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ABSTRACT

We analyze terms subleading to Rutherford in the S-matrix between black

hole and probes of successively high energies. We show that by an appropri-

ate choice of the probe one can read o� the quantum state of the black hole

from the S-matrix, staying asymptotically far from the BH all the time. We

interpret the scattering experiment as scattering o� classical stringy back-

grounds which explicitly depend on the internal quantum numbers of the

black hole.
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0 Introduction

One of the most mysterious aspects of black hole physics is the no-hair theo-

rem. In its classic form it appears to declare unobservable any attribute other

than the massM , charge Q and angular momentum J of a black hole [1]. The

mystery deepens with Hawking's discovery that even after quantum e�ects

are switched on, the radiation emitted is apparently thermal, with a temper-

ture T (M;Q; J), thus limiting the observable information once again to those

three quantities. In the context of a gravitational collapse, this would appear

to suggest (to the radically-inclined) that the process of collapse reduces any

arbitrary con�guration of collapsing matter to a unique quantum state char-

acterized by the above three quantities. While the violation of various global

conservation laws implied by such a scenario is not entirely unthinkable,

many distinct initial states evolving to the same �nal state is inconsistent

with unitarity: a basic tenet of quantum mechanics. Furthermore, it rules

out any thermodynamic understanding of the Hawking-Beckenstein entropy

as the logarithm of the number of states.

One possible way out of this would be to say that there is no unique

�nal state, but so far as the external world is concerned, all those states

are indistinguishable. Although such a position avoids the two objections

mentioned in the last paragraph, it seems to allow, in a sense, unobservable

observables.1

In this paper we study the issue of observability of the \internal" states of

the black holes in the context of black hole models in string theory. We begin

the discussion by considering the electrically charged black holes of [4](Sec.

1). The states here are given explicitly by conformal �eld theory vertex

operators. Various states di�er in the choice of internal polarizations in the

compact directions. In [2] the problem of scattering of probes o� such black

holes was considered. In the limit of a black hole of large mass and low energy

of probe (Rutherford limit) it was found that leading term in the scattering

could be understood as scattering o� a black hole metric which in particular

did not depend on the internal polarization of the black hole. Already in

[2] it was found that this no-hair property did not persist in higher order

terms in the scattering matrix (beyond Rutherford) and that these showed

1This is related to the more general issue of complementarity of descriptions of physical

phenomena in the context of black holes.
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dependence on the internal polarization tensors of the black hole. In this

paper we take a more detailed look at the post-Rutherford terms. We �nd

that they involve non-trivial entanglement between polarization tensors of

the BH and polarization tensors (and charges) of the probe. Indeed, not only

can we get some information about the internal polarization of the black hole

from the S-matrix, by using appropriate probes, we can actually completely

determine the state of the black hole. In other words, measurements from far

away can uniquely determine the quantum state of the black hole. Thus, the

black hole states are no di�erent from ordinary string states in this regard.

Recently Susskind et al [5] have argued that any (su�ciently massive) string

state is a black hole after all. The observation that we have made above is

consistent with this proposal.

The fact that the the scattering matrix contains more information about

the quantum state of the black hole, beyond that allowed by the classical

no-hair theorems, and the fact that the scattering matrix has the inter-

pretation of scattering of probe particles o� backgrounds of various string

modes around the BH (Sec. 2), naturally leads us to ask the question: How

do these backgrounds manage to carry the additional information? Larsen

and Wilczek [6] have argued that the usual treatment of no-hair theorem is

rather restrictive and that within a higher dimensional �eld theory Kaluza-

Klein framework there are an in�nite number of distinct classical solutions,

corresonding to the same overall mass and charges, but di�ering in the back-

ground values of the Kaluza-Klein modes. We show that (Sec. 2) our scatter-

ing results imply that the elementary BPS state not only gives rise to back-

grounds of metric, dilaton, etc. but also to backgrounds of an in�nite number

of higher string modes. Although the metric and dilaton backgrounds do not

depend on the internal polarization tensor (at leading order), the massive

string modes explicitly depend on them, e.g.

