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We study the phenomenological constraints on a recently proposed model of open inflation in the context of
induced gravity. The main interest of this model is the relatively small number of parameters, which may be
constrained by many different types of observation. We evaluate the complete spectrum of density perturba-
tions, which contains continuum subcurvature modes, a discrete supercurvature mode, and a mode associated
with fluctuations in the bubble wall. From these, we compute the angular power spectrum of temperature
fluctuations in the microwave background, and derive bounds on the parameters of the model so that the
predicted spectrum is compatible with the observed anisotropy of the microwave background and with large-
scale structure observations. We analyze the matter era and the approach of the model to general relativity. The
model passes all existing constraints.@S0556-2821~97!05608-7#

PACS number~s!: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

The inflationary paradigm@1# not only provides a solution
to the classical problems of the hot big bang cosmology, but
also predicts an almost scale-invariant spectrum of metric
perturbations which could be responsible for the observed
anisotropy of the cosmic microwave background~CMB!, as
well as the origin of the large-scale structure. Present micro-
wave background anisotropy experiments offer only weak
constraints; for example, the Cosmic Background Explorer
~COBE! satellite@2# gives a very accurate determination of
the amplitude of large-angle anisotropies~which can be used
to normalize theories! but only weakly constrains the shape
of the spectrum. Information is beginning to come in on
degree scales, and from combining microwave anisotropy
constraints with those from large-scale structure, but the
present situation still offers considerable freedom. However,
we can expect this to change dramatically in the near future,
especially with the launch of new-generation microwave an-
isotropy satellites MAP@3# and Planck@4# which promise to
measure both cosmological parameters such asV0, H0, and
VB , and parameters associated with the primordial spectra to
great accuracy@5#. It is, therefore, desirable to provide a
variety of inflationary models with definite predictions,
which could be used to test and exclude them.

Until recently, inflation was always associated with a flat
universe, due to its ability to drive the spatial curvature so
effectively to zero. However, it is now understood that infla-
tion comprises a wider class of models, some of which may
give rise to an open universe at present@6–8#. Observations
suggesting a high value of the Hubble parameter, such as
those using the Hubble Space Telescope@9#, have motivated
the idea of considering a low-density universe, in an attempt
to make the age compatible with globular cluster ages. Most
frequently, a cosmological constant is introduced to restore
spatial flatness, but open inflation models~see Ref.@10# for
an introduction! offer the alternative of a genuinely open

universe. Such models generically contain a field trapped in
a false vacuum which tunnels to its true vacuum via nucle-
ation of a single bubble, inside which a second period of
inflation drives the universe to almost flatness. This way, one
solves the homogeneity problem independently from the flat-
ness problem, allowing for an open homogeneous universe
inside the bubble.

In an open universe, the analysis of density perturbations
and microwave anisotropies is considerably more compli-
cated than that in the usual flat-space case. Early studies by
Lyth and Stewart@11# and by Ratra and Peebles@12# evalu-
ated the spectrum for slow roll models leading to an open
universe, using the conformal vacuum as an initial condition.
In the single-bubble models a different vacuum choice is
appropriate, leading to a slightly different spectrum@13,7#. It
was later realized, however, that extra perturbations, with
discrete wave numbers, can also be generated. In all, three
different types of perturbation have been identified: a con-
tinuous spectrum of modes with wave numberk greater than
the curvature scale, known as subcurvature modes; a super-
curvature mode associated with the open de Sitter vacuum
@13,14#, and a mode associated with perturbations in the
bubble-wall at tunneling@15–17#. The observed large-scale
structures are due to the subcurvature modes, but large-angle
microwave anisotropies are generated by all three types, with
observations seeing the combined total anisotropy. The first
computation of all three types of modes together for a par-
ticular model was made in Ref.@15# for arbitraryV0 in the
context of the two-field models of Linde and Mezhlumian
@8#. Later on, a thorough calculation of all three contributions
from the point of view of quantum field theory in open de
Sitter space was carried out by Yamamotoet al. @17# ~see
also Ref.@18#!. Here, we shall carry out a similar calculation
for a different two-field model, for which we shall also dis-
cuss some of the implications of large-scale structure obser-
vations.
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In addition to scalar metric perturbations, we expect open
inflation to lead to the production of a gravitational wave
spectrum, as in conventional inflationary models. Unfortu-
nately, no one has yet formulated a method of calculating
this spectrum even approximately, and so we shall not be
able to consider them here. In chaotic inflation models,
gravitational waves are negligible in the slow roll limit~see,
e.g., Ref.@19#!; one can hope that this is also true in the open
inflation case, but that remains to be confirmed.

The particular open inflation model we shall study, intro-
duced in Ref.@20#, is based on the induced gravity Lagrang-
ian @21#. The interest of this model is the relatively small
number of parameters, which can be constrained by several
different types of observation. The inflaton is a dilaton field,
whose vacuum expectation value at the end of inflation de-
termines the present value of the gravitational constant. We
will constrain the model from CMB and large-scale structure
observations, as well as ensuring that post-Newtonian and
oscillating gravitational coupling bounds are satisfied.

