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1 Introduction

The production of quarkonium states in hadronic collisions has recently attracted a lot of
interest in the theoretical community, as the contributions to this Workshop confirm. Most
of the studies done so far have concentrated on key issues such as whether the colour-octet
mechanism [1] can indeed explain both Tevatron and fixed-target data, and on trying to identify
the most direct and distinct signatures of it. Applications to production of quarkonium at LEP
and HERA have also been considered. In general, I believe it is fair to say that the field is still in
its infancy. The theoretical predictions require the introduction of several new nonperturbative
parameters [2] to describe the values of colour-singlet and colour-octet operators on different
states, and the available data can only in part fix these values. In absence of exactly known
relations between the values of the different nonperturbative matrix elements, connecting for
example their values on 1S states to their values on 2S or P states, it is difficult to reduce
the number of independent parameters. This increases the number of separate measurements
needed to fix them, and reduces the set of data available to test the predictions of the theory.
While the use of nonperturbative matrix elements extracted from the Tevatron data [3] provides
an acceptable description of the fixed-target data [4], the naive use of the Tevatron fits at HERA
significantly overestimates the yield of observed Ψ in the region z→1 [5]. Whether this is a real
problem of the current theory, or whether it is just a result of our incomplete understanding of
it, is a question that still waits an answer.

With so many very basic open questions, I decided nevertheless to concentrate in this
presentation on the subject of higher-order QCD corrections. Given the size of the current
theoretical uncertainties, I consider this subject perhaps academic. For example [6], although
there are arguments that the right mass parameter to be used in the perturbative evaluation
of the short-distance matrix elements and in the phase space constraints should be 2mQ (i.e.
twice the heavy-quark mass), it is not clear that this prescription properly reflects the correct
nonperturbative result, where one expects that, at least for the determination of the phase space
boundary, the quarkonium mass should be used. The two choices lead to results which differ by
large factors. Undertaking the task of calculating next-to-leading order (NLO) corrections to
the LO results seems therefore a bit premature, and the hope that the inclusion of NLO effects
could help making the predictions more accurate is in my view, today, not supported by solid
evidence. The reason why I am interested in higher-order corrections is that hopefully they will
help learning more about the structure of perturbation theory for quarkonium production in
both the colour-singlet and colour-octet models. It is a well known fact that NLO corrections
to charmonium decay widths are very large. It is important to remark that their size is not
just a consequence of the large value of αs evaluated at the charm mass scale: it is mostly the
result of very large coefficients which multiply αs in the radiative corrections. It is interesting
to see what happens of these large coefficients when we study charmonium production at NLO.
Should the size of NLO corrections be very large, the whole exercise of extracting the value
of nonperturbative parameters from a comparison of LO matrix elements with data, and the
use of these parameters to perform predictions for different observables, would clearly have
less chances of producing reasonable results. This is because NLO corrections to different
observables might be in principle very different in size. I would not be surprised if this were
part of the solution to the puzzle uncovered by the application of the colour-octet model to the
HERA data.
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In the present talk I will first of all briefly illustrate the technique we used to evaluate the
NLO cross sections. This technique makes use of dimensional regularization, but uses universal
properties of soft and collinear singularities to avoid the need of calculating the real-emission
cross sections in D dimensions. This technique was first introduced for hadronic processes in
ref. [7], and in the specific context of heavy quark production in ref. [8]. The full details of the

NLO quarkonium calculation, including explicit results for colour-singlet 1S
[1]
0 and 3P

[1]
0,2 states

and for several colour-octet states (1S
[8]
0 , 3S

[8]
1 , 3P

[8]
0,2), will be documented in a forthcoming

publication [11]. The NLO cross sections for the 1S
[1]
0 state have already appeared in the

literature, in the papers of Kühn and Mirkes [10] and Schuler [9]. Our results and theirs for
this channel are in full agreement.