Mijkl(�) = (1=m)e�
p
2�=� [�R;i�R;j +QR;iQR;j][�L;k�L;l + 1=2QL;kQL;l] + o(gst)

(0.1)

(see equation (2.10) in Sec. 2). It turns out that by measuring a su�cient

number of these backgrounds we can actually determine the microstate of

the black hole entirely. Inelastic amplitudes involving Kaluza-Klein charge

exchange between the probe particles and the black hole also contain terms

which show dependence on the internal polarization of the black hole, and,

therefore, can be used to get information on the microstate of the black hole.
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These amplitudes seem to have a close connection with the observations made

in [6].

We believe that the scenario that we have presented above suggests that

string theoretic models of black holes come packaged with an in�nite number

of higher mass string backgrounds (in addition to metric, dilaton and moduli)

which contain information about the detailed state of the black hole. In Sec.

3 we make some remarks about hair on D-brane models of black holes. In

Sec. 4 we present a summary and outlook.

1 Hair from S-matrix

In this section we consider the electrically charged black holes of [4] and show

that by scattering suitable probes o� such a black hole it is possible to get

information about (and, in fact, determine) its detailed quantum state.

We work in heterotic string compacti�ed on T 6. Our notations are as fol-

lows (for details, see [2]). The bosonic coordiantes are x�; � = 0; 1; 2; 3; xiR; i =

1; : : : ; 6; xiL; i = 1; 2; : : : ; 22. xiR;L are holomorphic and antiholomorphic re-

spectively. World sheet fermions are  �(z) and  iR(z). Here R;L stand for

right and left movers (analytic and antianalytic repectively in our conven-

tion). For a generic torus T 6, the gauge group is abelian: U(1)28, arising

from 6 right-moving and 22 left-moving currents. We will denote the corre-

sponding charges as ~QR and ~QL resp. For BPS states the mass m satis�es

the condition

m2 = Q2
R = Q2

L + 2(NL � 1) (1.1)

where NL is the oscillator level in the left-moving (antianalytic) sector. The

black holes of [4] are BPS states represented by the vertex operators of the

form

VB(�R; �L; k; z; �z) = VB(�R; k; z) �VB(�L; �z) exp[iQR:xR + iQL:xL + ik:x(z; �z)]

VB(�; k; z) = �R: R(z) e
��(z)

�VB(�L; �z) = �L;i1i2:::ir@
n1
�z x

i1
L@

n2
�z x

i2
L : : : @

nr
�z x

ir
L

(1.2)
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In the above k2 = �m2 and

NL =
X
i

ni (1.3)

Di�erent black holes with the same mass m and charges ~QR;L di�er in the

choice of the internal polarization tensor �L (they di�er in �R also, but for

large NL the main degeneracy comes from varying �L's). For simplicity we

have here chosen the polarization tensors �L;R entirely in the compact direc-

tions.

In the following we will use various probes to extract information about

the state of the black hole, or in other words about the polrization �L (and

�R). We discuss the various choices of probes in turn:

(a) Massless probes:

These are given by vertex operators

VP (�R; �L; k; z; �z) = VP (�R; k; z) �VP (�L; �z) exp[ik:x(z; �z)]

VP (�R; k; z) = �R;M(@zx
M + ik� 

�  M)

�VP (�L; �z) = �L;N@�zx
N

(1.4)

The case when the polarization vectors �R;L have components only in the

compact directions corresponds to the moduli �elds as probe. The four point

amplitude [2] describing the scattering of these probes o� the black hole is

as follows.

NL = 1 black holes

For NL = 1 black holes the amplitude is

M(1; 2; 3; 4) = A1(s; t; u)�

(�R:�
0
R �R:�

0
R + [ t

s�m2 �R:�R �
0
R:�

0
R + b:e:]� 2t

(s�m2)(u�m2)
�R:�

0
R �:QR �

0:QR)�

(�L:�
0
L �L:�

0
L + [

(t+2)t

(2+s�m2)(s�m2)
�L:�L �

0
L:�

0
L + b:e:]�

t(t+2)

(s�m2)(u�m2)
�L:�

0
L �:QL �

0:QL);

A1(s; t; u) = ���(� t
2
)�(m

2�u
2

+ 1)�(m
2�s
2

+ 1)=[�( t
2
+ 2)�(u�m

2

2
)�( s�m

2

2
)]