II. THE MODEL

We consider the model of Ref.@20#, with an induced
gravity Lagrangian@21#

L5
1

2
jw2R2

1

2
]mw]mw1V~w!1Lmat. ~1!

The dilaton fieldw determines the effective gravitational
coupling, which is positive forj.0. In the absence of a
potential, this action corresponds to the usual Brans-Dicke
action @22#, where

F58pjw2, v5
1

4j
. ~2!

The Einstein and scalar field equations are@23,24#

2jw2Gmn5gmnV~w!1j~¹m¹n2gmn¹2!w2

1@]mw]nw2 1
2 gmn~]w!2#1Tmn , ~3!

and

¹2w52V8~w!1jwR, ~4!

where Gmn is the Einstein tensor. Using the identities
Gmn

;n50 and Rmn¹nF5¹m(¹
2F)2¹2(¹mF), together

with the w equation of motion, we find that the energy-
momentum tensor is conserved,

Tmn
;n50 , ~5!

even in the presence of a potential for the scalar field. Sub-
stitutingR into the equation of motion of the scalar field, we
obtain

1

2
~116j!¹2w254V~w!2wV8~w!1Tl

l . ~6!

We will consider a potential of the type@21,20#

V~w!5
l

8
~w22n2!2. ~7!

During a radiation-dominated eraTl
l50 and the scalar field

will sit at its minimum; matching the present-day Planck
mass demands,

8pjn25mPl
2 . ~8!

During a matter era, the scalar field oscillates around its
minimum with a large frequency and negligible amplitude,
passing all the tests associated with an oscillating gravita-
tional coupling@25# as we will show in Sec. VII.

III. INDUCED GRAVITY OPEN INFLATION

In the induced gravity open inflation model@20#, the ini-
tial period of inflation is driven by the false vacuum energy
of a second scalar fields. This energy density is able to hold
the dilaton at a fixed location displaced from the minimum of
its potential. After the false vacuum decays, the rolling of the
dilaton to its minimum drives the second period of inflation
necessary to giveV0 in the desired range.

A. False vacuum inflation

Initially, the scalar fields is in its false vacuum. The
details of its potential are not particularly important; we will
parametrize them later. In the false vacuum, the universe
expands driving the spatial curvature and any previous inho-
mogeneities to zero. Later on, thes field tunnels to its true
minimum atV(s)50, via the production of a bubble.

The equations of motion of the dilaton field before and
after the tunneling can be written as@20#

H212H
ẇ

w
1

K

a2
5

1

3jw2F12ẇ21V~w!1V~s!G , ~9!

ẅ13Hẇ1
ẇ2

w
5
4V~w!2wV8~w!14V~s!

~116j!w
. ~10!

Here,V(s)5V0 in the false vacuum and vanishes in the true
vacuum, while the curvatureK is effectively zero before tun-
neling and is negative afterwards. The basis for the open
inflation model is the existence of a stable static solution in
the false vacuum@20#, with

wst
25n2S 11

8V0

ln4D[n2~11a!, ~11!

Hst
25

8pV0

3mPl
2 . ~12!

Its stability is best seen in the Einstein frame@20#. Under the
transformations

dt5
n

w
dt̃, a~ t !5

n

w
ã ~ t̃ !, ~13!

f

n
5~116j!1/2ln

w

n
, ~14!
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the effective potential in the false vacuum becomes

UF~f!5
ln4

8 F122
n2

w2 1~11a!
n4

w4G , ~15!

UF8~f!5
ln3

2~116j!1/2
n2

w2 F12~11a!
n2

w2G , ~16!

UF9~f!5
ln2

116j

n2

w2 F2~11a!
n2

w2 21G , ~17!

where primes denote derivatives with respect to the Einstein-
frame scalar fieldf. It is clear thatUF8(fst)50 at the static
value, while the effective square mass is positive ensuring
stability. At the static point, we have

HF
25

8pUF

3mPl
2 5

ln2

24j

a

11a
, ~18!

mF
2[UF9~wst!5

ln2

116j

1

11a
, ~19!

whereHF is the rate of expansion of the universe in the
Einstein frame andmF is the mass of thef field at the static
point.

B. True vacuum inflation

Eventually, thes field tunnels to its true vacuum by
nucleating a bubble, inside which the universe inflates to
almost flatness. A sufficiently low tunneling rate ensures that
the bubble stays isolated@26,20#. After tunneling, the effec-
tive potential in the true vacuum, again in the Einstein frame,
becomes

UT~f!5
ln4

8 S 12
n2

w2D 2, ~20!

UT8~f!5
ln3

2~116j!1/2
n2

w2 S 12
n2

w2D , ~21!

