (dotted) and NLO (solid) at the
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S = 1:8 TeV). Parton densities: GRV94, with scale Q = m; mass parameters:

m~q = 280 GeV, m~g = 200 GeV, and mt = 175 GeV.
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Figure 17: Normalized transverse-momentum distributions in LO (dotted) and NLO
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S = 14 TeV). Parton densities: GRV94, with scale Q = m; mass

parameters: m~q = 600 GeV, m~g = 500 GeV, and mt = 175 GeV.
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4.2.3 Total Cross-Sections for Squark and Gluino Production

K-factors: To facilitate the quantitative comparison of LO and NLO cross-sections we
de�ne the ratio

K = �NLO=�LO; (68)

usually referred to as the K-factor. For consistency, the cross-section �LO (�NLO) is
calculated for all entries taken at leading (next-to-leading) order, i.e. couplings, parton
densities, and parton cross-sections.

In Fig. 19 we present the K-factors at the Tevatron for the reactions (62){(65). For
the scale Q and the parton densities we take the default settings [Q = m and GRV94].
In Fig. 19a the K-factors are displayed for a gluino mass m~g = 200 GeV and for squark
masses in the range 150{400 GeV, whereas in Fig. 19b the role of the squarks and gluinos
is interchanged. The corrections strongly depend on the process. With the exception
of the squark-pair production process, which is rather unimportant at the Tevatron, all
processes are subject to large, positive corrections between +10% and +90%. The K-
factors for squark �nal states are almost mass-independent. By contrast, the K-factors
for the (dominant) �nal states that involve at least one gluino exhibit a strong mass
dependence. The particularly strong mass dependence of the gluino-pair K-factors for
almost mass-degenerate squarks and gluinos is a direct consequence of the phenomena
described in Section 4.1.1 for the scaling functions, since a large part of the hadronic
cross-section originates from the quark{antiquark channel. For a �xed gluino mass and
increasing squark masses the LO cross-section decreases, whereas the virtual corrections
increase. This leads to the observed increase of the K-factor. If the squark mass is kept
�xed and the gluino mass is increased, the reverse is observed.

In Fig. 20 the K-factors are presented for the LHC. The input is the same as before,
except for the fact that we consider �xed ratios of the squark and gluino masses: m~q=m~g =
0:8; 1:2; 1:6 and2 [Figs. 20 a { d ]. Again, the corrections are positive and in general large,
between +5% and +90%. The mass dependence and the absolute size of the K-factors
for squark �nal states are moderate. By contrast, for �nal states involving gluinos the
corrections are substantially larger and exhibit a strong mass dependence. The inuence of
the squark mass on the gluino-pair cross-section is less pronounced than for the Tevatron,
since the gluon{gluon initial state yields the dominant contributions.

Total cross-sections: The absolute size of the total hadronic cross-sections plays a
crucial role in the experimental analyses. As long as no squarks and gluinos are discovered,
the exclusion limits of the masses are derived by comparing the experimental data with
the expected rates based on the theoretical predictions of the cross-sections. If squarks
and gluinos are discovered, the masses of the particles will be determined experimentally
by the same method.

In Fig. 21 the total cross-sections are given for the Tevatron. The NLO results are
based on the default settings: renormalization/factorization scale Q = m and GRV94 par-
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ton densities. These cross-sections are compared with the LO parametrizations adopted
in the experimental analyses [11, 12] until recently [EHLQ parton densities, with Q equal
to the partonic centre-of-mass energy12]. Over the full mass range covered by the Teva-
tron, the net e�ect of the NLO corrections is to raise the derived lower mass bounds by
+10 GeV to +30 GeV.

In Fig. 22 the total cross-sections are given for the LHC, using the default settings
and a representative range of squark and gluino masses. Over the full mass range covered
by the LHC, the cross-sections are increased by the NLO corrections, leading to a shift
in the associated particle masses in the range between +10 GeV and +50 GeV.

4.2.4 Implications for Experimental Searches

The precise knowledge of the cross-sections at next-to-leading order SUSY-QCD has a
profound impact on the experimental analyses:

(i) The renormalization/factorization scale dependence is reduced by roughly a factor
of 2.5{4 compared with leading-order calculations, and the theoretical predictions of the
cross-sections are stable. Taking for the renormalization/factorization scale Q the average
mass m of the produced particles results in a conservative estimate for the cross-sections
at NLO.

