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ABSTRACT

In this paper we explicitly prove the invariance of the time-dependent string gravity

Lagrangian with up to four derivatives under the global O(d; d) symmetry.
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1 Introduction

Global, continuous symmetries not connected with the di�eomorphism group are very

rare in gravitational systems. The �rst example was discovered by Ehlers for the case

of four-dimensional pure gravity with one Killing vector. Later, it was shown by

Geroch that in the case of two Killing vectors the symmetry gets enhanced to an

in�nite Kac-Moody algebra. In string theory, the gravitational multiplet contains not

only the graviton, but also a scalar (dilaton) and the antisymmetric tensor (often

referred to as torsion). The symmetries of the Ehlers and Geroch type were also

shown in this case [4]. Another type of symmetry in such a system was discovered

in [1] (without the torsion �eld the discrete symmetry of the action was discovered

in [2] and [3]). It was shown that, for the case of �elds depending only on time in

an arbitrary number of dimensions (1 time, d space dimensions), the lowest-order

Lagrangian exhibits continuous, global O(d; d) symmetry. The symmetry was later

extended to the presence of matter [5] or gauge �elds [6] and seems to be present

in a large number of string-inspired theories containing gravity. In [1] argument

was given that the symmetry should be present to all orders in �0 in the �-model

expansion (another argument was given in [7]). In [3] it was argued that for the

case without the torsion �eld there should be corrections to �elds in the next order

in �0 to ensure vanishing of the �-functions and in [8] it was demonstrated on one

speci�c example. Since the inclusion of the next-order terms (like curvature squared)

can be very important for the stability of the solutions (as was recently discussed for

the case with no torsion in [9]), it is the purpose of the present paper to show that

the O(d; d) symmetry is explicit in the order �0 Lagrangian of gravity coupled to the

dilaton and the antisymmetric tensor �elds. There is quite a number of authors that

have calculated the higher-order e�ective action coming from string amplitudes or

from loop calculations in the �-models (see for example [10, 11]) that sometimes do

not agree with one another. We assumed throughout this paper that the result of [10]

is correct, and it turned out that with this assumption the O(d; d) symmetry of the

quartic action can be proved.

2 The O(d; d) symmetry in the lowest order

In [1] it was shown that the lowest-order string gravity (gravity coupled to dilaton

and the antisymmetric tensor) Lagrangian, for �elds depending only on cosmic time,

possesses explicit O(d; d) invariance, where d is the number of space dimensions. We

will recall here this construction to set the notation. The lowest-order Lagrangian

reads (throughout this paper we use the string frame with e�2� out front, since the
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symmetry is most simply realized there)

�(0) =
Z
dd+1x

p
�g e�2�

�
R + 4(@�)2 � 1

12
H2

�
: (2.1)

Our metric is (�;+; : : : ;+) and

R�
��� = @��

�
�� � : : : ; R�� = R�

��� ; H��� = @�B�� + cyclic (2.2)

When �elds depend only on time, it is possible to bring g and B to the form

g�� =

 
�1 0

0 G(t)

!
; B�� =

 
0 0

0 B(t)

!
: (2.3)

It was shown in [1] that the action (2.1) can then be rewritten as

�0 = �
Z
dte��

�
_�2 +

1

8
Tr[ _M0� _M0�]

�
; (2.4)

where

� = 2�� 1

2
ln detG; (2.5)

� is the metric for the O(d; d) group in non-diagonal form:

� =

 
0 1

1 0

!
(2.6)

and

M0 =

 
G�1 �G�1B

BG�1 G�BG�1B

!
: (2.7)

This M0 has two important properties [1]: it is symmetric and it belongs to the O(d; d)

group:

MT
0 = M0; M0�M0 = �: (2.8)

The action (2.4) is explicitly symmetric under the action of the O(d; d) group:

M0 ! 
TM0
; � ! �; (2.9)

where 
 belongs to the O(d; d):


T�
 = �: (2.10)

The general O(d; d) element connected to the identity can be written as:


 = exp

 
A1 A2

A3 �AT
1

!
AT

2 = �A2; AT
3 = �A3: (2.11)
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3 The symmetry in the next order without torsion

We start with the following form of fourth order in derivatives action in the string

frame (formula 3.24 in [10])

� =
Z
dd+1x

p
�g e�2�

�
R + 4(@�)2 � 1

12
H2

��0�0

�
R����R

���� � 1

2
R����H���H��

�+

1

24
H���H

�
��H

���H�
�� � 1

8
H���H�

��H���H�
��

�
+ O(�02)

�
(3.1)

(�0 = �1
8

for the heterotic string, �1
4

for the Bose string and 0 for the superstring).

