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ABSTRACT

We use heterotic/type-II prepotentials to study quantum/classical black holes

with half the N = 2, D = 4 supersymmetries unbroken. We show that, in

the case of heterotic string compactifications, the perturbatively corrected

entropy formula is given by the tree-level entropy formula with the tree-

level coupling constant replaced by the perturbative coupling constant. In

the case of type-II compactifications, we display a new entropy/area formula

associated with axion-free black-hole solutions, which depends on the electric

and magnetic charges as well as on certain topological data of Calabi–Yau

three-folds, namely the intersection numbers, the second Chern class and the

Euler number of the three-fold. We show that, for both heterotic and type-II

theories, there is the possibility to relax the usual requirement of the non-

vanishing of some of the charges and still have a finite entropy.
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1 Introduction

Recently there has been considerable progress in the understanding of microscopic

and macroscopic properties of supersymmetric black holes in string theory. Using the

Dirichlet-brane interpretation of type-II solitons, the microscopic entropy of certain

stringy black holes could be explicitly calculated [1] in agreement with the macroscopic

Bekenstein-Hawking entropy formula. In [2] it was shown that, while the values of the

moduli at spatial infinity are more or less arbitrary parameters, their values at the hori-

zon are entirely fixed in terms of the (quantized) magnetic and electric charges of the

black hole. In contradistinction with the black-hole mass, which is governed by the value

of the central charge at infinity and thus depends on the charges and the moduli values

at infinity, the entropy-area formula is given in terms of the central charge at the horizon

[3]. Because the moduli are fixed at the horizon in terms of the charges, irrespective of

their possible values at spatial infinity, the entropy-area is thus expressible in terms of

the charges. This result is natural from the point of view that the entropy should follow

from a counting of independent quantum-mechanical states, which seems to preclude any

dependence on continuous parameters such as the moduli values at spatial infinity. In

[3] it was also shown that the central charge acquires a minimal value at the horizon and

that the extremization of the central charge provides the specific moduli values at the

horizon.

The restricted behaviour at the horizon is related to the enhancement to full N = 2

supersymmetry near the horizon, while globally the field configurations leave only half

the supersymmetries unbroken (so that we are dealing with true BPS states). Thus the

black holes can be regarded as solitonic solutions that interpolate between the maximally

supersymmetric field configurations at spatial infinity and at the horizon. Particularly

simple solutions, called double extreme black holes [4], are given by those configurations

where the moduli take constant values from the horizon up to spatial infinity.

Using the extremization procedure of [3], the macroscopic entropy formulae for N = 4

and N = 8 extreme black hole solutions [5] were obtained in perfect agreement with

the construction of explicit black-hole solutions. The N = 4, 8 entropies are completely

unique and they depend only on the quantized magnetic/electric charges and they are

invariant under the perturbative and non-perturbative duality symmetries, such as T -

duality, S-duality [6] and string/string duality [7, 8, 9].

In four-dimensional N = 2 string theories new features of black-hole physics arise which

destroy the uniqueness of the N = 2 entropy formula. In particular there exists a large

number of different N = 2 string vacua so that the extreme black-hole solutions depend on
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the specific details of the particular N = 2 string model. Consequently the same features

are present for the N = 2 entropy formula. Nevertheless, the N = 2 entropy, being

proportional to the extremized N = 2 central charge Z, still depends on the quantized

magnetic/electric charges, although the nature of the dependence is governed by the

particular string model. The N = 2 central charge Z and the N = 2 BPS spectrum

can be directly calculated from the N = 2 holomorphic prepotential which describes the

two-derivative couplings of the N = 2 vector multiplets in the effective N = 2 string

action [10] (or, in a symplectic basis where the prepotential does not exist [11], from

the symplectic sections). Therefore the parameters of the prepotential of a given N = 2

string model determine the black-hole entropy as well as the values of the scalar fields at

the horizon.

Depending on whether one is discussing heterotic or type-II N = 2 string vacua, the pa-

rameters of the prepotential have a rather different interpretation. To be more specific,

let us first consider four-dimensional N = 2 heterotic string compactifications on K3×T2,

where the number of vector multiplets NV (not counting the graviphoton), the number of

hypermultiplets NH and the couplings are specified by a particular choice of the SU(2)

instanton gauge bundle. The classical prepotential is completely universal and corre-

sponds to a scalar non-linear σ-model based on the coset space SU(1,1)
U(1)

⊗ SO(2,NV −1)
SO(2)×SO(NV −1)

.

Extremizing the corresponding central charge Z the classical N = 2 black hole entropy

and the moduli on the horizon have been computed explicitly [4, 12, 13], and the result

agrees with the truncated N = 4 formulae.

Since in heterotic N = 2 string compactifications the dilaton field S can be described

by a vector multiplet, the heterotic prepotential receives perturbative corrections only

at the one-loop level [15, 16]; in addition there are non-perturbative contributions. The

heterotic one-loop corrections to the prepotential, being independent of the dilaton S,

split into a cubic polynomial, a constant term and an infinite series of terms which are

exponentially suppressed in the decompactification limit of large moduli fields. It is an

interesting observation that the coefficients of the exponential terms are given in terms

of q-expansion coefficients of certain modular forms as explicitly shown for models with

NV = 3, 4 in [17, 18, 19]. Thus, the one-loop black hole solutions are determined by an

infinite set of integer numbers; hence the extremization problem of the corresponding

one-loop central charges is very involved and difficult. Nevertheless, we are able to derive

a simple formula for the black-hole entropy in terms of the heterotic string-coupling and

the target-space duality-invariant inner product of the charges, which holds to all orders

in perturbation theory. This formula does not depend explicitly on the values of the

moduli fields. At the horizon the values of the moduli can be determined explicitly in
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certain cases when neglecting all exponential terms in the large moduli limit. Hence new

quantum features of black holes already become important when considering only cubic

corrections to the classical prepotential.

It is well established that the N = 2 heterotic string on K3 × T2 is dual to type-IIA

(IIB) compactification on a suitably chosen Calabi–Yau three-fold [20, 21, 22]. In fact,

it was shown [20, 23, 24, 25, 18, 19] for models with NV = 3, 4 that the type-IIA and

heterotic prepotential agree in heterotic weak-coupling limit. On the type-IIA side the

N = 2 prepotential of the Kähler class moduli is completely classical because the type-II

dilaton corresponds to a hypermultiplet and has no couplings to the vector fields. More

specifically, the cubic couplings of the type-IIA prepotential are determined by the topo-

logical intersection numbers of the corresponding Calabi–Yau space; the coefficients of

the exponential terms are given in terms of the rational Calabi–Yau instanton numbers.

In this paper we focus on the limit of large Kähler-class moduli, i.e. we will discuss

the influence of the classical intersection numbers CABC , as well as terms constant and

linear in the moduli, on the Calabi–Yau black-hole solutions. The linear ones are related

to the second Chern class of the three-fold and the constant one is related to the Eu-

ler characteristic [26]. Hence we find new entropy formulae which depend only on the

magnetic/electric charges and topological data on the Calabi–Yau manifold.