(1.5)
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Here b.e. represent Bose exchange of particles 2 and 4. 2

Determination of BH polarizations:

The various terms in (1.5) involve di�erent functions of the Mandelstam

variables and are hence independently measurable from experiments. Of

importance to us is the (post-Rutherford) term

M(1; 2; 3; 4) = : : :+ �R:�R �
0
R:�

0
R �L:�L �

0
L:�

0
Lf(s; t; u) + : : : ;

f(s; t; u) �
(t=2)2(t=2+1)

[(s�m2)=2]2[(s�m2)=2+1]
A1(s; t; u) =

P1
n=0

fn(s)

t�(2n+2)
;

f0(s) = �2�(1 + (s�m2)=2)

(1.6)

An experimental measurement of this term amounts to a measurement of the

combination �R:�R �
0
R:�

0
R �L:�L �

0
L:�

0
Lf(s; t; u): It is therefore easy to see that

by repeating the experiment with various choices of �L;R we can determine

the initial polarizations �L;R of the black hole. The fact that f(s; t; u) has

no pole at t = 0 implies that the information about the polarizations � is

propagated by stringy modes. We will have more to say on this in the next

section on stringy classical backgrounds.

Black holes with NL > 1:

The calculation for NL = 1 can be generalized in a straightforward fash-

ion to higher NL. In this case there are higher tensors �L which describe

polarization of the black hole, e.g. �L;i1i2:::in. Once again there are post-

Rutherford terms, similar to (1.7). The general term involving entanglement

2Our general notation for amplitudes is as follows. In the four-point scattering ampli-

tudeM(1; 2; 3; 4) particles 1,3 refer to incoming and outgoing BH states and 2,4 refer to

incoming and outgoing states of the probe respectively. The polarization tensors of the

outgoing states are denoted by primes: thus the incoming polariztions of BH's are �L;R
and outgoing polarizations are � 0

L;R. Similarly those for the probes are �L;R and �0

L;R

respectively. The charges of the particles 1,2,3,4 (when they are non-zero) will be denoted

by QL;R; qL;R; Q
0

L;R and q0

L;R respectively. All momena and charges will be taken as ingo-

ing so that momentum conservation reads as
P

4

i=1 ki;� = 0 and charge conservation reads

as QL +Q0

L + qL + q0

L = QR +Q0

R + qR + q0

R = 0. The Mandelstam varibles are de�ned

as usual: s = �(k1 + k2)
2; t = �(k1 + k3)

2; u = �(k1 + k4)
2.
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of polarizations of BH and probe is of the form

M(1; 2; 3; 4) = : : :+ �R:�R �
0
R:�

0
R �

i
L �L;ij1j2:::jn �

0kj1j2:::jn
L �0L;k g(s; t; u) + : : : ;

g(s; t; u) =
P1
n=0

gn(s)

t�(2n+2)

(1.7)

Once again this term can be separated from the rest of the terms in the

S-matrix by its momentum dependence. It is clear that by choosing the

polarization of the massless probe appropriately, we can glean some informa-

tion about the quantum state of the black hole. The information is, however,

partial since most of the \legs" of the tensor �L do not contract with �L. In

order to improve this situation, we need to consider massive probes (neutral

or charged).

(b) Massive probes:

Massive states can either be neutral or charged. A particle with charge

qL;R has a mass

m2 = q2R + 2(NR � 1=2) = q2L + 2(NL � 1) (1.8)

(i) Neutral probes:

Let us consider neutral probes �rst (qL;R = 0; NR � 1=2 = NL � 1 = n).

Their masses are of the string scale:

m2 = 2n (1.9)

As in the case of the massless probes above (which are necessarly neutral),

the charge of the black hole is una�ected by scattering with these probes:

QL;R +Q0
L;R = 0, since qL;R = q0L;R = 0.