UT9~f!5
ln2

116j

n2

w2S 2n2

w2 21D . ~22!

The minimum of the potential is now atw5n,wst, and the
field slow rolls fromwst driving a second stage of inflation.
The dynamics of this situation were investigated long ago in
Ref. @27#. The rate of expansion and effective mass in the
true vacuum immediately after tunneling are

HT
25

8pUT

3mPl
2 2

K

a2
5

ln2

24j S a

11a D 22 K

a2
, ~23!

mT
2[UT9~wst!5

ln2

116j

12a

~11a!2
. ~24!

The curvature term quickly becomes negligible as the second
phase of inflation progresses.

For later use, we also define the usual slow roll param-
eters@19# soon after tunneling:

e[
mPl
2

16p SUT8~f!

UT~f!
D 25 8j

116j

1

a2 , ~25!

h[
mPl
2

8p

UT9~f!

UT~f!
5

8j

116j

12a

a2 . ~26!

The scalar fieldf slow rolls down the effective potential
given by Eq.~20! until it starts oscillating around its mini-
mum and inflation ends. The value off at the end of infla-
tion can be computed from the condition2ḢT.HT

2 @or,

equivalently,ḟ2.UT(f)#, giving

wend
2 5n2S 11

8j

116j D[n2~11b!. ~27!

The number ofe-folds during the second stage of inflation
from fst to fend can be computed in the Einstein frame:

N5
1

jn2Efend

fst dfUT~f!

UT8~f!

5
1

b Fa2b2 lnS 11a

11b D G . ~28!

In order to produce an open universe, the number of
e-folds after tunneling has to be aroundN560, the precise
number depending on the reheating temperature and other
details of the post-inflationary evolution. We adopt the num-
ber 60 for definiteness. This gives a relation between the two
dimensionless parametersa andb.

IV. METRIC PERTURBATIONS AND TEMPERATURE
ANISOTROPIES

Quantum fluctuations of the inflaton fieldf produce long-
wavelength curvature perturbations; we will useR to denote
the curvature perturbation on comoving hypersurfaces~in the
Einstein frame!.

Open inflation generates three different types of modes:
those that cross outside during the second stage of inflation
and constitute a continuum of subcurvature modes; a discrete
supercurvature mode associated with the open de Sitter
vacuum, and a mode associated with the bubble-wall fluctua-
tions at tunneling. The mode functions are eigenvalues of the
Laplacian, with eigenvalue2k2 wherek is the wave num-
ber. Definingq25k221, the subcurvature modes then have
positiveq2 and the other modes have negativeq2. We label
the former mode functionsPql(r ) and the latterP̄uqu l(r ). In
Appendix A we give explicit forms for these; see also Ref.
@28#.

The spectrumPR(q) of the curvature perturbation can be
defined from the mode expansion ofR by @14#

^RqlmRq8 l 8m8&5
2p2

q~q211!
PR~q!d~q2q8!d l l 8dmm8.

~29!

In order to compare with observations, we must compute
the effect that such a perturbation has on the temperature of
the CMB, expanded as usual in spherical harmonics
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DT

T
~u,f!5(

lm
almYm

l ~u,f!. ~30!

The main contribution on large scales comes from the Sachs-
Wolfe effect @29#. The complete angular power spectrum
Cl[^ualmu2& has contributions from the continuum of sub-
curvature modes, the supercurvature mode, and the bubble-
wall mode,

Cl5Cl
~C!1Cl

~S!1Cl
~W! . ~31!

The contribution of each mode to theCl is measured by a
window functionWql , given by@29#

5Wql5Pql~h0!16E
0

h0
drF8~h02r !Pql~r !, ~32!

for the subcurvature modes; the same expression withP̄uqu l
gives the window functionW̄uqu l for the negativeq2 modes.
Here,

F~h!55
sinh2h23hsinhh14~coshh21!

~coshh21!3
, ~33!

gives the growth rate of perturbations during the matter era
@30#, andh05arccosh(2/V021) is the distance to the last
scattering surface. The normalization of the contribution to
theCl is given in the expressions below.

A. Subcurvature modes

A detailed computation of the amplitude of the subcurva-
ture modes gives the result@13,7,17#

PR~q!5coth~pq!
8UT

3emPl
4 , ~34!

where e is the slow roll parameter defined earlier and we
have dropped a small correction term from the change in
mass during tunneling@17#. The coth(pq) factor can be in-
terpreted as due to the initial transient behavior as the curva-
ture term dies away.

Notice that Eq.~34! has only been derived in the case of
a perfect de Sitter expansion after tunneling@17#. It seems
very plausible that it also holds when there are deviations
from de Sitter, where the right-hand side is to be evaluated
whenk5aH. This is the only simple formula which reduces
to the correct result both for de Sitter expansion and in the
flat-space limit~see, e.g., Ref.@31#! which must be attained
after the curvature term has died away sufficiently.

