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Abstract

We discuss the dependence of the coarse grained free energy and the classical

interface tension on the coarse graining scale k. A stable range appears only if the

renormalized dimensionless couplings at the critical temperature are small. This

gives a quantitative criterion for the validity of computations within Langer's theory

of spontaneous bubble nucleation.
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The discussion of the dynamics of a �rst order phase transition [1] usually relies on

the study of a non-convex potential or free energy. The decay of unstable minima is

associated either with tunneling uctuations through barriers in the potential [2], or, at

non-zero temperature, with thermal uctuations above them [3]. However, the e�ective

potential [4], which seems at �rst sight a natural tool for such studies, is expected to be

a convex quantity with no barrier. The resolution of this paradox lies in the realization

that the e�ective potential is convex because the tunneling or thermal uctuations are

incorporated in it. These uctuations are associated with low frequency modes, while the

non-convex part of the potential is related to the classical potential and the integration

of high frequency modes. A natural approach to the study of �rst order phase transitions

separates the problem in two parts. First, the high frequency modes are integrated out,

with the possible generation of new minima through radiative symmetry breaking [5].

Subsequently, the decay of unstable minima is discussed with semiclassical techniques

[2, 3], in the non-convex potential that has resulted from the �rst step. This leads us to

the notion of the coarse grained free energy, which is fundamental in statistical physics.

Every physical system has a characteristic length scale associated with it. The dynamics

of smaller length scales is integrated out, and is incorporated in the parameters of the

free energy one uses for the study of the behavior at larger length scales.

The notion of coarse graining is absent in the perturbative approach to the calculation

of the e�ective potential [5]. This is the main reason for the non-convergence of the

perturbative series near the maxima of the classical potential, and the appearance of

imaginary parts in the perturbative e�ective potential. Despite attempts to give a physical

interpretation to these imaginary parts [6], a satisfactory discussion of tunneling must

incorporate the notion of coarse graining. The Wilson approach to the renormalization

group provides the appropriate framework [7]. We employ here the method of the e�ective

average action �k [8], which results from the integration of uctuations with characteristic

momenta larger than a given scale k. The dependence of �k on k is described by an exact

renormalization group equation1 [8, 9]. For large values of k (of the order of the ultraviolet

cuto� � of the theory) the e�ective average action is equal to the classical action (no

uctuations are integrated out), while for k ! 0 it becomes the standard e�ective action

(all uctuations are integrated out). For non-zero k the e�ective average action has the

properties of a coarse grained free energy. Its non-derivative part (the e�ective average

potential Uk) is not necessarily convex. The coarse graining scale can be identi�ed with

k.

In this letter we provide an explicit demonstration of how such a potential can be

obtained starting from the microscopic or classical action of a �eld theory. We investigate

the dependence of the e�ective average potential Uk and the `classical' surface tension �k

on the coarse graining scale k with special emphasis on the question of the validity of

Langer's theory of bubble formation. We study the �rst order phase transitions for the

Abelian Higgs model and for a scalar matrix model in three dimensions. An application

of the formalism to the case of the high temperature phase transitions for the Abelian and

1For related work see [7, 10, 11].
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SU(2) Higgs models is given in ref. [12] and a discussion of the �rst order phase transition

in matrix models can be found in ref. [13].

Near a phase transition, the three dimensional Abelian Higgs model describes the

behavior of ordinary superconductors [14]. It can also be viewed as the e�ective theory

resulting from the non-zero temperature four dimensional model near the critical temper-

ature. The dependence of the e�ective average potential Uk(�) and the running renor-

malized gauge coupling eR(k) on the coarse graining scale k is governed by the evolution

equations [9]
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@t
=

Z
d
3
q

2(2�)3
@Pk

@t

 
1

Pk(q) + U 0
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+
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!
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6�2

e
4
R
(k)

k

(1)

where t = ln(k=�) (with � the ultraviolet cuto� of the theory) and � = j�j2=2 (with � the

complex order parameter). Primes denote derivatives with respect to �. The three terms