Our paper is organized as follows. In the next section we will briefly introduce the N = 2

vector couplings and the N = 2 central charge in terms of the N = 2 prepotential. We

will recall the structure of the prepotentials in four-dimensional N = 2 heterotic and

type-IIA string vacua, and also their relations via heterotic/typeII string-string duality.

In section 3 we show that there is a rather elegant and simple way to find the solutions of

the extremization problem of the N = 2 central charge, which can be used to compute the

values of the moduli on the black-hole horizon and the black-hole entropy as a function of

the quantized electric/magnetic charges. While these solutions cannot be determined in

full generality, we can generally prove a simple formula for the entropy for perturbative

heterotic vacua, as a product of the inverse square of the perturbative string-coupling

constant (which itself depends on the electric/magnetic charges) and the target-space

duality-invariant inner product of the charges. A particular class of solutions that can

generally be evaluated for cubic prepotentials, is the class of non-axionic black-holes. This

result covers the type-IIA Calabi–Yau black-hole entropy in case of small contributions

of the rational instanton configurations, i.e., in the limit of large Kähler-class moduli.

We will also discuss the influence of linear terms in the prepotential on the black hole

entropy. In the Calabi–Yau case these linear terms are related to the second Chern class

of the three-fold [26]. In section four we discuss the relation of our solution to intersecting
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branes in higher dimensions and suggest their M-theory interpretation. In the last section

we summarize our results.

2 The N = 2 prepotential in heterotic and type-IIA string vacua

2.1 General formulae

The vector couplings of N = 2 supersymmetric Yang-Mills theory are encoded in a

holomorphic function F (X), where the X denote the complex scalar fields of the vector

supermultiplets. With local supersymmetry this function depends on one extra field,

in order to incorporate the graviphoton. The theory can then be encoded in terms of

a holomorphic function F (X) which is homogeneous of second degree and depends on

complex fields XI with I = 0, 1, . . .NV . Here NV counts the number of physical vector

multiplets.

The resulting special geometry [10, 27] can be defined more abstractly in terms of a

symplectic section V , also referred to as period vector: a (2NV + 2)-dimensional complex

symplectic vector, expressed in terms of the holomorphic prepotential F according to

V =

(
XI

FJ

)
, (2.1)

where FI = ∂F/∂XI . The NV physical scalar fields of this system parametrize an NV -

dimensional complex hypersurface, defined by the condition that the section satisfies a

constraint

〈V̄ , V 〉 ≡ V̄ TΩV = −i, (2.2)

with Ω the antisymmetric matrix

Ω =

(
0 1

−1 0

)
. (2.3)

The embedding of this hypersurface can be described in terms of NV complex coordinates

zA (A = 1, . . . , NV ) by letting theXI be proportional to some holomorphic sections XI(z)

of the complex projective space. In terms of these sections the XI read

XI = e
1
2
K(z,z̄)XI(z) , (2.4)

where K(z, z̄) is the Kähler potential, to be introduced below. In order to distinguish

the sections XI(z) from the original quantities XI , we will always explicitly indicate

their z-dependence. The overall factor exp[1
2
K] is chosen such that the constraint (2.2)
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is satisfied. Furthermore, by virtue of the homogeneity property of F (X), we can extract

an overall factor exp[1
2
K] from the symplectic sections (2.1), so that we are left with a

holomorphic symplectic section. Clearly this holomorphic section is only defined projec-

tively, i.e., modulo multiplication by an arbitrary holomorphic function. On the Kähler

potential these projective transformations act as Kähler transformations, while on the

sections V they act as phase transformations.

The resulting geometry for the space of physical scalar fields belonging to vector multi-

plets of an N = 2 supergravity theory is a special Kähler geometry, with a Kähler metric

gAB̄ = ∂A∂B̄K(z, z̄) following from a Kähler potential of the special form

K(z, z̄) = − log
(
iX̄I(z̄)FI(X

I(z))− iXI(z)F̄I(X̄
I(z̄))

)
. (2.5)

A convenient choice of inhomogeneous coordinates zA are the special coordinates, defined

by

X0(z) = 1 , XA(z) = zA , A = 1, . . . , NV . (2.6)

In this parameterization the Kähler potential can be written as [28]

K(z, z̄) = − log
(
2(F + F̄)− (zA − z̄A)(FA − F̄A)

)
, (2.7)

where F(z) = i(X0)−2F (X).

We should point out that it is possible to rotate the basis specified by (2.1) by an

Sp(2NV + 2,Z) transformation in such a way that it is no longer possible to associate

them to a holomorphic function [11]. As long as all fundamental fields are electrically

neutral (which is the case in the context of this paper), this is merely a technical problem,

as one can always rotate back to the basis where a prepotential exists [29]. As shown

in [11] the supergravity Lagrangian can be expressed entirely in terms of the symplectic

section V , without restricting its parameterization so as to correspond to a prepotential

F (X).

The Lagrangian terms containing the kinetic energies of the gauge fields are

4πLgauge = − i
8

(
NIJ F

+I
µν F

+µνJ − N̄IJ F
−I
µν F

−µνJ
)
, (2.8)

where F±Iµν denote the selfdual and anti-selfdual field-strength components and NIJ(z, z̄)

is the field-dependent tensor that comprises the inverse gauge couplings g−2
IJ = i

16π
(NIJ−

N̄IJ) and the generalized θ angles θIJ = π
2
(NIJ + N̄IJ).

Now we define the tensors G±µνI as

G+
µνI = NIJF

+J
µν , G−µνI = N̄IJF

−J
µν , (2.9)

5



which describe the (generalized) electric displacement and magnetic fields. The set of

Bianchi identities and equation of motion for the Abelian gauge fields are invariant under

the transformations

F+I
µν −→ F̃+I

µν = U I
J F

+J
µν + ZIJ G+

µνJ .

G+
µνI −→ G̃+

µνI = VI
J G+

µνJ +WIJ F
+J
µν , (2.10)

where U , V , W and Z are constant, real, (NV + 1)× (NV + 1) matrices, which have to

satisfy the symplectic constraint

O−1 = ΩOT Ω−1 where O =

(
U Z

W V

)
. (2.11)

The target-space duality group Γ is a certain subgroup of Sp(2NV +2,Z). It follows that

the magnetic/electric charge vector Q = (pI , qJ), defined by (
∮
F I ,

∮
GJ) = (2πpI , 2πqJ),

transforms as a symplectic vector, where we stress that the identification of magnetic and

electric charges is linked to the symplectic basis. Since N = 2 supersymmetry relates the

XI to the field strengths F+I
µν , while the FI are related to the G+µν

I , the period vector V

also transforms as a symplectic vector:

X̃I = U I
J X

J + ZIJ FJ ,

F̃ I = VI
J FJ +WIJ X

J . (2.12)

Finally consider N = 2 BPS states, whose masses are equal to the central charge Z of

the N = 2 supersymmetry algebra. In terms of the magnetic/electric charges Q and the

period vector V the BPS masses take the following form [11]:

M2
BPS = |Z|2 = |〈Q, V 〉|2 = eK |qIX

I(z)− pIFI(z)|
2 = eK(z,z̄) |M(z)|2. (2.13)

It follows that M2
BPS is invariant under symplectic transformations (2.12).