Following normal practice, we describe the variation in
the spectrum caused by the time variation ofH and e by a
power law. Notice that this power law is superimposed on
the coth behavior, so the complete spectrum does not have a
power-law form on very large scales. The power-law index
of PR(q)/coth(pq) can be derived in the usual way from the
slow roll parameters as@19#

n21526e12h52
8j

116j

2~21a!

a2 , ~35!

and gives the standard result in the flat-space limit where the
coth term in Eq.~34! equals unity. This expression is valid
provided bothe and uhu are much less than 1.

For later comparison, we write the spectrum as

PR~q!5AC
2coth~pq!@11q2#~n21!/2, ~36!

where

AC
25

8UT~fst!

3e~fst!mPl
4 ~37!

is a measure of the amplitude at theq50 limit. Formally, the
spectrum diverges there, though not in a harmful way thanks
to the window function given by Eq.~32!.

For our model, Eq.~37! becomes

AC
25

l

~16pj!2
116j

6j S a2

11a D 2. ~38!

The angular power spectrum for the continuum modes can
be written as@13#

Cl
~C!52p2E

0

` dq

q~11q2!
PR~q!Wql

2 . ~39!

We compute the angular power spectrum for different values
of V0 in the low-density range 0.2<V0<0.6. In Fig. 1 we
show the first 12 multipoles, adopting the notation1

Dl5 l ( l11)Cl .

1Our calculation only includes the Sachs-Wolfe effect, as is ap-
propriate for computing the amplitude on the largest angular scales.
We do not include the rise to the acoustic peak, caused by the first
oscillation of the photon-baryon fluid, which is known to induce an
effective extra tilt of around 0.15@32#; see, for example, Fig. 8 in
Ref. @33# ~who only consider subcurvature modes!.

FIG. 1. The first 12 multipoles of the angular power spectrum
associated with the continuum modes, normalized to the tenth mul-
tipole, for V050.2,0.3,0.4,0.5,0.6 as read from top to bottom at
low l .
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The normalization to COBE for tilted open models has
recently been given by Bunn and White@33#, under the as-
sumption that only the continuum modes are important. They
specify a quantitydH , which measures the normalization of
the present matter power spectrum. The preferred value de-
pends onn andV0; however, our model is nearly scale in-
variant, and the dependence onV0 is quite weak and can be
ignored at the accuracy we are working. Therefore, we take
the valuedH5231025 regardless ofV0. In an open uni-
versedH is related toPR as @33#

dH5
2

5
PR1/2

g~V0!

V0
, ~40!

whereg(V0) is a function measuring the suppression in the
growth perturbations relative to a critical-density universe,
and PR is evaluated at around the tenth multipole where
coth(pq).1. TheV0 dependence can give a factor of up to
1.5 in the region of interest, but we can ignore it as we do not
require such accuracy. Reproducing the amplitude of tem-
perature anisotropies is the main constraint on the parameters
of the model, and yields

Al5631023S j3

116j D 1/211a

a2 , ~41!

as found in Ref.@20#. This relation can readily be satisfied
for reasonable values of the parameters@20#.

B. Supercurvature mode

We now consider the contribution to the CMB anisotro-
pies coming from the discrete supercurvature mode associ-
ated with the dilaton fieldf. This mode appears in the open
de Sitter spectrum whenmF

2,2HF
2 in the false vacuum@13#.

The tunneling fields does not have this mode in its spec-
trum, since its mass in the false vacuum should be much
larger than the rate of expansion in order to prevent tunnel-
ing via the Hawking-Moss instanton@8#. The wave number
associated with this mode is given by

k2512F S 942
mF
2

HF
2D 1/22 1

2G2. ~42!

The amplitude of this mode is@18#

AS
2.

8UF

3 emPl
4 5AC

2 UF

UT
, ~43!

where the normalization ofAS
2 is defined through the formula

for the angular power spectrum of temperature anisotropies
induced by this supercurvature mode; namely@17,18#,

Dl
~S![ l ~ l11!Cl

~S!54pAS
2W̄1l

2 . ~44!

Figure 2 shows the first 12 multipoles, showing quite a com-
plicated dependence. For example, it is not automatic that the
quadrupole receives the biggest contribution@34#.

More important than the shape is the amplitude of these
anisotropies relative to the subcurvature ones. We will com-
pare their contributions in Sec. V.

C. Bubble-wall mode

In addition to the sub- and supercurvature modes, there is
a contribution from the bubble-wall fluctuations. These fluc-
tuations contribute as a transverse traceless curvature pertur-
bation mode withk2523, see Refs.@15–17#, which still
behaves as a homogeneous random field@35,28#.

Unlike the modes we have discussed so far, these modes
need extra parameters for their description, because their am-
plitude depends on the details of the bubble-wall, which is
determined by the potential for thes field. This extra free-
dom allows the bubble-wall fluctuations to be tuned relative
to the others.