Next I will show some numerical results. For simplicity, I will just confine myself to the case
of 3P

[1]
0,2 states, studied at fixed-target and at collider energies. While the results at fixed target

are extremely encouraging, displaying relatively small K-factors and a significant reduction of
the scale dependence, the results at collider energies are very worrisome. In short, the radiative
corrections turn out to be extremely large and negative, so as to leave us with negative total
cross sections. The origin of this problem will be discussed in some detail.

To conclude, I will make a few remarks on the issue of understanding the full structure
of the final states produced in conjunction with quarkonium, with particular reference to the
production via fragmentation of a gluon jet.

The style of this written contribution is very informal, trying to convene to the reader who
did not attend the wonderful spirit of this Workshop. I wish to thank the organizers, the session
chairpersons and, most of all, the participants, for the great atmosphere in which the Workshop
took place. I look forward to more opportunities like this to openly discuss future progress in
the field!

2 The Structure of Quarkonium Total Cross Sections

We are interested here in the process h1 h2→O + X, where h1,2 are arbitrary hadrons and O is
a quarkonium state. We will limit ourselves to states for which the lowest-order process gg→O
is non-zero. In this way the O(α3

s) contributions represent genuine NLO effects. These involve
the evaluation of the virtual corrections to the ggO vertex, in addition to the real emission
processes gg→Og, qg→Oq and qq̄→gO. We will consider these processes separately.

The contribution of the gg process to the total cross section gives rise to collinear and soft
singularities. These can be regulated by working in dimensional regularization, giving rise to
poles in 1/ǫ: double poles for the leading soft singularities, and single poles for the sub-leading
soft and for the collinear singularities. The soft singularities are absorbed by similar singularities
present in the virtual corrections to the ggO vertex, leaving finite terms which contribute
to the processes with Born-like kinematics gg→O. The collinear singularities are absorbed
into a redefinition of the initial-state parton densities, according to the standard procedure of
factorization of the initial-state mass singularities. The residual finite contributions correspond
to purely inelastic processes gg→Og, regulated at the boundary of phase space (namely in
the soft and collinear region) by an appropriate “+” prescription. Given the simplicity of the
kinematics of the LO process, and given the universal character of soft and collinear emission,
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it can be shown [11] that the structure of the NLO partonic cross section is given in general§

by the following expression:

σ
J,(gg)
NLO (x) − σ

J,(gg)
Born δ(1 − x) =

αs
π

σ
J,(gg)
Born x

×
{

δ(1 − x)

[

AJ − CA

π2

3

]

+ FJ(x) − Pgg(x) log x

+ 4CA

[

(

1

x
+ x(1 − x) − 2

)

log (1 − x) +

[

log(1 − x)

1 − x

]

+

]}

, (1)

where J = 0, 2 is the total angular momentum of the P -wave state considered, x = m2/ŝ,
m is the quarkonium mass, CA = Nc = 3 is the number of colours, and Pgg is the Altarelli-
Parisi splitting kernel. For simplicity I have put the factorization (µF ) and renormalization
scales (µR) equal to m. This sets to zero some universal terms proportional to log(µR/m) or
log(µF/m). The factorization of collinear singularities was performed in the MS scheme. All
of the dependence on the quarkonium state is included in the numbers AJ and in the functions
FJ (x). AJ is related to the finite part of the virtual corrections, defined by the equation:

σ
J,(gg)
virt (x) =

αs
π

σ
J,(gg)
Born,D

(

4πµ2

ŝ

)ǫ

Γ(1 + ǫ) δ(1 − x) ×
(

AJ +
C2

ǫ2
+

C1

ǫ

)

, (2)

where σ
J,(gg)
Born,D is the Born cross section in D dimensions and C1 and C2 are numerical coefficients

independent of ǫ. From an explicit calculation, we get:

A0 = CF

(

−7

3
+

π2

4

)

+ CA

(

1

3
+

5

12
π2
)

(3)

A2 = −4CF + CA

(

1

3
+

π2

6
+

5

3
log 2

)