An example of a prepotential arising in string compactifications is given by the cubic

prepotential

F (X) = dABC
XAXBXC

X0
, (2.14)

where dABC are some real constants. The corresponding Kähler potential is given by

K(z, z̄) = − log
(
− idABC (z − z̄)A(z − z̄)B(z − z̄)C

)
. (2.15)

In the case of heterotic string compactifications, both the classical prepotential as well

as certain perturbative corrections to it are described by a cubic prepotential of the type

(2.14). In the case of type IIA compactifications, the dABC are just proportional to the

classical intersection numbers: dABC = −1
6
CABC .
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2.2 The heterotic prepotential

In the following, we will discuss a class of heterotic N = 2 models, obtained by com-

pactifying the E8 ×E8 string on K3× T2. The moduli zA (A = 1, . . . , NV ) comprise the

dilaton S, the two toroidal moduli T and U as well as Wilson lines V i (i = 1, . . . , NV −3):

S = −iz1 , T = −iz2 , U = −iz3 , V i = −izi+3 . (2.16)

We will, in the following, collectively denote the moduli T, U and V i by T a, so that

a = 2, . . . , NV . The generic unbroken Abelian gauge group U(1)NV +1 depends on the

specific choice of SU(2) bundles with instanton numbers (d1, d2) = (12−n, 12 +n) when

compactifying to six dimensions on K3 (see [20, 30, 31] for details). For example, for

n = 0, 1, 2, a complete Higgsing is possible which leads to the three-parameter S-T -

U models with no Wilson-line moduli (NV = 3). It is, however, also possible to not

completely Higgs away the six-dimensional gauge group E7 ×E7, and for n = 0, 1, 2 one

obtains in this way heterotic models with one Wilson-line modulus V . Here we have

four vector multiplets, so that we are dealing with a four-parameter S-T -U-V model

(NV = 4).

For this class of models, the heterotic prepotential has the form

Fhet = −ST aηabT
b + h(T a) + fNP(e−2πS, T a) , (2.17)

where

T aηabT
b = T 2T 3 −

NV∑
I=4

(T I)2, a, b = 2, . . . , NV . (2.18)

The dilaton S is related to the tree-level coupling constant and to the theta angle by S =

4π/g2− iθ/2π. The first term in (2.17) is the classical part of the heterotic prepotential,

h(T a) denotes the one-loop contribution and fNP is the non-perturbative part, which is

exponentially suppressed for small coupling. Note that the perturbative corrections are

entirely due to one-loop effects, owing to nonrenormalization theorems. In the following

we focus on the perturbative contributions.

The classical prepotential leads to the metric of the special Kähler manifold SU(1,1)
U(1)

⊗
SO(2,NV −1)

SO(2)×SO(NV −1)
with corresponding tree-level Kähler potential

K = − log
[
(S + S̄)

]
− log

[
(T a + T̄ a)ηab(T

b + T̄ b)
]
. (2.19)

Due to the required embedding of the T -duality group into the N = 2 symplectic trans-

formations, it follows [15, 16] that the heterotic one-loop prepotential h(T a) must obey
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well-defined transformation rules under this group. The function h(T a) leads to the fol-

lowing modified Kähler potential [15], which represents the full perturbative contribution,

K = − log[(S + S̄) + VGS(T a, T̄ a)]− log
[
(T a + T̄ a)ηab(T

b + T̄ b)
]
, (2.20)

where

VGS(T a, T̄ a) =
2(h+ h̄)− (T a + T̄ a)(∂Tah+ ∂T̄ah̄)

(T a + T̄ a)ηab(T b + T̄ b)
(2.21)

is the Green-Schwarz term [32] describing the mixing of the dilaton with the moduli T a.

Note that the true perturbative coupling constant is given by

4π

g2
pert

= 1
2

(
S + S̄ + VGS(T a, T̄ a)

)
. (2.22)

To be more specific, let us recall the precise form of the one-loop prepotential h(T a)

[17, 18, 19]. For simplicity we limit the discussion here to the models with NV = 4.

Any of the S-T -U-V models considered can be simply truncated to the three-parameter

S-T -U model upon setting V → 0. For the class of S-T -U-V models considered here,

the one-loop prepotential is given by

h(T, U, V ) = pn(T, U, V )− c−
1

4π3

∑
k,l,b∈Z

(k,l,b)>0

cn(4kl − b2)Li3(e[ikT + ilU + ibV ]), (2.23)

where c = cn(0)ζ(3)
8π3 and e[x] = exp2πix. The coefficients cn(4kl − b2) are the expansion

coefficients of particular Jacobi modular forms [19]. pn is a cubic polynomial of the form

[33, 34, 19]

pn(T, U, V ) = −1
3
U3 − (4

3
+ n)V 3 + (1 + 1

2
n)UV 2 + 1

2
nTV 2 . (2.24)

It is important to note that the expression (2.23) is valid in the specific Weyl chamber

Re T > Re U > 2Re V .

Now consider taking the limit S, T, U, V →∞ subject to Re S > Re T > Re U > 2Re V ,

in which all non-perturbative as well as perturbative exponential terms are suppressed.

Then, the heterotic prepotential is simply given by the cubic polynomial Fhet = −S(TU−

V 2) + pn(T, U, V ). In the limit V → 0, the perturbative prepotential is completely

universal. In the large-moduli limit S, T, U → ∞ (Re S > Re T > Re U), which is

the decompactification limit to 5 dimensions, the prepotential of these three-parameter

models takes the form

Fhet = −STU − 1
3
U3 − c, (2.25)
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where c = c = cSTU(0)ζ(3)
8π3 and cSTU(kl) =

∑
b cn(4kl − b2) (for any n). Using (2.21) it is

straightforward to compute the one-loop term VGS which follows from the prepotential

(2.25):

VGS(T, T̄ , U, Ū) =
(U + Ū)2

3(T + T̄ )
−

4c

(T + T )(U + U)
. (2.26)

2.3 The type-IIA prepotential

As already mentioned, the prepotential in type-IIA Calabi–Yau compactifications, which

depends on the Kähler-class moduli tA (A = 1, . . . , NV = h1,1), is of purely classical

origin. Nevertheless it has the same structure as the heterotic prepotential. In fact, for

dual heterotic/type-IIA pairs the prepotentials are identical upon a suitable identification

of the Kähler-class moduli tA in terms of the heterotic fields S and T a.

The type-IIA prepotential has the following general structure [35]:

F II = −
1

6
CABCt

AtBtC −
χζ(3)

2(2π)3
+

1

(2π)3

∑
d1,...,dh

nrd1,...,dh
Li3(e[i

∑
A

dAt
A]), (2.27)

where we work inside the Kähler cone σ(K) = {
∑
A t

AJA|tA > 0}. (The JA denote

the (1,1)-forms of the Calabi–Yau three-fold M , which generate the cohomology group

H2(M,R)). The cubic part of the type-IIA prepotential is given in terms of the classical

intersection numbers CABC , whereas the coefficients nrd1,...,dh
of the exponential terms

denote the rational instanton numbers of genus 0. Hence, in the limit of large Kähler class

moduli, tA → ∞, only the classical part, related to the intersection numbers, survives.