The new feature that arises in the 4-point S-matrix is that we start ob-

taining terms with increasing number of contractions between the polariza-

tions of the probe and the black hole. For example, a massive probe with

polarizations �R;i0i1:::in ; �L;j0j1:::jn has the following term in the S � matrix

(we have considered BH vertex operators (1.2) with all ni = 1):

M(1; 2; 3; 4) = : : :+ � i0RQ
i1
R : : : Q

in
R �R;i0i1:::in �

0j0
R Q

j1
R : : : Q

jn
R �0R;j0j1:::jn

�k0k1:::knL �L;k0k1:::knp1p2:::pN
L
�n�1

�
0l0l1:::lnp1p2:::pN

L
�n�1

L �0L;l0l1:::lnh(s; t; u) + : : : ;

h(s; t; u) =
P1
m=0 hm(s)=(t� (2m + 4n+ 2))

(1.10)
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A measurement of this term for various choices of the probe polarizations

�L;R ultimately determines for us �L;R in case n = NL, that is, when the

(left) oscillator level of the probe matches the (left) oscillator level of the

black hole. In the next section (on classical backgrounds) we will see that

this corresponds to a �-dependent non-zero background value of a string

mode (mass2 = 2n) around the black hole. We should note here that such a

background can be detected either by a single massive probe (as described by

a four-point function) or by many massless probes (which involves an n-point

amplitude for large n).

(ii) Charged Probes:

(1) Kaluza-Klein probes:

Let us �rst consider probes whose 10-dimensional masses vanish, in other

words, probes with NR�1=2 = NL�1 = 0. Their (four-dimensional) masses

are

m2 = q2R = q2L (1.11)

which are of the order of the compacti�cation scale. We shall call these

probes KK probes.

With charged probes we can have two kinds of amplitudes, one in which

the charge does not change (neutral channel) and another in which the charge

changes (charged channel):

Neutral channel

This is the case in which the charge of the probe does not change: qL;R =

�q0L;R. The charge of the black hole also remains the same. Vis-a-vis the

polarization tensors �, the S-matrix in this case does not give any more

information than in the massless case discussed above.

Charged channels

These are amplitudes in which the charge of the black hole and the charge

of the probe are allowed to change:

QL;R +Q0
L;R = qL;R + q0L;R = �qL;R 6= 0 (1.12)

This also typically implies a change of NL. We will call the �nal oscillator

level of the black hole N 0
L. Note that this is an inelastic process, that is, the
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BH under measurement changes its state after the \measurement". However,

by measuring such amplitudes, we can still get useful information about the

initial state of the black hole. Indeed, S-matrix elements of this type can

completely determine the initial polarization tensor � of the black hole. It

can be shown that the S-matrix contains a term (which can be independently

measured by choosing the momenta and charges of initial and �nal states of

the probe appropriately)

M(1; 2; 3; 4) = : : :+ �R:�R �
0
R:�

0
R

�qi1�qi2 : : :�qiN
L

�
i1i2:::iN

L

L �qj1�qj2 : : :�qj
N
0

L

�
0j1j2:::j

N
0

L

L F (s; t; u)

F (s; t; u) =
P1
n=0

Fn(s)

t�(m2

KK
+2n)

m2
KK � �qR:�qR = �qL:�qL

(1.13)

The second equality in the last line follows from the fact that we are consid-

ering exchange particles satisfying NR � 1=2 = NL � 1 = 0.

Determination of hair:

In the above �qL � qL�(�q
0
L) is the charge di�erence between the initial

and �nal states of the probe and is therefore a known vector. By a su�cient

number of experiments with various choices of �qL we can ultimately de-

termine the tensor �L. The determination of �R is trivial (by tailoring �R).

Thus we are able to determine the initial state of the black hole by using

Kaluza-Klein probes whose generation requires energies of the compacti�ca-

tion scale rather than the string scale. Such a determination of the internal

state of the black hole bears a close resemblance to the observations made in

[6]. We will have more to say on this at the end of the next section.

(2) Charged probes of string mass: These do not contain any new physics

and so we do not consider them here.