on the r.h.s. correspond to the contributions of the radial and Goldstone scalar modes

and the gauge �eld. The inverse propagator

Pk(q) =
q
2

1� exp (�q2=k2)
(2)

provides for an infrared cuto� which acts like a mass term � k
2 for the modes with

q
2 � k

2, while it leaves una�ected the modes with q
2 � k

2. The momentum integral

on the r.h.s. of eq. (1) can be written in terms of dimensionless functions l30(w), whose

arguments are given by the rescaled mass terms (U 0

k
(�) + 2U 00

k
(�)�)=k2, U 0

k
(�)=k2 and

2e2
R
(k)�=k2. These functions fall o� for large values of w, following a power law. As a result

they introduce threshold behavior, which leads to the decoupling of massive modes from

the evolution equations [8, 15, 16]. The derivation of eq. (1) under some approximations,

starting from the exact renormalization group equation for the e�ective average action,

is given in ref. [9, 14, 12]. The approximations concern the omission of the anomalous

dimension of the scalar �eld, the e�ective �eld dependence of the gauge coupling and the

higher derivative terms in the action. The evolution starts at k = �, where the e�ective

average potential is equal to the microscopic or classical one U�(�) = 1
2
���(� � �0�)

2

and the running gauge coupling is equal to the bare coupling �e�. In the opposite limit

k ! 0, Uk(�) becomes equal to the (convex) e�ective potential U(�) = U0(�) and the

gauge coupling assumes its renormalized value eR = eR(k = 0). Two algorithms for the

numerical integration of eq. (1) have been presented in detail [17]. The phase transition

is approached by �xing ��� and �e� and tuning �0�. The system exhibits a second order

phase transition for �e� = 0 which corresponds to the Wilson-Fisher �xed point of the

O(2) symmetric Heisenberg model. For large enough �e2�=
��� the phase transition is �rst

order [18, 14, 12].
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In �g. 1 we display the solution of eq. (1) for ��� = 0:01�, �e2� = 0:1� and �0� ' 0:867�.

All the quantities in the �gures are expressed in units of the ultraviolet cuto� �. Initially

the potential has only one minimum away from the origin, which evolves proportionally

to the coarse graining scale k. At some point a new minimum appears at the origin. It

is induced by the integration of uctuations, through the generalization of the Coleman-

Weinberg mechanism. The evolution slows down at the later stages, and for k=� around

0.02 the potential converges towards a stable non-convex pro�le with two minima of

equal depth. Around the minima the scale k becomes smaller than the mass of the various

massive modes, and this induces their decoupling. We have stopped the evolution at a non-

zero kf , for which the shape of the potential near the minima is stable. The presence of the

non-convex part is explained by this non-zero value of k. We have not yet integrated out

all the uctuations, which should render the e�ective potential convex. More speci�cally,

the uctuations which interpolate between the two minima of �g. 1 are not included

e�ectively in the non-convex potential. They are the ones that trigger the tunneling and

drive the �rst order phase transition. If we continue the evolution all the way to k = 0,

these interpolating con�gurations will be gradually integrated out. As a result, the height

of the barrier will start getting smaller, until the region of the potential between the two

minima becomes at [15]. The evolution of the characteristics of the potential is depicted

in �g. 2. We plot the location of the minimum away from the origin �min, the value of the

potential at the minimum (Uk)min, the location of the maximum �max, the value of the

potential (Uk)max and the curvature (d2Uk=d�
2)max = U

0

k
(�max) + 2�maxU

00

k
(�max) at the

maximum. We observe that these parameters have almost constant values in the region

k=� ' 0:02� 0:03.