Consider, for example, the four-parameter model based on the compactification on the

Calabi–Yau three-fold P1,1,2,6,10(20) with h1,1 = 4 and Euler number χ = −372 [33]. The

cubic intersection-number part of the type-IIA prepotential for this model is given as

−F II
cubic = t2((t1)2 + t1t3 + 4t1t4 + 2t3t4 + 3(t4)2) + 4

3
(t1)3 + 8(t1)2t4

+t1(t3)2 + 2(t1)2t3 + 8t1t3t4 + 2(t3)2t4 + 12t1(t4)2 + 6t3(t4)2 + 6(t4)3. (2.28)

Some of the rational instanton numbers nrd1,d2,d3,d4
for this model are displayed in [33, 19].

This model is dual to the previously discussed heterotic string compactification with

NV = 4 and n = 2 [19]. The necessary identification of heterotic and type-IIA moduli is

given as

t1 = U − 2V, t2 = S − T, t3 = T − U, t4 = V , (2.29)

and one can explicitly check that for some instanton numbers and for the Euler number

the relations

nrl+k,0,k,2l+2k+b = −2c2(4kl − b2), χ = 2c2(0) (2.30)
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are indeed satisfied. In addition, the cubic heterotic prepotential p2 (cf. (2.24)) and the

Calabi–Yau prepotential (cf. (2.28)) agree.

Finally, let us mention that, in a particular symplectic basis, it is very convenient to

add to the Calabi–Yau prepotential (2.27) a topological term which is determined by

the second Chern class c2 of the three-fold M , which gives rise to terms linear in the

Kähler-class moduli fields:

F II = −
1

6
CABCt

AtBtC +
h∑
A

c2 · JA
24

tA + · · · . (2.31)

The real numbers c2 · JA =
∫
M c2 ∧ JA are the expansion coefficents of c2 with respect

to the basis J∗A of the cohomology group H4(M,R) which is dual to the basis JA of

H2(M,R) (i.e.
∫
M J∗A ∧ JB = δAB). It is clear from eq.(2.12) that adding such a linear

term to the prepotential is equivalent to performing a symplectic transformation with

U = V = 1, Z = 0 and W0A = c2·JA
24

; hence it has just the effect of a constant shift in the

theta angles [36]. In the next section we will see that adding such a topological linear

term to the prepotential may have interesting effects on the N = 2 black hole entropy as

a function of the magnetic/electric charges.

As an example we consider the three parameter model based on the Calabi-Yau

P1,1,2,8,12(24) with h1,1 = 3 and χ = −480, which is dual to the heterotic string com-

pactification with NV = 3 and n = 2. The corresponding prepotential can be simply

obtained from (2.28) by setting V = 0. Here the linear topological term takes the form

3∑
A

c2 · JA
24

tA = 23
6
t1 + t2 + 2t3 = S + T + 11

6
U . (2.32)

3 N = 2 Supersymmetric black holes

In this section we consider extreme dyonic black holes in the context of N = 2 super-

gravity. The fields corresponding to these black holes spatially interpolate between two

maximally supersymmetric field configurations. One is the trivial flat space at spatial

infinity, which allows constant values for the moduli fields. The other is the Bertotti-

Robinson metric near the horizon, where the fields are restricted to (covariantly) constant

moduli and graviphoton field strength (the latter is directly related to the value of the

central charge at the horizon). The interpolating fields leave only half the supersymme-

tries invariant, so that we are dealing with true BPS states. For these black holes, the

mass is equal to the central charge taken at spatial infinity, so that

M2
ADM = |Z∞|

2 = eK(z,z̄) |M(z)|2
∣∣∣
∞
, (3.1)
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where the moduli fields z are taken at spatial infinity. Hence the mass depends generically

on the magnetic/electric charges and the asymptotic values of the moduli fields.

Near the horizon the values of the moduli fields, and thus the value of the central charge,

are strongly restricted by the presence of full N = 2 supersymmetry. In [3] it was proved

that this implies that the central charge becomes extremal on the horizon. The result

of this is that one can express the values of the moduli at the horizon in terms of the

magnetic/electric charges pI and qI . The value of the central charge at the horizon is

related to the Hawking-Bekenstein entropy,

S

π
= |Zhor|

2 , (3.2)

where we have conveniently adjusted the value of Newton’s constant. The area of the

black hole, which equals four times the entropy, has an interpretation as the mass of

the Bertotti-Robinson universe. The crucial observation here is that the entropy and

related quantities depend only on the quantized magnetic/electric charges (with N =

2 supersymmetry the nature of this dependence is governed by the particular string

vacuum), while the mass of the black hole depends on the charges as well as on the

asymptotic values of the moduli. The latter are, in principle, arbitrary parameters that

do not depend on the charges and, when approaching the black hole, evolve according

to a damped geodesic equation towards the fixed-point values at the horizon, which are

given in terms of the charges.

There exist so-called double extreme black holes, introduced in [4], for which the moduli

remain constant away from the horizon. In that case the central charge remains constant

and thus the black hole mass is equal to the Bertotti-Robinson mass. The moduli at

spatial infinity take the same values as near the horizon, so that the black-hole mass

itself is now also a function of the magnetic/electric charges. Consequently, for double

extreme black holes we find that MADM is a function of the pI and qI .

In this section we study the extremization problem at the black-hole horizon to obtain

the value of the moduli and the black-hole entropy as a function of the charges pI and

qI . We cast this problem in a convenient form, which can be formulated in terms of a

variational principle (cf. (3.12)). This allows us to construct a variety of explicit solutions.

Then, in the second subsection, we consider the black-hole entropy for heterotic N = 2

supersymmetric string compactifications to all orders in string perturbation theory and

derive a general formula for the entropy. An important feature of this formula is its

invariance under target-space duality. In the next subsection we consider so-called non-

axionic black holes, where one can conveniently obtain explicit solutions. Finally in

subsection 3.4 we consider the entropy for type-II compactifications.
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3.1 Extremization of the N = 2 central charge

Let us start and exhibit some features of the double extreme black holes, for which the

moduli remain constant. The metric of these black holes is of the extreme Reissner-

Nordstrom form with the mass equal to the square root of the area divided by 4π. In

isotropic coordinates the metric is

ds2 = −

1 +

√
A/4π

r

−2

dt2 +

1 +

√
A/4π

r

2

d~x2 . (3.3)

One can also present the metric as (r̃ = r +
√
A/4π)

ds2 = −

1−

√
A/4π

r̃

2

dt2 +

1−

√
A/4π

r̃

−2

dr̃2 + r̃2d2Ω . (3.4)

The mass is defined via the large-r̃ expansion

gtt =
(
1−

2MADM

r̃
+ · · ·

)
(3.5)

and the metric shows that

MADM =

√
A

4π
. (3.6)

In this form it is clear that the horizon is at gtt = 0 =⇒ r̃ =
√
A/4π. Therefore the area

of the horizon is indeed given by

4π(r̃2)hor = A . (3.7)

As discussed above, to obtain the value of the moduli at the horizon for extreme N = 2

black holes, one can determine the extremal value of the central charge in moduli space.