This is the simplest possible form of the string e�ective action. If one makes local

rede�nitions of �elds, it does not change the equations of motion (in the rede�ned

�elds); however, the symmetry can be easily seen for one choice but impossible to

guess for another. Thus we have to try all possible rede�nitions to see whether we can

bring the action to some suitable form. There are two guidelines for the search. The

�rst one is that the action (when expressed in terms of time derivatives of �elds and

with all integrations by parts used) contains only �rst derivatives of �elds. It turns

out that this can always be done. The second one is that the whole action can be

written in terms of � and M0 de�ned before (but with possible corrections of order

�0), since the symmetry is then explicit.

We start to show the techniques involved with the simpler case of vanishing H

(then, of course, we do not have the full O(d; d) symmetry but only some discrete

subgroup); temporarily, we use the Lagrangian:

� =
Z
dd+1x

p
�g e�2�

n
R + 4(@�)2 � �0�0R����R

���� + O(�02)
o

(3.2)

Requiring only �rst time derivatives allows for the four structures of order �0:

Z
dd+1x

p
�ge�2�

�
a1R

2
GB + a2

�
R�� � 1

2
g��R

�
@��@�� + a32�(@�)2 + a4(@�)4

�
(3.3)

where R2
GB is the Gauss-Bonnet term

R2
GB = R����R

���� � 4R��R
�� + R2 (3.4)

In order to transform (3.2) to the form (3.3) we use the rede�nitions

�g�� = �0[b1R�� + b2@��@�� + g��(b3R + b4(@�)2 + b52�)]

�� = �0[c1R + c2(@�)2 + c32�]: (3.5)
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Under these rede�nitions the action (3.2) is corrected by

�� = �
Z
dd+1x

p
�ge�2�

��
R�� + 2D�@��� 1

2
g��(R + 42�� 4(@�)2)

�
�g��+

+ 2(R + 42�� 4(@�)2)��
o

(3.6)

Plugging (3.5) into (3.6) we get the form (3.3) when

�g�� = �4�0�0R��

�� = �1

2
�0�0R + 2�0�0(@�)2; (3.7)

the action then becomes

�(1) =
Z p

�ge�2��0�0

�
�R2

GB + 16

�
R�� � 1

2
g��R

�
@��@��� 162�(@�)2 + 16(@�)4

�
(3.8)

In order to write the action for �elds depending only on cosmic time, we introduce

the matrix

W := G�1 _G: (3.9)

Then we have

� =
Z
dte��

�
� _�2 +

1

4
TrW 2

��0�0

�
1

8
TrW 4 � 1

16
(TrW 2)2 +

1

3
TrW 3 _� +

1

2
(TrW 2) _�2 � 1

3
_�4

��
:(3.10)

It is now necessary to list all possible O(d; d) invariants with �rst time derivatives.

There are only four of them:

A1Tr( _M0�)4 + A2(Tr( _M0�)2)2 + A3Tr( _M0�)2 _�2 + A4
_�4: (3.11)

Since (we still suppress the B-dependence!)

Tr( _M0�)4 = 2TrW 4; Tr( _M0�)2 = �2TrW 2; (3.12)

we see that there is one term in the action (3.10) that does not belong to this class.