2 Hairy classical backgrounds

In this section we show how to interpret the earlier results as the scattering

of probe particles o� backgrounds of string modes, massless as well as mas-
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sive, created by the BPS state. Let us denote the string mode in spacetime

corresponding to the BPS state by  (x) (this �eld has indices:  i1i2:::in cor-

responding to polarization indices in the internal compact directions). The

beta function equations for neutral �elds, say �k1:::km �1:::�l are of the form

[7, 8]

0 = �
k1:::km �1:::�l
� (q) = (q2 +m2

�)�
k1:::km �1:::�l(q)

�gst
R
dk1dk3[�

  
� ]

k1:::km �1:::�l
i1:::in; j1:::jn

(k1; k3) 
� i1:::in(k1) 

j1:::jn(k3)~�
4(q � k1 � k3) + � � �

(2.1)

which we will schematically write as (suppressing indices)

0 = (q2 +m2
�)�(q)� gst

Z
dk1dk3~�

4(q � k1 � k3)�
  
� (k1; k3) 

�(k1) (k3) + : : :

(2.2)

Here �
  
� are determined by the operator product expansion coe�cients [7, 8]

of the vertex operetors of the �elds  ;  and �. Also, we have used the

notation dk � d4k=(2�)4 and ~�4(k) � (2�)4�4(k).

We are interested in the BPS state, described by the �eld  (mass m),

to be in its rest frame and given by a wavefunction

 (0);i1:::in(k) = 2��(k0 � !~k)�
i1:::inf(~k)=

q
2!~k; !2

~k
� ~k2 +m2; (2.3)

where f(~k) is a wave-packet centered around ~k = 0 and satis�es
R

d3~k
(2�)3

jf(~k)j2 =
R
d3x �i

$
@ 0 = 1. � i1:::in denotes the (real) polarization tensor of the particle

and satis�es the normalization condition � i1:::in�i1:::in = 1. The � background

created by such a BPS state is obtained, to �rst order in gst, by solving (2.2):

�(1)(q) = gst(q
2 +m2

�)
�1
Z
dk1dk3�

  
� (k1; k3; q) 

�(0)(k1) 
(0)(k3)�(k1 + k3 � q)

(2.4)

It is not di�cult to show that both (2.3) and (2.4) are classical solutions

of their respective equations of motion to �rst order in gst. In the case of

su�ciently peaked wave-packets f(~k), we can easily carry out the integral

(2.4), after substituting for  (0) from (2.3). We get

�(1);k1:::km;�1:::�l(q) =
gst

2m
(q2+m2

�)
�1[�  � ]

k1:::km;�1:::�l
i1:::in;j1:::jn

(�k; �k; q)� i1:::in�j1:::jn2��(q0)

(2.5)
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where �k � (m;~0) denotes the four-momentum of the BPS state in its rest

frame.

In deriving the above solution we have used the condition of low momen-

tum transfer (j~qj � mstring). While we expect the solution to get modi�ed

at short distances due to string world sheet corrections [4], it should remain

valid at large distances. We should also mention that (2.5), together with

(2.3), represent classical backgrounds corresponding to an in�nite number of

string modes, and it is the set of all these backgrounds which constitutes the

string theory black hole.

Scattering o� background:

Let us now �nd the scattering amplitude of a probe particle (represented

by some string mode �(x) of mass � say) o� the above background (2.5).

The relevant part of the action is

S =
R
dk (k2 + �2)�(k)�(�k)+

gst
R
dk2dk4dq �

��
� �(k2)�(k4)�(q)�(k2 + k4 + q) + : : :

(2.6)

The S-matrix describing the amplitude for scattering of the �eld �(x) (k2; k4
are the initial and �nal momenta and �; �0 are the initial and �nal polariza-

tions) is given by

S =
�(1)�

��
� ��0q

2k02

q
2k04

(2.7)

where we have dropped the momentum conserving delta-functions. If we

substitute for �(1) from (2.4), we get

S =
�
  
� ���

��
� ��

0

(k2 + k4)2 +m2
�

1q
2k01

q
2k02

q
2k03

q
2k04

(2.8)

where k01 = k03 = m.

Comparison with 4-point amplitude:

It is easy to show that (2.8) is precisely the S-matrix for the process in

which the particle �(x) with initial momentum k2 and initial polarization �

is scattered to a state (k4; �
0) because of a �-particle exchange with a static
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BPS state with mass m and polarization �. We see, therefore, that the 4-

point S-matrices calculated in the previous section, factorized on speci�c

channels, can be interpreted as scattering o� classical backgrounds given by

expressions like (2.5). The important thing to note is that these expressions

explicitly involve the polarization tensor � of the black hole.