This implies that

∂A|Z| = 0 . (3.8)

These equations are difficult to solve in general. They are, however, equivalent to the

following set of equations [3]

Z̄ V − Z V̄ = iQ , (3.9)

where Q is the magnetic/electric charge vector Q = (pI , qJ). The above relation is

closely related to the fact that the field configurations are fully supersymmetric at the

horizon. Here we note that these equations can be independently justified on the basis

of symplectic covariance. Assuming that the moduli near the horizon depend exclusively

on the magnetic/electric charges and satisfy equations of motions that transform in a
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well-defined way under symplectic (duality) reparametrizations, the symplectic period

vector must be proportional to the symplectic charge vector. As the period vector is

complex and the charge vector is real, there is a complex proportionality factor which

must be a symplectic invariant. Using (2.2) we derive that this factor is precisely the

central charge Z and find the above result (3.9).

From (3.9) one can determine the period vector, which is defined in terms of NV complex

moduli. We do this by reformulating the equation and the corresponding expression of

the black-hole entropy in terms of a variational principle. To do this, we first introduce

a new symplectic vector Π by

Π =

(
Y I

FJ(Y )

)
where Y I ≡ Z̄ XI . (3.10)

Observe that Y I and thus the vector Π is U(1) invariant, so that it is not subject to

Kähler transformations. In terms of Π, (3.9) and (3.2) turn into

Π− Π̄ = iQ ,
S

π
= |Zhor|

2 = i〈Π̄,Π〉 . (3.11)

The equations (3.11) are governed by a variational principle associated with a ‘potential’

VQ(Y, Ȳ ) ≡ −i〈Π̄,Π〉 − 〈Π̄ + Π, Q〉 . (3.12)

VQ takes an extremal value whenever Y and Ȳ satisfy the first equation (3.11). This

extremal value is given by the second expression (3.11) for the entropy. Using (2.5) the

entropy can be also written as

S

π
= |Y 0|2 exp

[
−K(z, z̄)

]∣∣∣∣
hor

. (3.13)

where Y 0 and the special coordinates zA are evaluated at the horizon.

Let us now consider the construction of solutions to the equations (3.11). Written in

components they read

Y I − Ȳ I = ipI , FI(Y )− F̄I(Ȳ ) = iqI . (3.14)

To solve these equations it does not help to go to a special symplectic basis (although the

equations may take a more ‘suggestive’ form), as this only corresponds to taking linear

combinations. Although we assumed the existence of the holomorphic prepotential, the

above variational principle can also be formulated in a basis where such a prepotential

does not exist, but for the purpose of this paper this feature is not important. The

components of Π comprise 2NV + 2 complex quantities, but only NV + 1 of them are

independent (as the others are determined in terms of the prepotential). So generically,
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the above equation fixes Π in terms of pI and qJ . Before considering an explicit example,

we note the following convenient relations, which follow from (3.14) for p0 and pA,

(zA − z̄A)Y 0 = i(pA − p0z̄A) . (3.15)

As an example, consider the following cubic prepotential

F (Y ) = −b
Y 1Y 2Y 3

Y 0
+ a

(Y 3)3

Y 0
. (3.16)

The solution to (3.14) for a general magnetic/electric charge vector (pI , qI) where I =

0, 1, 2, 3, reads

Y 0 =
p3 + ip0Ū

U + Ū
, Y 1 = −

Y 0

p3 + ip0Ū

(
− ip1Ū +

q2

b

)
,

Y 2 = −
Y 0

p3 + ip0Ū

(
− ip2Ū +

q1

b

)
, Y 3 = iU Y 0 , (3.17)

where U is determined by the following equation

q0 − iq3Ū =
b

p3 + ip0Ū

(
− ip1Ū +

q2

b

)(
− ip2Ū +

q1

b

)
+a p3(U2 + 2UŪ − 2Ū2) + ia p0UŪ(U + 2Ū) . (3.18)

The entropy can be determined as a function of U , by making use of (3.13),

S

π
=
∣∣∣∣ U + Ū

p3 − ip0U

∣∣∣∣2 {(b p1p3 + q2p
0)(b p2p3 + q1p

0)

b
− a

}
. (3.19)

What remains is to solve (3.18). For the case a = 0, b = 1, this is a quadratic equation

for U with solution

U = i
q0p

0 + q1p
1 + q2p

2 − q3p
3

2(q3p0 + p1p2)
±

√√√√ q1q2 − q0p3

q3p0 + p1p2
−

(q0p0 + q1p1 + q2p2 − q3p3)2

4(q3p0 + p1p2)2
. (3.20)

These solutions with the corresponding value for the entropy can be compared to previous

results [12, 4, 13] (for the results of the second and third work this comparison requires

a conversion to the appropriate symplectic basis).

3.2 Perturbative entropy formula for heterotic string compactifications

The classical entropy formula for N = 2 supersymmetric heterotic string compactifi-

cations has been derived in the perturbative string basis [4, 13]. It was shown to be

invariant (as should be expected) under the target-space duality group, which, at the
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classical level, is just equal to SO(2, NV − 1). The entropy was also constructed in the

symplectic basis corresponding to the first term in (2.17) in [12].

In this section we derive the entropy formula, but now to all orders of string perturbation

theory. It reads
S

π
=

8π

g2
pert

∣∣∣∣
hor

(p0q1 + paηabp
b) . (3.21)

The perturbative string coupling depends on the values of the dilaton field and the moduli

at the horizon. The charges p and q refer to the magnetic/electric charges as defined in

the symplectic basis associated with (2.17). This is, however, not the basis defined by

perturbative string theory, where the magnetic charges are equal to N I = (p0, q1, p
2, . . .).

These magnetic charges transform linearly under target-space duality transformations,

N I → Û I
J N

J , (3.22)

where the matrix Û belongs to a subgroup of SO(2, NV−1,Z). In terms of the string basis

we find that we are dealing with an invariant under these transformations [11, 15, 13]

p0q1 + paηabp
b = N0N1 +NaηabN

b ≡ 〈N,N〉 . (3.23)

Thus, in the perturbative string basis, eq. (3.21) reads

S

π
=

8π

g2
pert

∣∣∣∣
hor
〈N,N〉 . (3.24)

Due to nonrenormalization theorems, this result is true to all orders in perturbation

theory and takes precisely the same form as the classical entropy formula [13], with

the tree-level coupling constant replaced by its full perturbative value. As the latter is

invariant under target-space duality [15], the perturbative entropy formula is invariant

under target-space duality. In fact, since 〈N,N〉 is invariant under target-space duality

transformations, whereas the dilaton is not, at least not beyond the classical level, it was

natural to expect that the corrected entropy formula should be given by the tree-level

formula with the dilaton replaced by some one-loop target-space duality invariant object.

It is gratifying to see that this object is precisely the true loop-counting parameter of

heterotic string theory.