In order to make the symmetry explicit we change the de�nition of M by adding to

M0 a term of order �0:

M = M0 � �0�0

 
�G�1 _GG�1 _GG�1 0

0 _GG�1 _G

!
(3.13)

The rede�ned M satis�es (to order �0) the properties (2.8).
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With this new de�nition the total action can be rewritten as (but still without the

antisymmetric tensor in M):

� =
Z
dte��

�
� _�2 � 1

8
Tr( _M�)2

��0�0

�
1

16
Tr( _M�)4 � 1

64
(Tr( _M�)2)2 � 1

4
(Tr( _M�)2) _�2 � 1

3
_�4

��
: (3.14)

4 The full O(d; d) symmetry

We now set to prove that (3.14) is actually the proper form of the action after inclusion

of the antisymmetric tensor. We have to try all possible rede�nitions of the action

(3.1) that give only �rst time derivatives. We may now use, in addition to (3.7), the

following rede�nitions:

�g�� = �0�0(b6H
2
�� + b7G��H

2)

�� = �0�0c4H
2

�B�� = �0�0(d1D
�H��� + d2H���@

��); (4.1)

where

H2
�� = H���H�

��; and H2 = H���H
��� (4.2)

and the Lagrangian changes as follows:

�� = �
Z
dd+1x

p
�ge�2� f�

R�� + 2D�@��� 1

4
(H2)�� � 1

24
g��(12R + 482�� 48(@�)2 �H2)

�
�g�� +

+
1

6
(12R + 482�� 48(@�)2 �H2)��+

1

2
(2@��H

��� �D�H
���)�B��

�
: (4.3)

The requirement of only �rst time derivatives allows for, in addition to (3.3), the

following structures:

�(2) =
Z
dd+1x

p
�ge�2�

�
a1R

2
GB + a2

�
R�� � 1

2
g��R

�
@��@��+ a32�(@�)2

+a4(@�)4 + a5

�
R����H���H��

� � 2R��H2
�� +

1

3
RH2

�
+ a6H

2(@�)2

+a7

�
D�@��H2

�� �
1

3
2�H2

�
+ a8H���H

�
��H

���H�
�� + a9H

2
��H

2��

+a10(H
2)2 + a11H

2��@��@�� + a12

�
D�H

���H���@
�� +

1

6
2�H2

��
: (4.4)
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Starting from the action (3.1) and trying di�erent rede�nitions, we �nally arrive at

the following form of the action:

� =
Z p

�ge�2�

�
R + 4(@�)2 � 1

12
H2 (4.5)

+�0�0

�
�R2

GB + 16

�
R�� � 1

2
g��R

�
@��@��� 162�(@�)2 + 16(@�)4

+
1

2

�
R����H���H��

� � 2R��H2
�� +

1

3
RH2

�
� 2

�
D�@��H2

�� �
1

3
2�H2

�

�2

3
H2(@�)2 � 1

24
H���H

�
��H

���H�
�� +

1

8
H2
��H

2�� � 1

144
(H2)2

��
:

Making the �eld rede�nitions of order �0 is equivalent to all possible substitutions

of the lowest-order equations of motion in the higher-order Lagrangian. The lowest-

order equations of motion are:

R�� + 2D�@���
1

4
H2
�� = 0; 2�� 2(@�)2 +

1

12
H2 = 0

R + 42�� 4(@�)2 � 1

12
H2 = 0; D�H��� � 2H��

�@�� = 0 (4.6)

Using them and the Bianchi identities for curvature and torsion it is relatively straight-

forward to show the equivalence \on-shell" of (4.5) with (3.1). The action (4.5) cor-

responds to the choice in (4.1):

b6 = 0; b7 = 0; c4 = � 1

24
; d1 = 0; d2 = 4 (4.7)

To write the result (4.5) for the case of �elds depending only on time, we introduce

(in addition to W de�ned before) the matrix Y :

Y := G�1 _B: (4.8)

We have

� =
Z
dte��

�
� _�2 +

1

4
TrW 2 � 1

4
TrY 2

+�0�0

�
�1

8
TrW 4 +

1

16
(TrW 2)2 � 1

3
TrW 3 _�� 1

2
(TrW 2) _�2 +

1

3
_�4

+
1

2
Tr(W 2Y 2) +

1

4
Tr(WYWY )� 1

8
TrW 2TrY 2 + _�Tr(WY 2) +

1

2
_�2TrY 2

+
3

8
TrY 4 +

1

16
(TrY 2)2

��
: (4.9)