Determination of the backgrounds

The strategy for determining the (�rst order) backgrounds around the

BPS state is now clear. We either use (2.5) directly, or solve (2.7) for �(1)

from a knowledge of S, the 4-point S-matrix. As we have shown above, the

two procedures are equivalent.

We now list some backgrounds which we determine using this method.

For massless exchanges, we get [9]

h(1)�� (�) = m=���0��0; �(1)(�) = �m=(2�) (2.9)

These agree with the �rst order backgrounds of metric and dilaton as given

in [4]. For the metric this agreement has already been shown in [2].

Massive backgrounds:

The amplitude (1.6) does not have a massless t channel. The lightest

exchange particles are of massm2 = 2. We list below the background value of

one of these, corresponding to vertex operator V ij �@xk �@xl 3 (again determined

using the method outlined above)

M
(1)
ijkl(�) = (1=m)e�

p
2�=� [�R;i�R;j +QR;iQR;j][�L;k�L;l + 1=2QL;kQL;l] + o(gst)

(2.10)

Thus we have backgrounds which explicitly carry hair.

In case of higher NL black holes, the above string mode has a background

value (corresponding to (1.7))

M
(1)
ijkl(�) = (1=m)e�

p
2�=�[�R;i�R;j�L;kj1:::jn�

j1:::jn
L;l + : : :] + o(gst) (2.11)

In the above, the ellipsis represents additional terms which depend on the

polarization and the charge vectors. These terms appear in the S-matrix ele-

ments separately. Clearly, because of the internal contractions within the �'s

these bckgrounds do not carry enough hair to determine the �'s completely.

3V ij = @xi@xj + @ i j + i(k: ) i@xj is the supersymmetrized version of @xi@xj .
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More massive backgrounds:

If we consider backgrounds of su�ciently heavy string modes, they carry

enough \hair" so as to let us determine �L completely. In the context of four-

point amplitudes these backgrounds are seen only by massive string modes.

Thus the background corresponding to the lightest channel of the amplitude

(1.10) is given by

M (1);i0i1:::in;j0j1:::jn;k0k1:::kn;l0l1:::ln

= (1=m)[e�
p
4n+2 �=�]� i0RQ

i1
R : : : Q

in
R �

0j0
R Q

j1
R : : : Q

jn
R

�k0k1:::knL;p1p2:::pN
L
�n�1

�
0l0l1:::lnp1p2:::pN

L
�n�1

L

(2.12)

Clearly for n su�ciently large, there will be no internal contractions between

the �'s and therefore by measuring su�ciently heavy backgrounds we can see

enough \hair" so as to determine the polarization tensors �.

Interpretation of scattering involving charged channels:

The background �elds determined by the above procedure correspond to

neutral excitations of the string. As we have seen, however, (in the subsection

containing equations (1.12) and (1.13)), inelastic amplitudes corresponding

to a charge exchange between the BH and the probe particles, are also useful

in determining the initial state of the black hole, and in fact, can be used

to completely �x the initial state. The KK backgrounds (hair) in the clas-

sical solution in [6] seem to correspond to such charge exchanges between

the BH and the probe particles. In this connection we should note that [10]

identi�es the collective string Hilbert space, obtained by quantizing the func-

tions ~fa(u); pa(u) and q
I
L;a(u) (see Sec. 2.2 of [10]) appearing in the classical

solution, to be the Hilbert space of the elementary string.

We can, in fact, make a more precise connection of the scattering ampli-

tudes involving charged channels with the long-range KK `hair' emphasized

in [6]. At a �rst sight it would seem that the scattering in the charged chan-

nels is suppressed, at low momentum transfer, by a factor of 1=m2
KK because

of the propagator of the KK particle, 1=(t�m2
KK). However, if we consider

processes in which the �nal state of the black hole is also a BPS state, with a

charge vector QR which is collinear (but not identical) with Q0
R
4, then, at low

4We note that the KK backgrounds considered in [6] correspond to momentum in the
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momentum transfer, the kinematics of the process `conspires' to remove the