In �g. 3 and 4 we present the e�ective average potential and its characteristics for

parameters corresponding to a weaker �rst order transition. For ��� = 0:1�, �e2� = 0:1�

and �0� ' 0:171� the discontinuity in the scalar �eld expectation value is about nine times

smaller than for �g. 1. The most important di�erence is that the potential never becomes

relatively stable for a range of k. During the later stages of the evolution, its outer part

(for scalar �eld values larger than the location of the minimum) starts approaching a

stable pro�le, due to the decoupling of the massive modes in this region. However, in the

same range of k the non-convex part starts already becoming atter, as con�gurations

interpolating between the two minima are being integrated out. The negative curvature

at the top of the barrier is expected [15] to behave � �k2 during this stage. This has

been veri�ed explicitly through the analytical integration of the evolution equation for the

O(N) symmetric scalar theory in the large N limit [19]. We clearly observe the onset of

this behavior of d2U=d�2 in �g. 4 in a range of k before �min settles. Also the maximum of

Uk decreases before the minimum settles. In this case it is far from obvious which coarse

graining scale k should be chosen for a de�nition of important nucleation characteristics

such as the interface tension.

The behavior of the coarse grained e�ective potential for a uctuation induced �rst

order phase transition, as considered above, is not particular to the Abelian Higgs model.

For example, our discussion can be extended with minor modi�cations to the electroweak

phase transition for the range of Higgs-scalar masses where it is �rst order [12]. It also
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can be observed in pure scalar theories. One may consider models with U(N) � U(N)

symmetry with a scalar �eld in the ( �N;N) representation, described by a complex N �N

matrix � [13]. The cases N = 2, 3 have an interesting relation to high temperature

strong interaction physics and chiral symmetry breaking [20] and non-perturbative ow

equations have been studied in this context [21]. We will concentrate here on N = 2. The

most general e�ective average potential Uk(�; �) can then be expressed as a function of

only two invariants, namely

� = tr
�
�
y

�

�
; � = 2 tr

�
�
y

��
1

2
�

�2

: (3)

The microscopic or classical potential U� for these models can be characterized by two

quartic couplings ��1�, ��2� and a mass term (��2
� > 0),

U�(�; �) = ���
2
�� +

1

2
��1��

2 +
1

4
��2�� : (4)

In the limit ��1� ! 1, ��2� ! 1 this also covers the model of unitary matrices. One

observes two symmetry breaking patterns for ��2� > 0 and ��2� < 0 respectively. The case
��2� = 0 denotes the boundary between the two phases. In this special case the theory

exhibits an enhanced O(8) symmetry and one �nds a second order phase transition. For

the symmetry breaking pattern U(2) � U(2) ! U(2) (��2� > 0) the phase transition

is always �rst order. In this case the relevant information for the phase transition is

contained in Uk(�) � Uk(�; � = 0). The discussion of the dependence of the e�ective

average potential Uk(�) on the coarse graining scale k can be presented along the same

lines as for the Abelian Higgs model and the relevant ow equations can be found in

ref. [13]. Here the second quartic coupling ��2� for the scalar model plays the role of the

gauge coupling �e2� in the Abelian Higgs model. In addition to the above treatment of the

Abelian Higgs model, the employed approximation for the scalar model takes into account

a k-dependent wave function renormalization constant Zk for the �elds and the e�ective

�eld dependence of the second quartic coupling.

In the following we will use the scalar matrix model to establish a quantitative criterion

for the validity of the standard treatment of spontaneous bubble nucleation as described

by Langer's theory [1]. Langer's approach relies, on the one hand, on the de�nition

of a suitable coarse grained free energy �k with a coarse graining scale k and, on the

other hand, on a saddle point approximation for the treatment of uctuations around

the `critical bubble'. The problem is therefore separated in two parts: The �rst part

concerns the treatment of uctuations with momenta q
2
�>k

2 which are included in the

coarse grained free energy. The second part deals with an estimate of uctuations around

the bubble, for which only uctuations with momenta smaller than k must be considered.