In order to compare it to the O(d; d) symmetric form, we need the expressions

Tr( _M0�)4 = 2TrW 4 + 2TrY 4 � 8Tr(W 2Y 2) + 4Tr(WYWY )

Tr( _M0�)2 _�2 = (�2TrW 2 + 2TrY 2) _�2

(Tr( _M0�)2)2 = (�2TrW 2 + 2TrY 2)2: (4.10)
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We see that our result (4.9) contains a number of terms that are not of this form, so

we rede�ne M :

M = M0 � �0�0

 
� �

�T 

!
; (4.11)

where

� = �G�1 _GG�1 _GG�1 + G�1 _BG�1 _BG�1

� = G�1( _GG�1 _G� _BG�1 _B)G�1B �G�1( _GG�1 _B + _BG�1 _G) (4.12)

 = _GG�1 _G� _BG�1 _B � ( _GG�1 _B + _BG�1 _G)G�1B

�B(�G�1 _GG�1 _GG�1 + G�1 _BG�1 _BG�1)B � BG�1( _GG�1 _B + _BG�1 _G):

To order �0 the rede�ned M satis�es (2.8), so that the rede�nition is itself (time- and

�eld-dependent) an O(d; d) rotation. To make the properties (2.8) manifest, we write

the rede�nition (4.11) as

M = !TM0 !; (4.13)

where ! is in the form (2.11), with:

A1 = ��0�0

�
�1

2
_GG�1 _GG�1 +

1

2
_BG�1 _BG�1

�

A2 = ��0�0

�
� _GG�1 _B � _BG�1 _G +

1

2
( _GG�1 _G� _BG�1 _B)G�1B

+
1

2
BG�1( _GG�1 _G� _BG�1 _B)

�
A3 = 0: (4.14)

With this new M , the action (4.9) is exactly in the form anticipated before in eq.

(3.14):

� =
Z
dt

N
e��

�
� _�2 � 1

8
Tr( _M�)2

��
0�0

N2

�
1

16
Tr( _M�)4 � 1

64
(Tr( _M�)2)2 � 1

4
(Tr( _M�)2) _�2 � 1

3
_�4

�)
: (4.15)

We have introduced the lapse function N (in the �rst order in derivatives action, it is

a trivial replacement dt ! Ndt), since it gives one more equation of motion (called

the \g00" equation in [1]) and only afterwards we put N to 1.

This action is explicitly O(d; d)-invariant under (2.9). It looks, however, like a little

miracle that the coe�cients in (3.1) coming from the string amplitudes are exactly

such that they give the explicit O(d; d) symmetry of (4.15). In comparison with the

lowest-order case, now the O(d; d) symmetry acts in a more complicated way, as a

rotation of not only �elds but �elds with their derivatives.
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The form of the action (3.8) needed to exhibit the symmetry is remarkably the

same as the unique (\o�-shell") form of the action found in [13] (eq. (20) there).

The comparison of the full action (4.5) with the result of [14] is more di�cult since

there are apparent contradictions between this reference and [10, 13]. However, our

rede�nition (4.7) is exactly the same as the rede�nition used in [14] and we suspect

that the \o�-shell" conformal invariance also leads to the unique action (4.5) which is

a remarkable feature pointing out to a deeper structure behind the O(d; d) symmetry.

Since the O(d; d) symmetry is continuous and global, it has an associated conserved

current, which means, for a theory depending only on time, that the current should

be constant (it is an \integrated once" equation of motion for M). In analogy to [1]

we call this constant A:

A = const = e��

�
M� _M + 2�0�0

�
1

2
M(� _M)3 � 1

8
M� _MTr( _M�)2 �M� _M _�2

��
(4.16)

where AT = �A and A�M = �M�A ([1]).

The N equation reads:

0 = � _�2 � 1

8
Tr( _M�)2

�3�0�0

�
1

16
Tr( _M�)4 � 1

64
(Tr( _M�)2)2 � 1

4
(Tr( _M�)2) _�2 � 1

3
_�4

�
(4.17)

Equations (4.16) and (4.17) are non-linear in �elds but (as a result of the existence

of symmetry) �rst order in derivatives. The analysis of these equations and their

solutions will appear in a subsequent publication [15].
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