The perturbation amplitude for the bubble-wall mode is
given by @15,36,17#

AW
2 5

4UT

a2bmPl
4 @a21~11a2b!2#1/2, ~45!

where

a25
24pUTS1

2

mPl
2 ~UF2UT!2

, b5
UF2UT

4UT
, ~46!

andS1 gives the bubble-wall contribution to the bounce ac-
tion, Bwall52p2R3S1 ~see, e.g., Ref.@15#!. In order to com-
puteS1, we will consider a symmetry-breaking potential of
the type

U~s!5UF1
g

4
s2~s2s0!

22mU0S s

s0
D 4, ~47!

where s05MA2/g corresponds to the true vacuum and
U05M4/16g is the value of potential at the maximum. With
m!1 for the thin-wall approximation to be valid,S1 can be
computed as@15#

S15E
0

s0
ds@2„U~s!2UF…#

1/2.
M3

3g
. ~48!

FIG. 2. As Fig. 1, but for the discrete supercurvature mode,
showingV050.6,0.5,0.4,0.3,0.2, reading from top to bottom at in
the center of the figure.
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In the limit a2b!1 of small gravitational effects at tun-
neling, we recover the result of Ref.@8#; namely,

AW
2 5

2UT~UF2UT!

pmPl
2S1

2 5AC
2 3e

2 a2b
, ~49!

wheree is the slow roll parameter. However, in the opposite
limit of strong gravitational effects,a2b@1, we have@15#

AW
2 5

4UT

mPl
4 5AC

2 3e

2
, ~50!

which is much smaller than the amplitude of the continuum
modes.

The angular power spectrum associated with the bubble-
wall mode is@15#

Dl
~W![ l ~ l11!Cl

~W!5
4pAW

2

~ l12!~ l21!
W̄2l

2 . ~51!

Figure 3 shows the first 12 multipoles. The quadrupole has
the largest amplitude for allV0.

We will compare their contribution to the CMB in the
next section.

V. COMPARISON WITH OBSERVATIONS

A. Microwave background anisotropies

We can now examine constraints on the shape of the com-
bined spectrum. The COBE data alone do not offer particu-
larly strong constraints in this respect; for example, although
Yamamoto and Bunn@37# argued that the inclusion of super-
curvature modes could harm the fit to COBE based on the
two-year data, a recent comprehensive analysis of the four-
year data by Go´rski et al. @38# finds no useful constraint.
Those papers, however, discussed only a particular model for
the supercurvature modes and did not include the bubble-
wall modes at all. As Sasaki and Tanaka discussed@18#,
there can be interesting constraints if the supercurvature

modes have their amplitude enhanced, and we shall also see
that the bubble-wall modes are typically more important than
the supercurvature ones.

Unfortunately, the complicated structure of the perturba-
tion spectra in open inflation models means that for a full
analysis each model would have to be confronted with the
COBE data set on a case-by-case basis. Such an analysis is
outside the scope of this paper. We shall adopt a more sim-
plistic approach, which is to demand that the discrete modes
do not dominate the quadrupole while contributing negligi-
bly to the tenth multipole. This would give an unacceptable
shape to the spectrum on the scales sampled by COBE.

In Fig. 4, we show the contributions to the quadrupole and
to the tenth multipole, as functions ofV0, normalized to the
size of the corresponding metric perturbation. It does not
require much effort to keep the contribution to the tenth mul-
tipole from the discrete modes low~unlessV0 is very small!,
but we must ensure that the quadrupole is not dominated by
the discrete modes.

Considering first the supercurvature modes, across the
whole range of interestingV0, we find that the supercurva-

FIG. 3. As Fig. 1, but for the discrete bubble-wall mode, for
V050.6,0.5,0.4,0.3,0.2, from top to bottom at lowl .

FIG. 4. The multipoles associated with each of the modes, nor-
malized to the corresponding metric perturbation (AC

2 , AS
2 , orAW

2 as
appropriate!, as a function ofV0. The top panel shows the quadru-
pole, while the lower shows the tenth multipole.
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ture mode contributes about a factor 30 less to the low mul-
tipoles than do the continuum modes, for the same size of
metric perturbation.2 UnlessV0 is very small, and then if the
supercurvature mode contribution is comparable to that of
the continuum modes for the quadrupole, then it is negligible
at the tenth multipole. Conservatively then, we shall require

AS
2&100AC

2, ~52!

independently ofV0, to prevent the supercurvature modes
from dominating the low multipoles. In principle, this limit
could become inappropriate at small enoughV0, because
then the shape of the supercurvature spectrum is not so steep
as to be ruled out by observations. However, by then the
supercurvature modes are contributing substantially even to
the tenth multipole, and this will force down the normaliza-
tion ot COBE and make it impossible to fit large-scale struc-
ture observations. We can, therefore, adopt the above con-
straint even at lowV0 values. This imposes only a very mild
constraint on the parameters of the model, namely,

a.0.01, ~53!

which is easy to satisfy as we will see in Sec. VI. Since the
value of V0 at present is not known with any reasonable
accuracy, it would be excessive to give a precise
V0-dependent constraint. However, in the future, with a nar-
row range of values forV0, one would be able to give a
more refined constraint on the parameters of the model from
a full comparison of the detailed spectrum against COBE or
its successors.