(ii) The NLO corrections are large and positive at the central scale Q = m. The NLO
corrections must therefore be included in the analyses to obtain adequate theoretical
predictions for the total cross-sections, as required for deriving experimental mass bounds
or measuring the squark and gluino masses.

(iii) The shape of the di�erential distributions in transverse momentum and rapidity
of one of the outgoing squarks or gluinos is hardly a�ected by the NLO corrections.

(iv) The NLO cross-sections raise the present lower mass bounds for squarks and
gluinos derived from Tevatron data by +10 GeV to +30 GeV.

12The scale choice Q =
p
s is only legitimate in LO; in NLO a hadronic scale, e.g. a particle mass, is

required by the renormalization group.
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5 Conclusions and Outlook

In this report we have presented the next-to-leading order SUSY-QCD corrections for
the production cross-sections of squarks and gluinos at the hadron colliders Tevatron and
LHC. By reducing the scale dependence of the cross-sections considerably, the quality
of the theoretical predictions is substantially improved compared with the lowest-order
calculations. The NLO cross-sections provide a solid basis for experimental analyses of
squark and gluino mass bounds/measurements at hadron colliders.

So far the calculations have been performed for mass-degenerate squarks associated
with the �ve light quark avours. Generally, small mass di�erences between the L and R
squark states for a given avour are suggested by supergravity-inspired parametrizations
of low-energy supersymmetry. Due to the large top{Higgs Yukawa coupling, however, the
assumption of mass degeneracy is expected to be strongly broken for the two stop states ~t1
and ~t2, mixtures of the L and R chirality states ~tL and ~tR. In these cases the NLO SUSY-
QCD cross-sections require the extension of the theoretical analysis to di�erent left- and
right-handed couplings of the quarks to squarks and gluinos, adding to the complexity
of the calculation in a non-trivial way. For �nal-state stop particles this analysis is in
progress and will be completed in due time.

Note

The Fortran codes of the NLO cross-sections can be obtained from hoepker@x4u2.desy.de,
spira@ cern.ch, or wimb@ lorentz.leidenuniv.nl.

Acknowledgements

We have bene�ted from discussions with K.I. Hikasa, M. Kr�amer, and W.L. van Neerven.
Special thanks go to our experimental colleagues S. Lammel and M. Paterno for valuable
comments on the Tevatron data and useful suggestions for experimentally convenient
parametrizations of the theoretical results worked out in this report.

48



A Fermion-Flow Diagrams in SUSY-QCD

The �eld-theoretic components of supersymmetric QCD are quarks/squarks and glu-
ons/gluinos. The Majorana character of gluinos renders the evaluation of Feynman dia-
grams involving these particles somewhat cumbersome. However, a simple prescription
has recently been proposed in Ref. [34], which allows an easy and fail-safe evaluation of
the diagrams. It involves the de�nition of a continuous fermion-ow line, which in general
does not coincide with the ow of the fermion number [given by the direction of the Dirac
propagator line]. The amplitude must be evaluated along the fermion-ow according to
the standard rules. In this way also fermion-number-violating processes like qq ! ~q~q can
be described in a straightforward fashion.

This method is equivalent to the usual evaluation of SUSY-QCD diagrams if the
analytic form of the propagators and vertices involving fermions is adjusted properly. The
analytic expressions associated with these propagators and vertices are given explicitly in
Fig. 23. Indices of the fundamental/adjoint representation of colour SU(3) are denoted by
i; j/a{c, the generators of the fundamental representation by ta = �a=2 (a = 1; :::; 8), and
the structure constants by fabc. The index � is a Lorentz index, � and � are Dirac indices.
The coupling constants gs and ĝs are the gauge and Yukawa couplings, respectively. The
fermion-ow is de�ned in the diagrams by an additional directed line, parallel to the
propagators. All other SUSY-QCD vertices and propagators are not a�ected by de�ning
the fermion-ow lines. The avour of the quarks and squarks are conserved in the SUSY-
QCD interactions.