Let us now show that (3.21) indeed holds. Inserting eqs. (2.20) into eq. (3.13) yields

S

π
= (S + S̄ + VGS) |Y 0|2 (T a + T̄ a)ηab(T

b + T̄ b) . (3.25)

Using that T a = −iza, and inserting (3.15) and its complex conjugate into (3.25) yields

|Y 0|2 (T a + T̄ a)ηab(T
b + T̄ b) = (pa + ip0T̄ a)ηab(p

b − ip0T b) . (3.26)
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On the other hand, it follows from (3.14) and (2.17) that

F1(Y )− F̄1(Ȳ ) = −
Y aηabY

b

Y 0
+
Ȳ aηabȲ

b

Ȳ 0
= iq1 . (3.27)

Using that Ȳ a = Y a − ipa, we obtain

F1(Y )− F̄1(Ȳ ) = −
Y aηabY

b

Y 0
+
Ȳ aηab(Y

b − ipb)

Ȳ 0

= −iT aηabY
b − iT̄ aηab(Y

b − ipb)

= Y 0(T a + T̄ a)ηabT
b − T̄ aηabp

b = iq1 . (3.28)

Using once more (3.15), we establish

p0q1 + paηabp
b = (pa + ip0T̄ a)ηab(p

b − ip0T b) . (3.29)

Combining (3.25), (3.26) and (3.29) and using the expression for the perturbative string-

coupling constant (2.22) yields the desired result (3.21).

3.3 The axion-free case

Axion-free solutions are solutions with Re za = 0. For these solutions (3.15) takes the

form

zA(2Y 0 − ip0) = ipA . (3.30)

First let us assume that 2Y 0 − ip0 = Y 0 + Ȳ 0 = λ 6= 0. In that case we easily derive the

following result for the Y I ,

Y 0 = 1
2
(λ+ ip0) , Y A = ipA

λ+ ip0

2λ
. (3.31)

Consider the second set of equations (3.14) applied to an arbitrary prepotential of the

heterotic/type-II form,

F (Y ) =
dABC Y

AY BY C

Y 0
+ ic(Y 0)2 , (3.32)

where c is a real constant. In principle we could allow additional quadratic terms, which

would still be explicitly solvable, at least for axion-free solutions. Arbitrary quadratic

terms with real coefficients can be easily incorporated by making use of suitable symplec-

tic reparametrization. This will be discussed in the next subsection. For the case above

(3.14) now yields the following equations,

q0 =
dABC p

ApBpC

λ2
+ 2cλ , qA = −

3p0

λ2
dABC p

BpC , (3.33)
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leading to the condition

3p0q0 + pAqA = 6cλ p0 . (3.34)

Observe that the first condition (3.33) can only be satisfied for (q0−2λ) dABCp
ApBpC > 0.

The entropy can be computed from (3.13) and reads

S

π
= −2(q0 − 2cλ)

[
λ+

(p0)2

λ

]
. (3.35)

For cp0 6= 0 we can express λ in terms of the charges,

λ =
3p0q0 + pAqA

6c p0
, (3.36)

On the other hand, when cp0 = 0 we have a constraint on the charges,

3p0q0 + pAqA = 0 . (3.37)

For c = 0 and q0 6= 0 we can express λ as

λ = ±

√
dABC pApBpC

q0

. (3.38)

Plugging this into (3.33) one can express the charges qA in terms of the remaining ones,

q0, p
0, pA. Positivity of the entropy requires q0λ < 0. In the following we choose the

moduli zA to live on the upper-half plane Im zA > 0 and for convenience we restrict

ourselves to charges with q0 < 0 and pA > 0. Then the moduli zA take the form

zA = i pA
√

q0

dABC pApBpC
. (3.39)

As a special case, consider the non-axionic solution (3.33) with c = p0 = 0 and, conse-

quently, qA = 0. This constitutes a solution with only NV +1 independent, non-vanishing

charges, which we take to satisfy pA > 0, q0 < 0, for definiteness. The entropy is given

by
S

π
= 2

√
q0dABCpApBpC , (3.40)

and the moduli are given in (3.39). In particular, for the cubic prepotential (3.16) we

find that

z1 = p1 z
3

p3
, z2 = p2 z

3

p3
, z3 = i

√√√√ q0p3

−b p1p2 + a(p3)2
, (3.41)

as well as
S

π
= 2

√
−q0(b p1p2p3 − a(p3)3) . (3.42)

For the values b = −3a = 1, the cubic prepotential (3.16) describes the one-loop corrected

heterotic prepotential (2.25) of the S-T -U model in the decompactification limit Re S >
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Re T > Re U → ∞. Consistency of this limit requires the following ordering of the

absolute values of the charges: −q0 � p1 > p2 > p3 � 0. It will be shown in section 4

that this hierarchy of charges also guarantees the suppression of α′ corrections.

Also note that the solution (3.38) we found for the case cp0 = 0 is a good approximate

solution for the general case c 6= 0 (with general p0). Recalling that c = χζ(3)
16π3 , which is

of order 1 for typical Calabi-Yau Euler numbers χ with |χ| ≤ 1000, we expect that the

constant term in the prepotential will only give a small contribution when the moduli

are large. Comparing the exact solution for λ in the case c 6= 0 to the solution (3.38) one

can show that both differ by terms of order
√

c2dABCpApBpC

q3
0

, which is small for |q0| � |pA|,

i. e. for large moduli.

The second class of solutions corresponds to Y 0 = 1
2
ip0, which implies (for finite zA) that

all the pA must vanish. Now the stabilization equations (3.14) imply that

qA = 3p0 dABC z
BzC , q0 = 0 . (3.43)

Hence the only nonzero charges are p0 and (some of) the qA. The above NV quadratic

equations for the NV purely imaginary parameters zA can usually be solved straightfor-

wardly. Note that there is no dependence on the constant term c in this case, because

Y 0 is purely imaginary.

To demonstrate this second solution we reconsider the prepotential corresponding to

(3.16). The equations for qA take the form

q1 = b p0 TU , q2 = b p0 SU , q3 = b p0 ST − 3a p0 U2 , (3.44)

with S, T , U real. These solutions can be solved for S, T and U ,

2

√
b p0q1

q2

S = 2

√
b p0q2

q1

T =

√√√√
q3 + 2

√
−3a q1q2

b
+

√√√√
q3 − 2

√
−3a q1q2

b
,

2
√
−3a p0 U =

√√√√
q3 + 2

√
−3a q1q2

b
−

√√√√
q3 − 2

√
−3a q1q2

b
. (3.45)

The charges and the coefficients a and b must be chosen such that S, T and U are positive.

3.4 The entropy formula in type-II compactifications

The entropy formula for extreme black holes in type-II compactifications will depend on

electric and magnetic charges as well as on topological data of the Calabi–Yau manifold,

on which one has compactified the type-II string theory. The topological data appearing
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in the prepotential are the classical intersection numbers CABC as well as the expansion

coefficients c2 · JA of the second Chern class c2 of the three-fold, which were defined in

section 2.3. These data are related to the (real) coefficients dABC , c and W0A of the

associated prepotential,

F (Y ) =
dABC Y

AY BY C

Y 0
+W0A Y

0Y A + ic(Y 0)2 , (3.46)

by dABC = −1
6
CABC and W0A = c2·JA

24
.