. (4)

The function FJ(x) is given instead by the following relation:

αs
π

σ
J,(gg)
Born F

(gg)
J (x) =

1

32πŝ

(

1

1 − x

)

+

∫ 1

−1
dy

(

1

1 − y

)

+

MJ
(4)(x, y) , (5)

where y = cos θ is the cosine of the scattering angle in the hard process CoM frame, and
MJ

(4)(x, y) is related to the four-dimensional matrix element squared for the gg→Og process
by the following relation:

MJ
(4)(x, y) = (1 − x)2 (1 − y2)MJ

(4)(x, y) . (6)

The explicit expressions will be reported in [11].
The contribution of the qg process to the total cross section only appears at O(α3

s). It
gives rise to singularities due to the collinear emission of the gluon entering the hard scattering
form the initial-state quark. As before, these singularities are absorbed into a redefinition of

§Although I will only present here results for P-waves, the structure of the cross sections is exactly the same
for the production of other states, regardless of the SLJ quantum numbers.
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the parton densities, leaving a residual finite contribution corresponding to the purely inelastic
process qg→Og. Once more the universal character of collinear emission can be used to reduce
the final result to a simple expression, given by:

σ
J,(qg)
NLO (x) =

αs
π

σ
J,(gg)
Born x ×

[

F
(qg)
J (x) + Pgq(x) log(1 − x) +

xCF

2

]

. (7)

All of the dependence on the quarkonium state in included in the function F
(qg)
J (x), which is

defined by the analogous of eq. 5 and will be given explicitly for the various states in ref. [11].
The study of the qq channel is interesting from the theoretical point of view, since this

channel exhibits a singularity related to the quarkonium binding energy. This is the analogous
of the singularities found in the case of P-wave decays to qq̄g. In dimensional regularization,
we obtain:

σ
J,(qq)
NLO (x) = (2J + 1)

(

−1

ǫ

)

Bδ(1 − x) + F
(qq)
J (x) , (8)

where B is a constant factor, independent of J . The 1/ǫ pole can be removed by a renormal-

ization of the 3S
[8]
1 →3P

[1]
J transition matrix element, and including the qq̄→3S

[8]
1 → 3P

[1]
J X con-

tribution to the cross section. Any reasonable value of the renormalized coupling will however
make the numerical impact of the qq channel totally negligible in all experimental configurations
of interest, except for πN→χb production at very low energy. We base this claim on a study
of the qq production mechanism done using an IR cutoff in four dimensions. In this scheme,
the divergence is proportional to the logarithm of the binding energy. Even with values as low
as few MeV the qq channel contribution to 3PJ production is overwhelmed by the gg and qg
channels.

3 Numerical Results

The partonic cross sections described in the previous section can be used to obtain total cross
sections in hadronic collisions. For illustration, I will consider here the case of pp collisions. In
fig. 1(a) I present the results for χc,2 production at fixed-target energies, comparing the NLO
to the LO predictions. I use the MRSA [12] PDF set, and show results for three different scale
choices. As can be seen, the NLO calculation significantly reduces the scale dependence of the
LO result. The size of the K-factor depends on the scale chosen, as well as on the beam energy.
The same distributions, plotted as a function of

√
S in the energy domain of the Tevatron

collider, are given in fig. 1(b). I chose here the MRSD0 [13] set of PDFs. The results are
extremely disappointing: not only have the NLO cross sections a very strong scale dependence,
but they also become negative for sufficiently large

√
S. What is the origin of this behaviour,

which makes the perturbative evaluation of the cross sections totally unreliable?
There are at least two problems¶. The first one is that the virtual corrections are very large

and negative. The large universal term −CAαsπ/3 ∼ 1, proportional to δ(1−x), is only in part
cancelled by the state-dependent coefficient A (see eqs. (3,4)). This indicates that two-loop