B Kinematics and Phase Space

The kinematics and phase space for the production processes of a pair of squarks or a pair
of gluinos are the same as for top{antitop production [17]. However, for the production of
squark{gluino �nal states, the masses of the heavy particles are di�erent. The kinematical
and phase-space relations must therefore be derived for this more general case. Identifying
squark and gluinos masses, we recover the formulae for squark and gluino pairs.

B.1 Partonic Processes

We shall discuss the partonic process

q(k1) + g(k2) �! ~q(p1) + ~g(p2) [+g(k3)] (69)

for illustration. All particles are on shell, i.e. k2
1
= k2

2
= 0, p2

1
= m2

~q, p
2

2
= m2

~g and
k2
3
= 0. The kinematics of the radiative process is characterized by the invariant variables
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=
i (p +mq)βα δji//

p2 −mq
2 + iε

α,i β,j
p

=
i (p +mq)βα δji

//

p2 −mq
2 + iε

α,i β,j
p

= −igs (t
a)ji  (γ

µ)βα

α,i

β,j

µ,a
= +igs (t

a)ji  (γ
µ)αβ

α,i
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µ,a

=
i (p +mg̃)βα δba//

p2 −mg̃
2 + iε

α,a β,b
p

= −gs f
abc (γµ)βα

α,c
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= 
 −iĝs/√2 (ta)ji(1−γ5)αβ (L)

 +iĝs/√2 (ta)ji(1+γ5)αβ (R)

α,a

β,i

j
= 

 −iĝs/√2 (ta)ji(1−γ5)βα (L)

 +iĝs/√2 (ta)ji(1+γ5)βα (R)

α,a

β,i

j

= 
 −iĝs/√2 (ta)ij(1+γ5)βα (L)

 +iĝs/√2 (ta)ij(1−γ5)βα (R)

α,a
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j
= 

 −iĝs/√2 (ta)ij(1+γ5)αβ (L)

 +iĝs/√2 (ta)ij(1−γ5)αβ (R)

α,a

β,i

j

Figure 23: Analytic expressions for the SUSY-QCD propagators and vertices that involve
a speci�c fermion-ow, de�ned by the line parallel to the propagators.

introduced in Eq. (27); they are related by energy{momentum conservation:

s4 = s + tg + u1 s3 = s + u6 + u7

s5 = s + t0 + u0 u6 = �s� tg � t0

u7 = �s� ug � u0:

The total partonic cross-section is obtained by integrating the double-di�erential cross-
section

�̂ =

Z t+g

t�g

dtg

Z smax
4

(tg)

0

ds4
d2�̂

dtg ds4
(70)
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within the limits

t�g = � s+m2

~g �m2

~q

2
� 1

2

q
(s�m2

~g �m2

~q)
2 � 4m2

~gm
2

~q

smax
4

(tg) = s+ tg +m2

~g �m2

~q +
m2

~gs

tg
:

The invariant energy of the ~qg subsystem in the �nal state is characterized by the variable
s4, the square of the momentum transfer from the gluon (quark) in the initial state to the
gluino in the �nal state by t = tg +m2

~g (u = ug +m2

~g).

The double-di�erential cross-section in Eq. (70) can be derived by integrating the
general four-fold di�erential cross-section over the angles �i de�ned in the centre-of-mass
frame of the ~qg subsystem. In this particular frame the n-dimensional momenta are given
by

k1 = (w1; 0; :::; 0; 0; jpj sin ; jpj cos � w2) (71)

k2 = (w2; 0; :::; 0; 0; 0; w2)

k3 = (w3; 0; :::; 0; w3 sin �1 sin �2; w3 sin �1 cos �2; w3 cos �1)

p1 = (E1; 0; :::; 0;�w3 sin �1 sin �2;�w3 sin �1 cos �2;�w3 cos �1)

p2 = (E2; 0; :::; 0; 0; jpj sin ; jpj cos ):
The energies wi; Ei, the momentum jpj, and the angle  are related to the �i-independent
invariants s; tg; ug, and s4 introduced earlier:

w1 =
s+ ug

2
q
s4 +m2

~q

w2 =
s+ tg

2
q
s4 +m2

~q

w3 =
s4

2
q
s4 +m2

~q

E1 =
s4 + 2m2

~q

2
q
s4 +m2

~q

E2 = � tg + ug + 2m2

~g

2
q
s4 +m2

~q

(72)

jpj =

q
(tg + ug)2 � 4m2

~gs

2
q
s4 +m2

~q

cos =
tgs4g � s(ug + 2m2

~g)