1=m2
KK suppression! To see this, note that the 4-momentum carried by the

exchanged particle (in the rest frame of the initial BPS state) is q� = (q0; ~q)

where

q0 =
q
m02 + j~qj2 �m; ~q = �(~k1 + ~k3); (2.13)

where m = jQRj and m
0 = jQ0

Rj are the masses of the initial and the �nal

BPS state. In the limit j~qj � m0, we have q0 � m0�m. Now, the mass of the

exchanged KK particle is given by m2
KK = jQ0

R�QRj
2. For collinear charges

Q0
R and QR, this is exactly equal to (m0 �m)2. We, therefore, �nd that for

such processes the propagator for the exchanged KK particle goes as

1

t�m2
KK

= �
1

j~qj2
(2.14)

which is characteristic of a long-range interaction! It is important to note

here that for such processes the term in the charge exchange amplitude given

in (1.13) is non-zero only for those black holes which carry charges in the

sixteen toroidal directions of the uncompacti�ed heterotic string and have

polarizations in these directions as well as in the KK directions.

The charge exchange scattering processes identi�ed above are obviously

not generic enough to determine the internal polarization tensor of the black

hole completely. To do this, we need to consider the more general processes in

which QR and Q0
R are not collinear. In this case, the `miracle' in (2.14) does

not happen, and we have a suppression of these amplitudes by 1=m2
KK. Nev-

ertheless, it is interesting that the mass scale at which information about the

initial polarization tensor of the black hole can be obtained from scattering

experiments is mKK and not mstring. Such a conclusion has been anticipated

in [6, 10].

3 D-branes

So far we have discussed the case of electrically charged black holes. It would

clearly be interesting to see how the above ideas apply to the case of fat black

x9 direction, hence the charge vectors are collinear in an obvious sense; similarly our

requirement of the �nal state satisfying the BPS condition is similar to their requirement

that the background be supersymmetric.
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holes described by D-branes [12]. This work is in progress, but we have some

preliminary results for single D-branes carrying single open string excitations.

We will show below that amplitudes involving the scattering of closed strings

o� such excited D-branes encode information about the polarization of the

open string excitations.

We consider type II superstring in Rd�1;1 � T p; d + p = 10 and a Dp-

brane [13] wrapped on the T p. Our notation for the spacetime coordinates is

xM = (x�; xi); � = 0; 1; : : : ; d� 1; i = 1; : : : ; p. We will also use the notation

xa = (x0; xi) for directions parallel to the D-brane, which include time. We

consider a single open string excitation on the D-brane with polarization

�a = (�0; � i) which is parallel to the D-brane. The vertex operator of this

excitation is

VE(�
a; pa; z) = �a(@x

a + ipb 
b a) exp(ip:x(z)) (3.1)

Note that this excitation moves along the compacti�ed directions, so its

momenta pi are quantized. We now consider scattering the following closed

string probes o� the excited D-brane:

VP (�R; �L; k
�; qi; z; �z) =

VP (�R; k; q; z) �VP (�L; k; q; �z) exp[ik�x
�(z; �z) + iqix

i(�z)];

VP (�R; k; q; z) = �R;M(@xM + (ik� 
�(z) + iqi 

i(z)) M(z));

�VP (�L; k; q; z) = �L;M(�@x
M + (ik� 

�(�z) + iqi 
i(�z)) M(�z))

(3.2)

where k is the space time momentum and q is the KK charge. We consider

for simplicity probes with no winding modes: qR = qL; these turn out to be

su�cient for our purposes here. The connected amplitude for the process at

tree level is a disc diagram with two open strings at the boundary and two

closed strings in the interior. It is easy to compute the part of this amplitude

which arises from the exchange of closed strings which are massless in the

ten-dimensional sense. One such term in the S-matrix (which can be sepa-

rately measured by choosing the probe momenta and charges appropriately)
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is reproduced below

M(1; 2; 3; 4) = : : :+ [16�q4k�(2q
2
k)=(�(1 + q2k))

2(q2 +m2
KK)]��

� 0:�R (�L;�q
� + �L;i�qi)(�0R;�q

� + �0R;i�qi) �:�0L + b:e:
�
��

� 0:�L (�R;�q
� + �R;i�qi)(�0L;�q

� + �0L;i�qi) �:�0R + b:e:
�
+ : : :

(3.3)

In the above q = k2+k4; qk = �q20 +~q
2 and �q(� q+q0) denotes the charge

di�erence between the initial and �nal states of the probe. It is clear that by

choosing probes appropriately we can determine the polarization �a.