¶Most of the remarks which follow have already been made by G. Schuler in his ’94 review [9]. Schuler at
the time had available the full NLO corrections to η production, as well as the leading small-x behaviour of the
χ cross sections. It is a pity that those remarks have passed almost unnoticed in the community!
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Figure 1: Total cross section for pp→χ2X as a function of beam energy for fixed-target
collisions (a), and as a function of

√
S for collider configurations (b).

corrections coming from the square of the 1-loop matrix elements are likely to be large‖. The
second problem is that, after subtraction of the collinear singularities, the O(α3

s) corrections to
both gg and qg processes tend to a negative constant in the x→0 limit:

σ
J,(gg)
NLO (x)

x→0−→ 2CA

αs
π

σBorn ×
(

log
m2

µF

2
− CJ

)

, (9)

σ
J,(qg)
NLO (x)

x→0−→ CF

2CA

σ
J,(gg)
NLO (x) , (10)

where CJ=43/27 and 53/36 for J = 0 and J = 2, respectively. There is nothing wrong in
principle with these cross sections turning negative in the small-x region, as what is subtracted
is partly returned to the gluon density via the evolution equations. However in this particular
case two things happen:

• the standard DGLAP evolution might not be adequate, as x ≪ 1 at collider energies.

• the factorization scale (of the order of the charmonium mass) is very close to the scale
at which the input PDF is measured or parametrized, and there is therefore no room
for evolution (i.e. resummation of large logs). The cross sections will therefore critically
depend on the assumed shape of PDFs.

To illustrate the second point, let us assume for simplicity that we can approximate the inelastic
part of the quarkonium cross section by its small-x behaviour, in such a way that:

σNLO(x) ∼ Aδ(1 − x) − αs
π

C , (11)

‖Although the term −αs/π CA/3 π2 is universal and directly linked to the IR behaviour of the real emission
diagrams in a gg→X [1] process, with X [1] an arbitrary colour-singlet state, we have no argument suggesting
that it should be exponentiated. Other π2 terms arise from the virtual corrections, not all of them universal.
Understanding which (if any) of them exponentiates requires more work, which we have not done so far.
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Figure 2: Left: total cross section for pp→χc,2X as a function of
√

S with PDF set
MRSA. Total cross section for pp→χb,2X as a function of

√
S with PDF set MRSA.

(we left out irrelevant overall constants) and let us assume that we can parametrize the gluon
density with the following form:

G(x) =
1

x1+δ
, (12)

with 0 < δ < 1. It is then easy to show that the total cross section has the following behaviours,
depending on the value of the parameter δ:

σNLO = σBorn ×
{

A − C αs

π
log S

m2 if δ log S/m2 ≪ 1
A − C αs

π
1+δ
δ

if δ log S/m2 ≫ 1
(13)

If the input gluon density G(x) is not sufficiently steep (i.e. if δ log S/m2 ≪ 1), very large
logarithms [αs log S/m2]n will appear at all orders of perturbation theory, and will need to be
resummed [14], or accounted for by corrections to the DGLAP evolution. If δ instead has a
value of the order of 0.3–0.5, typical of the most recent fits to HERA data, no large logarithmic
corrections appear.

As an example of how a different choice of PDF can change things, I present in fig. 2(a)
the χc,2 cross sections obtained using the PDF set MRSA, for which the input gluon density
is steeper than 1/x. The NLO cross section remains now positive over a much larger range
of

√
S. Nevertheless the scale dependence is still so large that I would sadly conclude that

no predictive power is available at NLO for total χc production cross sections at energies
√

S
larger than few hundred GeV. The situation is significantly better in the case of bottomonium
states, χb, shown in fig. 2(b). In this case the inclusion of NLO corrections significantly reduces
the scale dependence of the LO result.