(s+ tg)
q
(tg + ug)2 � 4m2

~gs
:

Using these relations, all the invariant variables de�ned in Eq. (27) can be expressed in
terms of s; tg; ug; s4; �i. For certain combinations of invariants, it is convenient to de�ne
the z-axis with respect to k1 or p2 (instead of k2). Writing the n-dimensional angular part
of the phase-space element as d
n = sin1�2"(�1) d�1 sin

�2"(�2) d�2, the double-di�erential
cross-section is obtained from the matrix element MR in the following way:

s2
d2�R

dtg ds4
= Kij

S2

"�
2"

2�(1� 2")

�
tgug �m2

~gs

�2s

��"
�(tgug �m2

~gs)�(s� [m~q +m~g]
2)

� (s4)
1�2"

(s4 +m2

~q)
1�"

�(s4)

Z
d
n

X
jMRj2: (73)
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1/s4g

(a)

1/s3

(b)

1/s3

1/s4
MR MR*(c)

Figure 24: Examples for on-shell intermediate resonance states: (a) gluino-pair interme-
diate state for squark{gluino �nal states; (b) squark{antisquark intermediate state for
squark{gluino �nal states; and (c) squark{gluino intermediate state for gluino-pair �nal
states.

In the limit m~q = m~g the well-known expressions of Ref. [17] are recovered for the equal-
mass case. The �-functions represent the requirements of positive energies and cos2  � 1.
They translate into the integration boundaries of the s4 and tg integrals in Eq.(70).

As described in Section 3.3.2, on-shell resonance production of intermediate particles is
possible. For squark{gluino production, this must be analyzed carefully in the kinematical
range where the three-particle �nal state ~g~q�q approaches the two-particle �nal state ~g~g
(if m~g > m~q) or ~q�~q (if m~q > m~g). This gives rise to singularities in 1=s3 or 1=s4g, as is
evident from Fig. 24, if the momentum ow approaches the ~q or ~g mass shells.

After exchanging the order of the integrations, the total cross-section corresponding
to the diagram in Fig. 24a can be written as

�̂ =

Z s+
4

0

ds4

Z t+g (s4)

t�g (s4)

dtg
d2�̂

dtg ds4
�
Z s+

4

0

ds4
f(s4g)

s2
4g

(74)

s+
4
= s+m2

~g �m2

~q � 2
q
sm2

~g t�g (s4) = � s� s4g

2
� 1

2

q
(s� s4g)2 � 4sm2

~g:

The singularity in s4g for m~g > m~q can be regularized by inserting the non-zero gluino
width and introducing the Breit{Wigner form, i.e. 1=[s2

4g + m2

~g�
2

~g], for the (absolute)
square of the propagator.

Inserting the identity f(s4g) = [f(s4g) � f(0)] + f(0), the part of the cross-section
related to f(0) corresponds to the (LO) production of an on-shell intermediate gluino and
subsequent (LO) decay of this gluino into a squark and antiquark, since

f(0) = �̂B
~g~g

m~g�~g

�

�B
~g!~q

�~g

and m~g�~g=[s
2

4g +m2

~g�
2

~g]! ��(s4g) for small �~g. This part is already accounted for by the
lowest-order ~g~g cross-section and has to be subtracted from the ~g~q�q cross-section. After
the formal expansion of f(s4g) around s4g = 0, the remaining part

��̂ =

Z s+
4

0

ds4
f(s4g)� f(0)

s2
4g +m2

~g�
2

~g

(75)
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is �nite and well de�ned as a principal-value integral, since s4g=[s
2

4g +m2

~g�
2

~g]! P(1=s4g)
for small �~g.