To be explicit we consider a spherical bubble where the bubble wall with thickness � is

thin as compared to the bubble radius R, i.e. � � R. In this thin wall approximation

the bubble nucleation rate ��, which describes the probability per unit volume per unit

time for the transition to the new vacuum, can be written in the form [3, 2]

�� = Ak exp

 
�
16�

3

�
3
k

�2

!
: (5)
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Here the `classical' surface tension �k is given in our conventions by

�k = 2

�'Z
0

d'

q
2ZkUk(') (6)

where ' = (�=2)1=2 and �' denotes the second zero of Uk(') near the outer minimum at

'min. For the di�erence in the free energy density � we include uctuations with arbitrarily

small momenta,

� = lim
k!0

(Uk(0)� Uk('min)): (7)

In contrast, the long wavelength contributions to the true surface tension2 are e�ectively

cut o� by the characteristic length scale of the bubble surface. For the free energy of the

critical bubble the modes with q
2
�>k

2 are incorporated in �
(0)
k

= 16��3
k
=3�2 (lowest order

or classical contribution) and they inuence �k. The modes with q2�<k
2 contribute to the

`uctuation determinant' Ak, which also contains dynamical factors. Here Ak depends

on k through the e�ective ultraviolet cuto� for these uctuations, which is present since

uctuations with momenta larger than k are already included in �
(0)
k
. A more general

discussion which does not rely on the thin wall approximation or a saddle point approx-

imation is given in ref. [13]. Langer's formula for bubble nucleation amounts essentially

to a perturbative one loop estimate of Ak. It is clear that k is only a technical construct

and for physical quantities like the bubble nucleation rate the k-dependence of lnAk and

�
(0)
k

must cancel. A strong dependence of �k on the coarse graining scale k is only com-

patible with a large contribution from the higher orders of the saddle point expansion.

The k-dependence of �k therefore gives direct information about the convergence of the

saddle point approximation and the validity of Langer's formula.

We consider in detail the dependence of the surface tension �k on the coarse graining

scale k at the phase transition (� = 0) for three examples. They are distinguished by

di�erent choices for the quartic couplings ��1� and ��2� of the short distance potential U�

given by eq. (4). The choice ��1�=� = 0:1, ��2�=� = 2 corresponds to a strong �rst order

phase transition with renormalized masses not much smaller than the cuto� scale �. In

this case the k-dependence of the e�ective average potential resembles the one presented

in �g. 1. In contrast we give two examples where the dependence of �k on the coarse

graining scale becomes of crucial importance. The choice ��1�=� = 2, ��2�=� = 0:1 leads

to a weak �rst order phase transition with small renormalized masses and the behavior

of the e�ective average potential is similar to the one given in �g. 3. The coarse grained

potential and the surface tension show a high sensitivity on the scale k. A more increased

sensitivity on the scale k can be observed for ��1�=� = 4, ��2�=� = 70 which corresponds

to a relatively strong �rst order phase transition.

The k-dependence of the surface tension �k is displayed in �g. 5. Here �k is normal-

ized to its maximum value �� where ��=�
2 = 1:67 � 10�2(8:41 � 10�11)(1:01 � 10�3)

for ��1�=� = 0:1(2)(4), ��2�=� = 2(0:1)(70). The scale kf is given by jmmaxj with

2The true surface tension is a `measurable quantity'. It is independent of k and all uctuations must

be included. It therefore di�ers, in general, from �k which includes only part of the uctuations.
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m
2
max

= 2Z�1
k
�max(@

2
Uk=@�

2)(�max) denoting the renormalized mass term at the top

of the potential barrier �max. More precisely, we chose (k2
f
� jm

2
max

(kf)j)=k
2
f
= 0:01. For

��1�=� = 0:1, ��2�=� = 2 the curve exhibits a small k-dependence around its maximum

and �� ' �kf . For the second and the third example one observes that �kf becomes

considerably smaller than the maximum value due to a strong k-dependence. The coarse

graining scale k should not be taken smaller than the inverse bubble wall thickness ��1

[13]. This ensures that the detailed properties of the bubble are irrelevant for the com-

putation of the `classical' surface tension �k. We estimate the bubble wall thickness �

by

� = 2Zk

�min

�k
(8)

where we have taken the gradient energy as half the total surface energy and approximated

the mean �eld gradient at the bubble wall by 'min=�. For the given examples we observe

��1(kf) ' kf=4. We choose k ' kf as the coarse graining scale.