Needless to say, no conclusion on the behaviour of the charmonium cross sections at large pt
can be reached from the previous study , since at large pt additional higher-order diagrams need
to be calculated to achieve a NLO accuracy, and since the range of x and the scales probed are
significantly different than those explored in the total cross section calculation. No full NLO
calculation is currently available for quarkonium production in hadronic collisions at non-zero
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pt. Even the simplest case of 1S0 production, although irrelevant phenomenologically given
that no data exist, might provide an interesting theoretical insight if it were available. I would
put this calculation very high on the list of things to be done!

4 Concluding Remarks

In this final section I would like to address a few additional issues related to the understanding
of quarkonium production at higher orders in perturbation theory:

• the exclusive structure of final states in quarkonium production via the colour-octet mech-
anism and

• the approximations involved in the use of the fragmentation functions for production at
large pt.

As will appear from the following discussion, the two issues are not entirely separated.
It is generally accepted by now that the proper treatment of the hierarchy of higher Fock

states is most likely the solution to a large fraction of the puzzles present in quarkonium
production data∗∗. It is also clear, however, that a complete understanding of the full dynamics
of the interactions involving colour-octet states (or, more generally, higher Fock states) is still
missing. To which extent this ignorance can affect our capability to perform quantitative
predictions for production rates is, in my view, unclear. To give an example, let me consider
charmonium production via the colour-octet mechanism at large pt. In this case, we believe
that production is dominated by fragmentation contributions, with a high-pt gluon turning
into some colour-octet state (O), that will then undergo a nonperturbative transition to a
given, colour-singlet, onium state (S). This final step is usually parametrized by assigning a
probability, proportional to a well defined nonperturbative matrix element, and by assuming
that S will carry all of the energy of the parent O. The nonperturbative transition O→S
should however be thought of as an inclusive process, O→S + X, since one (or more) gluons
need to be radiated. In the standard approach, these gluons are assigned zero energy. In
practice, however, we know that these gluons cannot carry zero energy, because they will have
to materialize into some hadron, say into pions. In the rest frame of O, it is reasonable to
assume that the energy of these gluons will at least be of the order of ΛQCD, i.e. a number of

the order of, say, 300 MeV. In we consider as an example the transition 3S
[8]
1 →3S

[1]
1 , believed

to be responsible for the large J/Ψ rate measured at the Tevatron, there should be at least two
gluons emitted. In the laboratory frame, and for production at large pt, the ratio of the energy
carried by these gluons and the energy carried by the 3S

[1]
1 will be equal on average to the ratio

of their masses, namely:
Eg

Eψ

=
2ΛQCD

Mψ

∼ 0.2 . (14)

As a result, the actual energy fraction z of the colour-octet state carried by the final J/Ψ
will be around 0.8. So the fragmentation function instead of peaking at z = 1 will peak at
z = 0.8. Once convoluted with the pt spectrum of prompt gluons, assuming a behaviour like

∗∗That this is possibly true for other, more exotic, aspects of quarkonium physics as well, has been argued in
the past and during this meeting by Brodsky [15]
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dσ/dpt ∼ 1/pt
n, this change will induce a change in the production rate at a given pt of the

order of −n × 0.2. For a typical value of n = 4, this is a −80% correction. It is important
to point out that this is not a higher-twist phenomenon, in the sense that the effect is not
reduced by going to larger pt. In order to make a more accurate prediction of the high-pt
production rate, it is therefore essential to improve the understanding of the colour-bleaching
mechanism†† Notice also that this problem is not totally unrelated to the problem of connecting
nonperturbative matrix elements “measured” in quarkonium decay via colour-octet states to
the nonperturbative matrix elements needed in the evaluation of production cross sections.