For m~q > m~g also on-shell intermediate squark states will occur [see Fig. 24b]. This
case is treated in analogy to the previous example by regularizing the pole in s3. The
integration over s3 is hidden in the angular integrations so that the technique must be
described in some detail. To transform the angular integration to the integration over s3,
we de�ne a reference frame in which p2 de�nes the z-axis:Z �

0

d�1 sin �1

Z �

0

d�2
1

s2
3

(A+B cos �1 + C sin �1 cos �2)
�l = (76)

=

Z s+
3g(s4)

s�
3g(s4)

ds3g

Z �

0

d�2
2(s4 +m2

~q)

s4

q
(s� s4g)2 � 4m2

~gs

1

s2
3

(A+B cos �1 + C sin �1 cos �2)
�l

s3g =
s4(s� s4 �m2

~q �m2

~g)

2(s4 +m2

~q)
� cos �1

s4

q
(s� s4g)2 � 4m2

~gs

2(s4 +m2

~q)

s�
3g(s4) =

s4

2(s4 +m2

~q)

h
s� s4 �m2

~q �m2

~g �
q
(s� s4g)2 � 4m2

~gs
i
:

The integrals over �2 are given by

Z �

0

d�2 [X + Y cos �2]
2 = �

�
X2 +

1

2
Y 2

� Z �

0

d�2
1

[X + Y cos �2]
2
= � �X

[X2 � Y 2]
3

2Z �

0

d�2 [X + Y cos �2] = �X

Z �

0

d�2
1

X + Y cos �2
= � �p

X2 � Y 2Z �

0

d�2 = �

for X = A + B cos �1; Y = C sin �1; X < 0; X2 > Y 2. Using this formalism, the
total partonic cross-section can �nally be rewritten as

�̂ =

Z s+
4

0

ds4

Z t+g (s4)

t�g (s4)

dtg

Z s+
3g(s4)

s�
3g(s4)

ds3g

Z �

0

d�2
d4�̂

ds4 dtg ds3g d�2

=

Z s+
3g

0

ds3g

Z s+
4
(s3g)

s�
4
(s3g)

ds4

Z t+g (s4)

t�g (s4)

dtg

Z �

0

d�2
d4�̂

ds3g ds4 dtg d�2
(77)

s�
4
(s3g) =

s3g

2(s3g +m2

~g)

h
s� s3g �m2

~q �m2

~g �
q
(s� s3)2 � 4m2

~qs
i

s+
3g = s+m2

~q �m2

~g � 2
q
sm2

~q :

The singularity in s3 for m~q > m~g can be regularized by introducing the non-zero squark
width in the propagator. The separation of the lowest-order ~q�~q contribution and the
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integration of the residual (principal-value) integral can be carried out in the same way
as in the previous case.

For identical particles in the �nal state, gluino or squark pairs, singularities can occur
in both s4 and s3. The existence of interference terms [see Fig. 24c], involving both types
of singularities, demands some special care. Let us consider the gluino-pair production
process as an example. In that case the interference terms can be treated by substituting

1

s4 � i�
= P

�
1

s4

�
+ i��(s4) (78)

1

s3 + i�
! 1

a+ i� + b cos �1
= P

�
1

a+ b cos �1

�
� i��(a + b cos �1): (79)

The simultaneous singularities (s4 � i�)�1(s3 + i�)�1 do not require a subtraction proce-
dure, since these con�gurations are kinematically suppressed. However, if m~q > m~g and
s > (m~q + m~g)

2 in our example, the product of the two non-zero imaginary parts gives
rise to a non-zero contribution to the cross-section.

B.2 Hadronic Di�erential Cross-Sections

For the hadroproduction of mixed squark{gluino �nal states,

h1(K1) + h2(K2) �! ~q(p1) + ~g(p2) [+g(k3)=q(k3)=�q(k3)]; (80)

we introduce the following hadronic variables:

S = (K1 +K2)
2 (81)

T1 = (K2 � p2)
2 �m2

~q Tg = (K2 � p2)
2 �m2

~g

U1 = (K1 � p2)
2 �m2

~q Ug = (K1 � p2)
2 �m2

~g:

The double-di�erential hadronic cross-section is given by the integration of the parton
cross-sections over the parton densities:

d2�

dTgdUg

(S; Tg; Ug; Q
2) =

=
X

i;j=g;q;�q

Z
1

x�
1

dx1

Z
1

x�
2

dx2 x1f
h1
i (x1; Q

2) x2f
h2
j (x2; Q

2)
d2�̂ij(s; tg; ug; Q

2)

dtg dug
(82)

x�
1
=
�Tg �m2

~g +m2

~q

S + Ug

x�
2
=
�x1Ug �m2

~g +m2

~q

x1S + Tg
:

Since the parton i has been assigned to the hadron h1, we can express the invariant parton
variables in terms of the hadronic variables:

s = x1x2S tg = x2Tg ug = x1Ug:
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The integration over x2 can be transformed into the integration over s4,Z
1

x�
1

dx1

Z
1

x�
2

dx2 =

Z
1

x�
1

dx1

Z s�
4

0

ds4

x1S + Tg
(83)

s�
4
= x1(S + Ug) + Tg +m2

~g �m2

~q x2 =
s4 � x1Ug �m2

~g +m2

~q

x1S + Tg
:

The integral over s4 splits into contributions from soft and hard gluons. Both the soft and
hard contributions contain terms that depend logarithmically on the cut-o� parameter �.
The soft terms of that type are mapped into the hard contributions, so that the scaling
functions are independent of � and well de�ned in the limit �! 0.

The di�erential cross-section in transverse momentum and rapidity of the produced
gluino can be obtained from the double-di�erential cross-section by the following trans-
formation:

d2�

dpt dy
= 2ptS

d2�

dTg dUg

(84)

p2t =
Tg Ug

S
�m2

~g =
tg ug

s
�m2

~g y =
1

2
log

�
Tg

Ug

�
: (85)

[In general, transverse momentum and rapidity are de�ned for the particle carrying the

momentum p2.] The transverse mass of the gluino is given by the quantity
q
p2t +m2

~g .

We de�ne the rapidity spectrum by the sum of the contributions from positive and neg-
ative values13. For identical particles, the spectrum is de�ned for positive rapidity only,
accounting in this way for the statistical factor 1=2 in those cases. Integrating over trans-
verse momentum and rapidity, the total cross-section is reproduced:

�(S;Q2) =

Z pmaxt (0)

0

dpt

Z ymax(pt)

0

dy
d2�

dptdy
=

Z ymax(0)

0

dy

Z pmaxt (y)

0

dpt
d2�

dptdy (86)

pmax
t (y) =

1

2
p
S coshy

q�
S +m2

~g �m2

~q

�
2 � 4m2

~gS cosh
2y

ymax(pt) = arccosh

0
@ S +m2

~g �m2

~q

2
q
S(p2t +m2

~g)

1
A :

In order to reproduce the total hadronic cross-section Eq.(66), special care must be
exercised in calculating the hadronic di�erential distributions for the resonance contribu-
tions:

13Since squarks and antisquarks are not discriminated in the experimental analyses, we have not dis-
tinguished them in the �nal states in the numerical discussion. For ~q�~q, ~q~q, and ~g~g �nal states we have
therefore added the distributions with respect to both �nal-state particles. These y distributions are
symmetric under y ! �y. Note that an extra factor 1=2 has to be inserted when using these (summed)
distributions to obtain the total cross-section.
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1=s4g singularity: For the subtraction it is convenient to write the double-di�erential
hadronic cross-section in the form

d2�

dTgdUg

=

Z
1

�

dx1

Z
1

�=x1

dx2 f
h1
i (x1; Q

2) fh2j (x2; Q
2)

�
Z s+

4

0

ds4

Z t+g (s4)

t�g (s4)

dtg
d2�̂ij

ds4dtg
�

�
Tg �

tg

x2

�
�

�
Ug �

ug

x1

�

�
Z

1

�

dx1

Z
1

�=x1

dx2 f
h1
i (x1; Q

2) fh2j (x2; Q
2)

Z s+
4

0

ds4
g(s4g)

s2
4g

: (87)

The integration boundaries are the ones de�ned in the previous subsection on the partonic
processes (and � = (m~q+m~g)

2=S). The fact that the arguments of the �-functions should
have zeros inside the allowed integration region results in additional conditions on xi; Tg,
and Ug. As we have opted for a subtraction of on-shell intermediate states at the parton
level, the subtracted double-di�erential hadronic distribution is given by

d2��

dTgdUg

=

Z
1

�

dx1

Z
1

�=x1

dx2 f
h1
i (x1; Q

2) fh2j (x2; Q
2)

Z s+
4

0

ds4
g(s4g)� g(0)

s2
4g +m2

~g�
2

~g

(88)

after regularization by means of the non-zero gluino width. From this it is clear that upon
integration over the hadronic variables Tg and Ug the subtraction for the total hadronic
cross-section is reproduced.