We should note that the above amplitude corresponds to the exchange of

a charged closed string (KK particle). It can be shown that neutral massless

channels do not exhibit any `hair', that is, they do not have any entanglement

between the polarizations of the probe and the open string excitation on the

D-brane.

Hair in absorption and decay amplitudes of fat black holes:

The above calculation addresses a BPS black hole made up of only a sin-

gle D-brane and open string excitations on it. The construction of fat black

holes [12], of course, involves multiple D-branes and open string excitations

between them. It is an interesting question in that case whether one needs

open string probes 5 to completely determine the states of a black hole, since

the latter form a non-trivial representation of a U(N) gauge theory where

closed string probes are singlets under such gauge groups. Work on this prob-

lem is in progress and we hope to come back to this question. Meanwhile, we

close this section with a brief remark about an S-matrix calculation presented

in [3] which exposes more detail about the quantum state of a fat black hole

than is warranted by the classical no-hair theorems. These black holes are

represented by left- and right-moving open string excitations on D-branes

(for more detail, we refer the reader to [3] and references therein) and their

detailed quantum state is represented by eqn. (6) of [3] which involves the

number distribution of open strings with speci�c left- and right-moving mo-

menta. The S-matrix element involved in the absorption of a closed string

quantum by the black hole (same as the S-matrix for the decay of closed

strings from the black hole) is given by eqn. (8) of [3]. If the closed string

5We thank F. Larsen and F. Wilczek for raising this issue.
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quantum coming out in the decay process has an energy ! integer, then the

S-matrix actually involves the number of left- and right-moving open strings

with momentum !=2 (denoted as NL;R(m) in eqn. (8) of [3]) and the latter

can therefore be measured from S-matrix data. Note that it is only the mi-

crocanonical average of these number distributions (and not the individual

number for each state) which is determined by the temperature of the black

hole. The individual distributions of left- and right-movers obviously have

much more information than is contained in the the data allowed by no-hair

theorems.

4 Conclusion

In this paper we have presented a computation of S-matrix for scattering

of probe particles o� a black hole and shown how a measurement of the

post-Rutherford terms can uniquely determine the microstate of the black

hole from the S-matrix data. The calculation has primarily been carried out

for the electrically charged black holes of [4] and some preliminary results

have been presented for D-branes. The fact that we are able to determine

the state of the black hole from an S-matrix is consistent with the identi-

�cation of the black hole state with an elementary string state; however, it

immediately raises the interesting question of what happened to the usual

no-hair theorems of general relativity, which seem to preclude such detailed

measurement of the state of the black hole from outside. This question be-

comes particularly intriguing in the light of our observation (Sec. 2) that

some of the measurements only require energies of the order of the compact-

i�cation scale which can be far less than the string scale. Our statements

about the S-matrix appear to be closely connected to the observations made

in [6] about violation of no-hair theorems in the context of classical solutions.

Indeed, we explicitly demonstrate the interpretation of some of our S-matrix

elements in terms of stringy classical backgrounds which carry information

about the detailed state of the black hole. We would like to remark that in

regimes where di�erential equations satis�ed by various string modes cannot

be trusted, the S-matrix may provide a more operational de�nition of vari-

ous backgrounds (this is similar to the operational de�nition of horizon area

proposed in [5] as the absorption cross-section). Such an S-matrix approach
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to a consistent unitary quantum mechanics for black holes has actually been

advocated as a principle by 't Hooft [15]. According to such a philosophy, it

is the emergence of the classical no-hair theorems from a unitary S-matrix

which requires an explanation. What we have seen in the present work is that

the terms in the amplitude that exhibit the no-hair property are associated

with massless exchanges; in the presence of string modes or Kaluza-Klein

modes this property is lost, thus enabling determination of the state of a

black hole, much like in the case of ordinary matter.
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