For extreme black holes based on the prepotential (3.46), the entropy formula will gener-

ically be given by

S

π
= |Zhor|

2 = 1
4
A
(
(pI , qI), CABC , c2 · JA, χ

)
. (3.47)

As is well known, quadratic polynomials with real coefficients can be introduced into any

N = 2 prepotential by a suitable symplectic reparametrization. So the above case (3.46)

is covered by our previous analysis, provided we perform the corresponding symplectic

rotation on the associated charges,(
p̃I

q̃I

)
=

(
1 0

W 1

)(
pI

qI

)
, (3.48)

where WAB = W00 = 0. Note that a non–vanishing W00 would not allow us to eliminate

the term ic(Y 0)2 in the prepotential, because W00 must be real, wheras ic is imaginary.

More general theta shifts with WAB 6= 0, W00 6= 0 would generate quadratic and constant

terms in Y 0 with real coefficents. We will discard these terms, because they don’t have

a topological interpretation.

In the following the electric and magnetic charges of the former solution are denoted

by q̃I and p̃I , respectively, whereas the electric and magnetic charges of the latter are

denoted by qI and pI . Note that this symplectic transformation induces a shift to the

theta angles and thus a corresponding shift of the electric charges [36]. Thus, it follows

that the entropy for the former solution can be computed from the entropy for the latter

by performing the above substitution of the electric charges.

Consider, for instance, the axion-free solution (3.40) discussed in the previous subsection,

based on the cubic prepotential (2.14), with p0 = qA = 0 and setting c = 0. Then we

have for the symplectically transformed solution that

q0 = q̃0 −W0Ap̃
A , (3.49)

and for its entropy that

S

π
= 2

√
(q̃0 −W0Ap̃A)dBCDp̃B p̃C p̃D . (3.50)
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Thus, we can in particular set q̃0 = 0, that is, we have a solution that is determined by

magnetic charges p̃A only, which is non-singular and has non-vanishing entropy

S

π
= 2

√
−(W0Ap̃A)dBCDp̃Bp̃C p̃D . (3.51)

In the effective action, the term proportional toW in (3.46) manifests itself in the presence

of the additional term in the action

δS ∼
∫
WA0 F

A ∧ F 0 . (3.52)

Since F 0 is an electric gauge field and FA is a magnetic monopole field, this integral is

non-vanishing.

4 Relation to higher-dimensional geometries

The black-hole solutions discussed so far appeared in the context of either a compact-

ification of the heterotic string on K3 × T2 or of the type-II string on a Calabi–Yau

three-fold. Type-II string theory, on the other hand, is dual [9] to M-theory compacti-

fied on CY ×S1 [39]. In this section we discuss how the black-hole geometries associated

with (3.40) arise from a compactification of the higher-dimensional spacetime, that is,

by a compactification of M-theory. We focus on those black-hole geometries that can

either be obtained by a type-II string compactification on a Calabi–Yau three-fold with

h1,1 = 3, or that are associated with the S-T -U models on the heterotic side.

On theM-theory side, we can regard these black-hole solutions as arising from compactifi-

cations of certain 11-dimensional solutions describing three intersecting M-5-branes with

a boost along the common string. Let us first consider the simplest such 11-dimensional

solution, which can be compactified on a 6-dimensional torus, [37]:

ds2
11 = 1

(H1H2H3)
1
3

[
du dv +H0 du

2 +H1H2H3 d~x2+

+H1(dy2
1 + dy2

2) +H2(dy2
3 + dy2

4) +H3(dy2
5 + dy2

6)
]
.

(4.1)

Here, the H1, H2 and H3 parametrize the three 5-branes and they are harmonic functions

with respect to ~x. The internal space is spanned by the coordinates y. Each 5-brane

wraps around a 4-cycle; e.g. the H1-5-brane around (y3, y4, y5, y6), and any two 4-cycles

intersect each other in a 2-cycle.

Next, let us look at more complicated 11-dimensional solutions which can be compactified

on Calabi–Yau three-folds. For a generic Calabi–Yau three-fold, the intersection of three
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of the 4-cycles is determined by the classical intersection numbers CABC . This leads us

to make the following ansatz for the 11-dimensional metric, in analogy to (4.1),

ds2
11 =

1

(1
6
CABCHAHBHC)

1
3

[
du dv +H0 du

2 + 1
6
CABCH

AHBHC d~x2 +HAωA
]
, (4.2)

where ωA (A = 1, 2, 3) are the 2-dimensional line elements, which correspond to the

intersection of two of the 4-cycles. Below, we will fix the harmonic functions HA for the

solution (3.40) in the double extreme limit.

After compactifying the internal coordinates in (4.2), we obtain a magnetic string solution

in D = 5 dimensions. Similarly to the extreme Reissner-Nordstrom black hole in D =

4 dimensions, this magnetic solution has a non-singular horizon with the asymptotic

geometry AdS3 × S2 [40]. In order to obtain a regular solution in D = 4 dimensions as

well, we first have to perform a boost along this string (parameterized by H0), which

will keep the compactification radius Guu finite everywhere. This boost will induce

momentum modes propagating along the magnetic string. Turning off these modes has

the consequence that this radius shrinks to zero size on the horizon and that the solution

becomes singular. Thus, performing the boost adds one electric charge to the three

magnetic charges. Then, all the radii of the Calabi–Yau 2- and 4-cycles as well as of the

string will also stay finite on the horizon. The resulting 4-dimensional metric defines an

extreme Reissner-Nordstrom geometry given by

ds2
4 = −

1√
−1

6
H0CABCHAHBHC

dt2 +
√
−1

6
H0CABCHAHBHC d~x2 . (4.3)

Next, let us consider the dual heterotic string solution with fields S, T and U . This

will allow us to determine the harmonic functions HA. We will restrict ourselves to the

classical solution, that is to (3.42) with b = 1, a = 0.

First, we will have to change the symplectic basis. That is, we will have to go from the

basis corresponding to (2.17) to the perturbative basis preferred by the heterotic string.

This requires a symplectic reparametrization, after which p1 is no longer a magnetic, but

an electric charge: p1 → −q1. Hence in the heterotic string basis the solution is now

characterised by 2 magnetic (p2, p3) and 2 electric (q0, q1) charges. The classical S-T -U

black hole can then be obtained from the 6-dimensional solution [38]

ds2
6 =

1

H1

(
du dv +H0 du

2
)

+H2

( 1

H3

(dx4 + ~V d~x)2 +H3 d~x
2
)

(4.4)

(εijk∂jVk = ∂iH3). It describes a fundamental string lying in a solitonic 5-brane. Again,

in order to keep the compactification radii finite, we need to perform a boost along the

string and put a Taub-NUT soliton in the transversal space. From the resulting solution,
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we can immediately read off the S, T and U fields. By compactifying over u and x4, we

obtain for the internal metric that

Grs =

( H0

H1
0

0 H2

H3

)
=
H2

H3

(
(ReU)2 0

0 1

)
, (4.5)

and thus we find for the scalar fields that

S = e−2φ = e−2φ̂
√
|Grs| =

√
H0H1

H2H3
,

T =
√
|Grs| =

√
H0H2

H1H3
, U =

√
H0H3

H1H2

(4.6)

(φ̂ is the 6-dimensional dilaton). In the double extreme limit, we have to fix the values of

the scalars at infinity so that they are constant everywhere. For the harmonic functions

this means that

H0 =
√

2q0

(
c+

1

r

)
, H1 =

√
2q1

(
c+

1

r

)
, (4.7)

H2 =
√

2p2
(
c+

1

r

)
, H3 =

√
2p3

(
c+

1

r

)
,

with c−4 = 4q0q1p
2p4 (in order to obtain asymptotic Minkowski geometry in D = 4). The

limit of large q0 now has the consequence that the boost or momentum along the string

becomes large. Hence, this direction decompactifies and we obtain the 5-dimensional

string solution. The metric (in the Einstein frame) is in this case again given by (4.3)

with C123 = 6 as the only non-vanishing element.