The same arguments can be applied to the bubble-wall
modes; again, we must prevent the domination of the quad-
rupole by these modes. For the interestingV0 values~i.e.,
those not too close to 1!, we see from Fig. 4 that this simply
requires

AW
2 &AC

2, ~54!

again independent ofV0 in the interesting range. This again
imposes only a very mild constraint on the parameters of the
model. Fora2b!1, we have 3e,2a2b, giving

g,93104
116j

6j

M3

mPl
3 a5/2, ~55!

which is easy to satisfy for sufficiently largeM . For
a2b@1, the amplitude of the metric perturbation, Eq.~50!, is
completely negligible sincee!1, see Sec. VI.

B. Implications for large-scale structure

We can now combine the COBE normalization with ob-
servations of large-scale structure. This has the advantage of
being relatively insensitive to the inclusion of supercurvature
or bubble-wall modes, because with the constraints above

these modes affect only the lowest multipoles, and while
these can influence whether or not the spectral shape is a
good fit to observations, they are not very significant at the
higher multipoles~around the 10th to 15th! which are most
important for determining the normalization. The drawback
though is that looking to large-scale structure introduces a
dependence on all the other cosmological parameters,
namely, the Hubble parameterh, the baryon densityVB , and
the nature of the dark matter. Despite this, interesting con-
straints can still be found, and two analyses have appeared
which discuss tilted open models — Liddleet al. @39# who
used the two-year COBE data and, more recently, White and
Silk @40# who used an accurate normalization to the four-
year COBE data. Both of these considered only cold dark
matter; other choices tend to strengthen the constraints so we
shall do likewise.

In the model we are considering, the spectral index is
always tilted ton less than one, as seen from Eq.~35!.
Whether or not this is allowed depends quite sensitively on
bothV0 andh. If V0 is too low, below around 0.30, then the
open cold dark matter model fares badly against observa-
tions; this conclusion is consistent with a similar constraint
from velocity flows@41# which is independent of the power
spectrum. For example, White and Silk@40# find that this
value is allowed only if the power spectrum is ‘‘blue,’’ with
n at least 1.10. This conclusion is enforced both by the clus-
ter abundance and by the shape of the galaxy correlation
function. Our model will, therefore, be ruled out if it turns
out that the universe is indeed as open as this.

However, one does not have to increaseV0 by very much
to radically change this conclusion. ForV050.5, for ex-
ample, White and Silk find viable models forn as low as
0.85, with the preferred value depending on the Hubble pa-
rameterh. Our model can, therefore, be comfortably com-
patible with the data for thisV0, and at least marginally
compatible forV0 as low as 0.4.

VI. TWO POSSIBLE SCENARIOS

In this section we will explore two different scenarios.

A. j!1

This case was considered in Ref.@20#. Here, the dilaton
expectation valuen is much larger than the present Planck
mass, see Eq.~8!. For definiteness, we will choose a particu-
lar value, 8j51/200. From the required number ofe-folds,
Eq. ~28!, this determinesa to be of order one.

Let us study now the contribution of the different modes
to the CMB anisotropies. We first consider the continuum
spectrum of subcurvature modes. The slow roll parameters,
given by Eqs.~25! and ~26!, become

e.
1

200
, h.0, ~56!

which determine the tilt of the primordial spectrum of den-
sity perturbations via Eq.~35! as

n21.26e.20.03, ~57!

2Although there is a dip aroundV0.0.4, caused by an ‘‘acciden-
tal’’ cancellation between intrinsic and line-of-sight terms, the dip
is not at the same location for thel53,4, . . . multipoles so the dip
does not allow one to weaken the constraint in its neighborhood
@34#.
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which is compatible with large- and small-scale observations
for V0*0.4, according to Ref.@40#. The constraint on the
amplitude of the angular power spectrum determines the
value ofl via Eq. ~41! as

l.2.531025
6j3

116j
.4310214. ~58!

See Ref.@20# for a range of values, under the assumption
j!1.

We now consider the de Sitter vacuum supercurvature
mode. This mode exists, sincemF

2,2HF
2 for j!1 from Eqs.

~18! and ~19!. The amplitude of curvature perturbations that
give rise to temperature anisotropies in the CMB is con-
strained by Eq.~52!, which imposes the condition equation
~53!. This is satisfied as long asa.0.01. Since we are con-
sidering values ofa.1, the contribution from the supercur-
vature mode will be negligible compared to that of the sub-
curvature modes, regardless3 of V0.