Let me now touch on one more issue related to fragmentation. The standard approach con-
sists in determining the perturbative boundary condition for the evolution of the fragmentation
function by using the following relation [16]:

D0(z, m
2) =

∫ ∞

m2

ds

s
d(z, s) , (15)

where d(z, s) is the probability that a gluon of virtuality s decays to a J/Ψ carrying longitudinal
momentum fraction z in the infinite-momentum frame. The evolution of the fragmentation
function D(z, q2) is then given by the standard DGLAP evolution equation:

∂

∂ log µ2
D(z, µ2) =

αs
π

∫ 1

z

dy

y
Pgg(z/y)D(z, µ2) . (16)

The problem with this equation [17] is that it does not respect the phase-space constraint
D(z, µ2) = 0 for z < m2/µ2. The implementation of this constraint would slow down the
evolution of the fragmentation function by delaying the depletion of the large-z fragmentation
region. Since the spectrum of gluons falls rapidly with pT/z, a proper treatment of the large-z
region can have a significant effect on the cross section. A more accurate treatment would be
to use the following equation:

µ2 ∂

∂µ2
D(z, µ2) = d(z, µ2) +

αs
2π

∫ 1

z

dy

y
Pgg(y) D(z/y, yµ2), (17)

together with the boundary condition D(z, µ2 = m2) = 0. This evolution equation respects
the phase space constraint, as can be easily checked. A consistent calculation done using NLO
fragmentation functions should use this evolution, instead of the naive one.

As a final point, I would like to present a simple proposal for how to describe the exclusive
structure of the final state in quarkonium production via fragmentation through a colour-octet
state. After generation of a hard final-state gluon, let the gluon shower evolve, until it gen-
erates a cc̄ pair. Allow then the cc̄ pair to evolve. If additional gluons are emitted, we can
assume that no quarkonium state should be produced. This would be in fact a 1/Nc suppressed
process. Given that the emitted gluons are perturbative, the only way to correctly calculate
the probability that the colours will recombine into a singlet state after gluon emission is by
using the colour-singlet matrix elements. If no additional gluons are emitted, then consider
the invariant mass of the pair. If it is below a given value (to be parametrized by the BBL

††As an aside, we remark here that this understanding could also lead to some specific and testable predictions.
For example, the interplay between quantum numbers and phase space might lead to interesting selection rules
on the possible sets of light hadrons produced in the O→S transition.
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factorization scale, the scale at which NRQCD matrix elements are separated from the pertur-
bative ones) then we can assume that the cc̄ pair will be converted into a colour-singlet J/Ψ
plus two gluons, with a probability proportional to the NRQCD matrix element (this matrix
element depends on the factorization scale, so at the end the factorization scale dependence
should cancel between the choice of the phase space boundary and the transition probability).
This transition is equivalent to what is done in the cluster model for hadronization [19], where
at the end of the perturbative evolution each gluon is split into a qq̄ pair. The energy and
angular distribution of the two gluons can just be taken to be given by the 3-body phase space
for transition of the cc̄ pair into the J/Ψgg final state. Colour lines can be drawn between
these two gluons and the rest of the shower, so that hadronization can take place (say via the
cluster model itself). From the point of view of the algorithm efficiency, one could use the
forced evolution a’ la Mike Seymour [18] to always get a cc̄ pair at the end of each shower. All
of the MC inefficiency is then related to the invariant mass distribution of the pair, which will
often be above the factorization scale threshold.

The first attempt to produce J/Ψ states via the colour-octet mechanism in a full shower
MC, using however a different approach than what suggested above, has recently been presented
by Ernström and Lönnblad [20]. This calculation allows to make definite predictions for the
structure of the gluon-jet which accompanies the J/Ψ. Comparisons of these predictions with
data will certainly help improving our understanding of this important aspect of the production
dynamics.

It is worth keeping in mind that all the effects discussed in this section can lead to significant
changes in the shape of the pt distribution of J/Ψs observed at the Tevatron. In addition to
the factors described here, one should consider of course the effect of higher-order corrections
due to multiple-gluon emission from the initial-state, and the systematic uncertainties due to
the choice of the input gluon densities and due to the chosen value of αs. All of these effects
will also induce a smearing of the pt spectrum, and could therefore influence dramatically the
extraction of the nonperturbative parameters for the different channels which contribute to
J/Ψ production at the Tevatron.
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