We can now insert the harmonic functions (4.7) into the metric (4.3) with general co-

efficients CABC . In this way we precisely recover the metric (3.3). Note that in our

notation −q0
1
6
CABCp

ApBpC > 0. When approaching the horizon r → 0, we obtain the

Bertotti-Robertson geometry which is non-singular (AdS2 × S2) and restores all super-

symmetries. The radius of the S2 is given by the mass and so the area of the horizon

is A = 4πM2 = 8π
√
−q0

1
6
CABCpCpBpC . This is the metric in the Einstein frame. The

string, however, couples to the string-frame metric, which can easily be given on the

heterotic side. Replacing −1
6
CABC by dABC and using the dilaton value S = −iz1 with

z1 given by (3.39), we find that

ds2
str =

√
q0 dABC pApBpC

|q0p1|
ds2 (4.8)

= −
1

|q0p1|

(
c+

1

r

)−2
dt2 −

dABC p
ApBpC

p1

(
c+

1

r

)2
d~x2

(for q0 < 0 and pA > 0). This again has a throat geometry for r→ 0

ds2
str → −e

2η/R dt2 + dη2 +R2 dΩ2 , R2 = −
dABC p

ApBpC

p1
(4.9)
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(r ∼ exp(η/R)). Since the curvature has its maximum inside the throat, we can keep

higher curvature corrections (∼ O(α′)) under control if the radius of the throat is suffi-

ciently large: −dABC pApBpC � p1. This means that sufficiently large magnetic charges

ensure that all higher curvature terms can be suppressed.

5 Summary

Supersymmetric black holes provide us with a tool to probe the properties of the future

fundamental theory which will describe non-perturbative quantum gravity. This theory is

expected to explain in a quantum-mechanical context the existence of all non-perturbative

states, or solitons, in string theory and in supergravity and also to control the interaction

between these states. Meanwhile, in the absence of such a theory, it is important to study

supersymmetric black holes and their properties as the most particular representatives

of the non-perturbative states of quantum gravity. One of the remarkable property of

all (N = 2, D = 4) supersymmetric black holes is the topological nature of the area of

the black hole horizon in the sense that the area does not depend on the values of the

moduli fields at spatial infinity [2]. The explanation of the entropy via the counting of

string states [1] was thus established for a class of black holes for which the entropy

depends only on electric and magnetic charges. In this paper we have found various new

area formulae for a class of N = 2, D = 4 supersymmetric theories. The choice of the

prepotentials is motivated by various versions of string theory at the classical level as

well as by string-loop corrections.

On the heterotic side we have studied the prepotentials which include the contributions

from string-loop corrections. At the perturbative level, we could prove that the entropy

takes precisely the same form as the tree-level entropy [4, 13], where the tree-level coupling

constant S+S̄ is replaced by the perturbative coupling constant, which originates entirely

from one-loop effects and contains the Green-Schwarz modification:

S

π
= (S + S̄ + VGS)

∣∣∣
hor

(p0q1 + paηabp
b). (5.1)

Therefore, we confirmed the conjecture [13] that the string loops will affect the area

formula only via a perturbative modification of the string coupling. In case that the one-

loop heterotic prepotential can be approximated by a cubic polynomial, as it is true for

large moduli values, the one-loop string coupling can be explicitly expressed in terms of

the magnetic/electric charges for non-axionic black-hole solutions. For solutions that are

not axion-free, the explicit expressions depend on solving some higher-order polynomial

equation, as exhibited in section 3.1.
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On the type-IIA side, our new area formulae imprint also the topological data of the

Calabi-Yau manifold, in particular the intersection numbers CABC . The fact that this

symmetric tensor enters the area formula for the five-dimensional black holes was known

before [3]. However, in five dimensions the area formula is implicit, as one still has to

minimize it in the moduli space. Here, for the first time, we have found the area formulae

of four-dimensional black holes which depend on charges and on arbitrary intersection

numbers CABC . In addition, we have found an interesting dependence of the area on

the second Chern class of the three-fold c2 . Here we deal with the Witten-type shift

[36] of the electrical charge via magnetic charge in the presence of axions. Finally the

entropy will in general depend on the Euler number χ of the Calabi-Yau three-fold, but

this contribution is small compared to the other effects we studied.

In the simplest case, when all the moduli zA are imaginary (the axion-free solution with

p0 = qA = 0 and c = 0), the entropy is given by

S = 2π

√(
−q0 +

c2 · JA
24

pA
)
CBCD

6
pBpCpD . (5.2)

This formula reproduces some previously known solutions, in particular for the S-T -U

black holes [12], where C123 = 6 and c2 = 0, and where the entropy of the simplest non-

axion solution was found to be S = 2π
√
|q0p1p2p3|. One can now address the following

issue: which fundamental theory is capable of giving a microscoping interpretation to

(5.2)?

An interesting feature of the new area formulae is the possibility to relax some of the

electric charges due to the above mentioned shift effect via c2 · JA terms. A simple

example of such a relaxation is as follows. When applying the theta-angle shift to the

S-T -U black hole [12] with one magnetic and three electric charges, which has the area

formula S = 2π
√
|p0q1q2q3|, we obtain an entropy formula which is non-vanishing for

q1 = q2 = q3 = 0, even though there now is only one magnetic charge present: S/π =

2(p0)2
√

1
243 |(c2 · J1)(c2 · J2)(c2 · J3)|.

In conclusion, we have found various qualitatively new features of supersymmetric black

holes in N = 2, D = 4 supergravity theories motivated by string theory.
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hep-th/9504006.

[16] I. Antoniadis, S. Ferrara, E. Gava, K. S. Narain and T. R. Taylor, Nucl. Phys. B

447 (1995) 35, hep-th/9504034.

[17] J. A. Harvey and G. Moore, Nucl. Phys. B 463 (1996) 315, hep-th/9510182.
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R. D’Auria, S. Ferrara and P. Fré, Nucl. Phys. B 359 (1991) 705;

B. de Wit and A. Van Proeyen, in Quaternionic Structures in Mathematics and

26



Physics, ILAS/FM-6/1996 (Sissa, Trieste) hep-th/9505097; Nucl. Phys. B (Proc.

Suppl.) 45B,C (1996) 196.

[28] B. de Wit, P. G. Lauwers, R. Philippe, S.–Q. Su and A. Van Proeyen, Phys. Lett.

134B (1984) 37.

[29] B. Craps, F. Roose, W. Troost and A. Van Proeyen, hep-th/9606073.

[30] P. Candelas and A. Font, hep-th/9603170.
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