Consider now the bubble-wall mode contribution to the
CMB anisotropies. There, are two possibilities, depending on
the relative strength of the gravitational effects at tunneling
@15#. For a2b!1 we are in the weak gravity regime of Ref.
@8#, and the condition on the parameters becomes, from Eq.
~55!,

g,105
116j

6j

M3

mPl
3 . ~59!

ForM.1023mPl , this givesg,0.03, which is a reasonable
bound on the couplingg. On the other hand, fora2b@1,
condition equation~54! is easily satisfied fore.1/200, see
Eq. ~50!.

B. j@1

This case was considered in Ref.@42#. The dilaton expec-
tation valuen is much smaller than the present Planck mass.
For j@1, we haveb.4/3 and the value ofa is now deter-
mined from the required number ofe-folds, Eq.~28!,

4N

3
.a2

4

3
2 lnS 11a

114/3D , ~60!

which givesa.85. This is a regime quite different from the
previous case.

We first consider the continuum spectrum of subcurvature
modes. The slow-roll parameters are

e.1.8531024, h.20.016, ~61!

which determine the tilt of the primordial spectrum of den-
sity perturbations via Eq.~35! as

n21.2h.20.032. ~62!

This is very similar to the previous case and thus compatible
with large- and small-scale observations forV0*0.4. How-

ever, the constraint on the amplitude of the angular power
spectrum now determines the value of the combination
l/j2 rather thanl alone, as

l

j2
.9310210. ~63!

If we choosel;1, we havej;33104, which gives a very
reasonable expectation value for the dilaton, from Eq.~8!, of

n.1023mPl.1016 GeV. ~64!

We now consider the de Sitter vacuum supercurvature
mode. This mode also exists in this case, sincemF

2,2HF
2 for

a@1 from Eqs.~18! and ~19!. The amplitude of curvature
perturbations is constrained by Eq.~52!, which imposes the
condition equation~53!. Since we havea@1, the contribu-
tion from this supercurvature mode will be negligible.

Concerning the bubble-wall mode contribution, again
there are two possibilities. In the weak gravity regime
a2b!1, the condition on the parameters becomes

g,105
M3

mPl
3 a5/2, ~65!

which gives a trivial constraint ofg&7 for M.1023mPl .
For a2b@1, the condition in Eq.~54! is easily satisfied for
e.1024.

VII. MATTER ERA

One of the remaining issues is to make sure that after
inflation the scalar fieldw remains close to the minimum of
its potential. Deviations from this would result in time varia-
tions of the gravitational constant, which are strongly con-
strained@43#. During the radiation era the scalar field will
remain at the minimum due to the vanishing trace of the
energy-momentum tensor, as seen from Eq.~6!. However,
during the matter era the dilaton couples to the matter fluid
and thus will be subject to a force which shifts the field from
its minimum.

However, it is easy to show that this effect is tiny. The
relevant equation, from Eq.~6!, is

ẅ13Hẇ1
ẇ2

w
5
4V~w!2wV8~w!1r

~116j!w
. ~66!

For a givenr, there is a static solution at

wst
25n2S 11

2r

ln4D . ~67!

Since the matter-era energy density is tiny in comparison to
the inflationary energy density which determinesln4, the
fractional shift in the gravitational constant at this static point
is tiny, and so too is the energy density associated with the
potential, which contributes only a minute fraction~perhaps
102100) of the critical density.

We have analyzed the detailed behavior, described in Ap-
pendix B. When matter domination starts, the field rises from
its minimum to oscillate about the static point, which it does
on a very rapid time scale. Asr decreases, the static point

3In the limit of smalla andb, thee-foldings relation, Eq.~28!,
gives a.10Ab, so the supercurvature constraint will eventually
become important oncej&1027.
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moves towards the true minimum~with the oscillation am-
plitude also decreasing though rather more slowly!. At all
times, the oscillations are of such small amplitude that gen-
eral relativity holds to extremely high accuracy.

VIII. CONCLUSIONS

In this paper we have analyzed a variety of phenomeno-
logical constraints on a recently proposed model of open
inflation in the context of induced gravity theories@20#. The
most stringent constraints come from observations of the
temperature anisotropies in the microwave background. The
model predicts a matter power spectrum tilted ton,1,
which will be incompatible with observations if the universe
turns out to haveV0&0.4. Otherwise, it is possible to choose
the parameters of the model so that it is in agreement with
observations.

During the matter era, the large dilaton mass and the ex-
tremely small amplitude of oscillations around its vacuum
expectation value ensure that the theory approaches general
relativity very efficiently, passing all the post-Newtonian and
oscillating gravitational coupling tests.

Note added.We commented in the introduction that no
method had been formulated to compute the gravitational
wave spectrum, which we, therefore, did not consider. As we
were revising for the final version of this paper, papers ap-
peared@44# making significant progress in this direction.
These new results have been applied to the model discussed
in this paper in Ref.@45#, which confirms compatibility with
observations.
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APPENDIX A: OPEN UNIVERSE MODE FUNCTIONS

The open universe mode functions are discussed in Refs.
@14,28#.