In order to quantify the di�erences between the three examples we have displayed

some characteristic quantities in the table. The renormalized couplings

�1R = Z
�2
kf

@
2
Ukf

@�2
(�min); �2R = 4Z�2

kf

@Ukf

@�
(�min) (9)

are normalized with respect to the mass term

m
c

R
= (2Zk�min�1R)

1=2
: (10)

In addition we give the mass term

m
c

2R = (Zk�min�2R)
1=2 (11)

corresponding to the curvature of the potential in the direction of the second invariant

� . All couplings and masses are evaluated at the critical temperature (critical �0�). In

comparison with �g. 5 one observes in the vicinity of kf a weaker scale dependence of �k
for smaller e�ective couplings. In particular, a reasonably weak scale dependence of Uk

and �k requires
�1R

mc

R

� 1 : (12)

This establishes a quantitative criterion for the range where Langer's theory can be used

without paying too much attention to the precise de�nition of the coarse graining. In the

table we also present kf=� and the renormalized masses in units of �, which indicate the

strength of the phase transition. In particular, for the relatively strong phase transition of

the third example with slightly larger e�ective couplings one observes an increased scale

dependence as compared to the weak phase transition of the second example. This clearly

shows that the `strength' of the phase transition is, in general, not the primary criterion

for the applicability of Langer's theory.

In addition to the dependence on k, the coarse grained free energy depends also on

the precise shape of the infrared cuto� function or the inverse average propagator Pk(q)
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given by eq. (2). Analytical studies in the Abelian Higgs model indicate [22] that this

scheme dependence is rather weak for the e�ective potential and the surface tension.

In summary, we have shown that the coarse grained free energy cannot be de�ned

without detailed information on the coarse graining scale k unless the e�ective dimen-

sionless couplings are small at the phase transition. For Abelian and non-Abelian gauge

theories with a small gauge coupling at the scale k = � this coincides with a relatively

strong �rst order transition. Only for small couplings a range with a weak k-dependence

of the classical surface tension appears. There is a close relation between the depen-

dence of the coarse grained free energy on the coarse graining scale and the reliability

of the saddle point approximation in Langer's theory of bubble nucleation. For a strong

k-dependence of Uk a small variation in the coarse graining scale can induce large changes

in the predicted nucleation rate in lowest order in a saddle point approximation. In this

case the k-dependence of the prefactor Ak has also to be computed. Therefore, for strong

dimensionless couplings a realistic estimate of the nucleation rate needs the capability

to compute lnAk with the same accuracy as 16��3
k
=3�2 and a check of the cancelation

of the k-dependence in the combined expression (5). Our observation that the details of

the coarse graining prescription become less important in the case of small dimensionless

couplings is consistent with the fact that typically small couplings are needed for a reliable

saddle point approximation for Ak.
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Figures

1. Evolution of the potential for a strongly �rst order phase transition.

2. Characteristics of the potential for a strongly �rst order phase transition in depen-

dence on the coarse graining scale k.

3. Evolution of the potential for a weakly �rst order phase transition.

4. Characteristics of the potential for a weakly �rst order phase transition in depen-

dence on the coarse graining scale k.

5. The normalized surface tension �k=�� as a function of ln(k=kf). The short distance

parameters are (1) ��1�=� = 0:1, ��2�=� = 2, (2) ��1�=� = 2, ��2�=� = 0:1, (3)
��1�=� = 4, ��2�=� = 70.

Table

1. E�ective dimensionless renormalized couplings �1R=m
c

R
and �2R=m

c

R
at the phase

transition. The critical couplings and mass terms mc

R
, mc

2R are evaluated at the

scale kf .

��1�

�

��2�

�

�1R

mc

R

�2R

mc

R

m
c

R

mc

2R

m
c

R

�

m
c

2R

�

kf

�

0.1 2 0.228 8.26 0.235 1:55� 10�1 6:62� 10�1 1:011� 10�1

2 0.1 0.845 15.0 0.335 2:04� 10�5 6:10� 10�5 1:145� 10�5

4 70 0.980 16.8 0.341 6:96� 10�2 2:04� 10�1 3:781� 10�2
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