1=s3 singularity: In this case we start o� by applying Eq.(77) and write

d2�

dTgdUg

=

Z
1

�

dx1

Z
1

�=x1

dx2 f
h1
i (x1; Q

2) fh2j (x2; Q
2) (89)

�
Z s+

3g

0

ds3g

Z s+
4
(s3g)

s�
4
(s3g)

ds4

Z t+g (s4)

t�g (s4)

dtg
d3�̂ij

ds3gds4dtg
�

�
Tg �

tg

x2

�
�

�
Ug �

ug

x1

�
:

Now the regularization by means of the non-zero squark width and subsequent subtraction
of the resonance contribution can be performed in the usual way.

Mixed 1=s3 and 1=s4 singularities for identical �nal-state particles: After ex-
changing the order of the integrations, the singularities in the propagators can easily be
isolated. They can be treated as discussed in the subsection on partonic processes, giving
rise to contributions from the two non-zero imaginary parts.
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C Splitting Functions

In this appendix we list all next-to-leading order SUSY-QCD splitting functions. The
splitting functions involving massless partons [quarks and gluons] are known from the
standard QCD evolution equations [35, 36, 25]. The splitting functions involving massive
coloured SUSY particles are realized in �nal-state distributions at very high energies
[37]. We present all functions for the momentum fraction x in the restricted range 0 <
x < 1, excluding in this way the end-point singularities in Paa. The various end-point
singularities can be derived from quark conservation,

R
1

0
dx [Pqq(x)+P~q

L
q(x)+P~q

R
q(x)] = 0

and
R
1

0
dx [Pq~q(x)+P~q~q(x)] = 0, and from momentum conservation,

R
1

0
dx x

P
a Pab(x) = 0.

[As usual, CF = 4=3, N = 3, and Tf = 1=2.]

Quarks and gluons:

q ! q (+g) Pqq(x) = CF

1 + x2

1� x

q ! g (+q) Pgq(x) = CF

1 + (1� x)2

x

g ! q (+�q) Pqg(x) = Tf
�
x2 + (1� x)2

�

g ! g (+g) Pgg(x) = 2 �N
�

1

x(1� x)
+ x(1� x)� 2

�

Squarks and gluons:

~q ! ~q (+g) P~q
L
~q
L
(x) = P~q

R
~q
R
(x) = 2CF

x

1� x

~q ! g (+~q) Pg~q
L
(x) = Pg~q

R
(x) = 2CF

1� x

x

g ! ~q (+�~q) P~q
L
g(x) = P~q

R
g(x) = Tf x(1� x)

Gluinos and gluons:

~g ! ~g(+g) P~g~g(x) = N
1 + x2

1� x

~g ! g (+~g) Pg~g(x) = N
1 + (1� x)2

x

g ! ~g (+~g) P~gg(x) = 2 � 1
2
N
�
x2 + (1� x)2

�
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Squarks, gluinos and quarks:

~q ! q (+~g) Pq~q
L
(x) = Pq~q

R
(x) = CF

~q ! ~g (+q) P~g~q
L
(x) = P~g~q

R
(x) = CF

~g ! ~q (+�q) P~q
L
~g(x) = P~q

R
~g(x) =

1

2
Tf x

~g ! �q (+~q
L
=~q

R
) P�q~g(x) = 2 � 1

2
Tf (1� x)

q ! ~q (+~g) P~q
L
q(x) = P~q

R
q(x) =

1

2
CF x

q ! ~g (+~q
L
=~q

R
) P~gq(x) = 2 � 1

2
CF (1� x)

The splitting functions for the charge-conjugate transitions are identical.

Using the notation of Section 3.2.3, the end-point singularities in Paa are given by
CF [2 log � + 1] �(1 � x) for Pqq and P~q~q, and [2N log � + �0=2] �(1 � x) for Pgg and P~g~g.
Note that in Section 3.2.3 the end-point singularities for Pgg and Pqq have been derived
for the case in which massive particles are decoupled.
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