1. Subcurvature modes

The subcurvature modes can be written as@46,14#

Pql~r !5NqlP̃ql~r !, ~A1!

with

Nql5A2

p )
n51

l

~n21q2!21/2, Nq05A2

p
, ~A2!

where the unnormalized modesP̃ql(r ) can be generated
from the first two

P̃q0~r !5
sinqr

sinhr
, ~A3!

P̃q1~r !5
cothrsinqr2qcosqr

sinhr
, ~A4!

through the recurrence relation

P̃ql~r !5~2l21!cothr P̃q,l21~r !2@~ l21!21q2#P̃q,l22~r !.
~A5!

2. Supercurvature modes

The first (l>1) multipoles are@34#

P̄11~r !5
1

2 Fcothr2
r

sinh2r G , ~A6!

P̄12~r !5
1

2 F11
3~12rcothr !

sinh2r G . ~A7!

The rest can be obtained with the recurrence relation

P̄1l~r !5
2l21

l21
cothr P̄1,l21~r !2

l

l21
P̄1,l22~r !. ~A8!

3. Bubble-wall modes

The first (l>2) multipoles are@15#

P̄22~r !5
sinh4r28sinh2r112r

4sinh3r
, ~A9!

P̄23~r !5
sinh5r215sinh3r280sinhr1120rcoshr

8sinh4r
.

~A10!

The rest can be obtained from the recurrence relation

P̄2l~r !5
2l21

l22
cothr P̄2,l21~r !2

l11

l22
P̄2,l22~r !.

~A11!

APPENDIX B: MATTER-ERA OSCILLATIONS
OF THE GRAVITATIONAL COUPLING

Here, we carry out a detailed analysis of the evolution of
the dilaton during the radiation and matter eras. Here, we
shall assume that the oscillations are damped only by the
Hubble expansion and not by any particle decays, if such
decays were present the general relativistic limit would be
even more quickly approached.

The energy-momentum tensor conservation equation~5!
in the Jordan frame ensuresra3(11w)5 const during the ra-
diation (w51/3) and matter (w50) eras. In order to study
the cosmological evolution during these eras, let us redefine
our variables as

u5
w2

n2
21, z5mt, ~B1!

wherem is given by

m25
ln2

116j
. ~B2!

55 4611COMPLETE POWER SPECTRUM FOR AN INDUCED . . .



Thew equation of motion, Eq.~6!, and the Friedman equa-
tion become

u913
a8

a
u81u5

2~r23p!

ln4
, ~B3!

F2a8

a
1

u8

11uG25116j

6j F S u8

11uD
2

1
u2

11u
1

8r

ln4~11u!G ,
~B4!

where primes denote derivatives with respect toz. During
the radiation era, the right-hand side of Eq.~B3! vanishes
and u5u850 is a stable fixed point. Very soon one can
neglect theu terms in the Friedman equation, and we find the
radiation era attractor,a8/a51/2z. The scalar field equation
of motion,u913u8/2z1u50, has an exact solution:

z1/4u~z!5c1J1/4~z!1c2Y1/4~z!, ~B5!

where$J,Y% are Bessel functions. Its amplitude decays as-
ymptotically asu(z)}z23/4, so we expect the matter era to
start with initial conditions atu5u850.

During the matter era,u5u850 is a spiral attractor and
we can always neglect theu terms in the Friedman equation:

S a8

a D 2.S 116j

6j D Aa3 5
4

9z2
, ~B6!

whereA52ra3/ln4 is a constant of order 102120 in Planck
units. The equation of motion foru becomes

u91
2

z
u81u5

A

a3
5
K

z2
, ~B7!

whereK5b/3, see Eq.~27!. There is an exact solution,

zu~z!5c1sinz1c2cosz1Kf ~z!, ~B8!

wheref (z) is related to the sine and cosine integral functions
by @47#

f ~z!5Ci~z!sinz2Si~z!cosz5E
0

` e2zt

11t2
dt. ~B9!

The late time (z→`) behavior ofu is u(z)}sinz/z, with a
large frequency of oscillations

m5F l

8pj~116j!G
1/2

mPl@H0 , ~B10!

and an amplitudeuu8u;uuu;A/a0
3, which later decays as

1/z at largez. The contribution of the scalar field to the total
energy density is, therefore, suppressed by an extra factor
A with respect to the ordinary matter energy density, see Eq.
~B4!. SinceA is so tiny, there are no constraints on the
parameters of the model from local experiments, see Ref.
@25#, and general relativity is a strong attractor of the equa-
tions of motion.

Note that during the matter era the background dilaton
field oscillates very quickly, which might be thought could
produce other particles, such as at the end of inflation. How-
ever, because of the extremely small amplitude of oscilla-
tions,uuu;A;102120, there is no significant particle produc-
tion and the field’s energy can only decay by redshifting
away.
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