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Abstract

Decay amplitudes for mesons in two-dimensional QCD are discussed. We show that in
spite of an infinite number of conserved charges, particle production is not entirely sup-
pressed. This phenomenon is explained in terms of quantum corrections to the combined
algebra of higher-conserved and spectrum-generating currents. We predict the qualitative
form of particle production probabilities and verify that they are in agreement with nu-
merical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of
our results.
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1 Introduction

Major advances in two-dimensional QCD have been made since the pioneering work of
’t Hooft [1], who found the mesonic spectrum of the theory in the limit of a large number of
colours. In subsequent works, an exact expression for the decay amplitudes of the mesons
was found [2, 3]. However, both the ’t Hooft equation and the decay amplitudes could
only be solved numerically. The numerical solution of the theory has been enterprised
by many authors[4, 5]. The numerical calculations are difficult to converge for massless
fermions. A strongly convergent algorithm for very reliable numerical computations is also
available in the literature[14]. These new results open challenging ways of testing various
aspects of the theory, specifically those concerning decay amplitudes of the theory.

It has been suggested [7] that massless two-dimensional QCD is an integrable system.
It is believed that integrability of a theory implies stability of its bound states. One could,
therefore, expect vanishing decay amplitudes for the mesonic states of the theory. The
numerical results indicate otherwise. The decay amplitudes, however, are small relative
to those obtained for the massive theory.

The main purpose of this article is to resolve this apparent conflict by relating diverse
properties of two-dimensional QCD, as well as understand more about the dynamical
structure of two dimensional QCD. Specifically, we show that the ’t Hooft sector and
the integrable sector of the theory are decoupled, in the sense that the conservation laws
found before do not commute with the spectrum generating algebra due to quantum
corrections. We also believe that the theory is not integrable in the ’t Hooft sector, that
is to say that the integrability properties are spoiled by quantum corrections. However,
we think that a strong simplification occurs in the massless case as compared to the
massive fermion theory, allowing us to draw special attention to such a difference in terms
of the conservation laws and the anomalies, which presumably have a mild contribution
semi-classically.

We review the known bosonisation procedure in Section 2 and show how the theory
can be re-expressed in a fermionic language, by using gauge-invariant chiral fermions.
The final re-fermionised action provides a convenient starting point for the analysis of the
mesonic spectrum. The significant outcome of this procedure is that the Poisson brackets
receive quantum corrections. The conserved Noether currents then satisfy the Kac-Moody
algebra only on taking the contribution from the anomalous Poisson bracket into account.
In Section 3, we combine the algebra of these conserved currents with that of the fermionic
bilinears, which have been shown to generate a W∞ algebra. We show that, except for the
pion, the mesons generated by the above W∞ algebra are not eigenstates of the Sugawara
operator. Conservation of the Sugawara operator indicates the existence of an infinite
number of conservation laws. If such conservation laws survive quantization and physical
states are eigenstates of the Sugawara operator then the dynamics of the theory is severely
constrained. On the other hand, the breakdown of conservation laws by anomalous terms
permits the decay of higher states. This explains the small decay rate numerically observed
in the massless theory. Based on these results, we make detailed predictions, in Section 4,
about various features of the spectrum. In Section 5, we use the recent numerical results
to verify our predictions and hence the accuracy of our calculational results.

2 Bosonisation vs Fermionisation

We start with the lagrangian

L = −
1

4
FµνF

µν + iψγµDµψ, (1)
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which describes QCD with massless fermions. In two dimensions, the theory can be
bosonised by computing the fermionic determinant which arises in performing the path
integration. In the bosonisation procedure one first defines left and right components of
the gauge field in terms of the matrix-valued fields U and V , i.e.,

A+ =
i

e
U−1∂+U and A− =

i

e
V ∂−V

−1. (2)

It is well-known that the Jacobian resulting from the above change of variables together
with the effective action can be expressed in terms of the WZW functional [8]. That is to
say,

deti 6D ≡ eiW [A] =

∫
DgeiSF [A,g]. (3)

The bosonic action SF [A, g] may be obtained by the repeated application of the Polyakov-
Wiegmann identity [9, 6] and is given by,

SF [A, g] = Γ[g] +
1

4π

∫
d2x[e2A2 − e2A+gA−g

−1

−ieA+g∂−g
−1 − ieA−g

−1∂+g]

= Γ[UgV ]− Γ[UV ], (4)

where Γ is the WZW action functional. Subsequent inclusion of the Fadeev-Popov ghost
action S[gh], replacement of the variables UV by Σ and UgV by g̃–using systematically
the invariance of the Haar measure, and finally the introduction of a scalar field E, to
disentangle the FµνF

µν interaction, yields the following form of the partition function
[6, 7]:

Z =

∫
Dg̃eiΓ[g̃]D[gh]eiS[gh]DΣDEe−i(cV +1)Γ[Σ]

× exp [−(cV + 1)tr

∫
d2x∂+EΣ∂−Σ−1 − 2e2(cV + 1)2tr

∫
d2xE2].

(5)

From a further replacement of the variable E by a field β, satisfying the relation
∂+E = i

4πβ
−1∂+β, the factorised form of the partition function,

Z = Z[g, 1]Z[Σ̃,−(cV + 1)]ZghZβ, (6)

is obtained. In the above expression, Z[M,n] is the partition function of a WZW field M
with central charge n, Zgh is the ghost contribution, the non-trivial coupling-constant-
dependent part of the partition function is

Zβ ≡
∫
DβDC−eiΓ[β]+tr

∫
d2x[ 1

2
(∂+C−)2+ieC−β−1∂+β], (7)

and the auxiliary field C− is introduced to make the action local. 1. The equations of
motion are equivalent to the conservation law ∂+I− = 0, where

I−(x) = 4πe2β−1∂+β − 2Π′− + i(4π)2e3C− − (4πe)2[C−,Π−] , (8)

Π− = ∂+C− and Πβ = 1
4π∂+β

−1+ieC−β
−1 are canonical momenta conjugate to C− and β

respectively. Canonical commutation relations lead to a Kac-Moody algebra obeyed by the

1The factorised form of the partition function is actually elusive, due to several BRST constraints remaining
from the gauge condition and change of variables. For the definition of vacuum and physical states the reader
is referred to [10, 11, 12].
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current I−. As in the case of conformally invariant theories, the conservation law ∂+I− = 0
implies that there is an infinite number of conserved charges, Q(n) =

∫
I−(x−)(x−)ndx−.

These act on asymptotic β fields as multiplications by powers of the (negative) component
of the momentum times right-SU(n) transformation, i.e.,

Q(n)ij |βkl(p)〉 ∼ pn−δ
jlU jn|βkn〉. (9)

This puts a stringent requirement on particle scattering, forbidding particle production
or decay 2.

Recently, there have been suggestions [14] that the stability of the spectrum can be
tested in the framework of ’t Hooft’s mesons decay amplitudes. The numerical computa-
tions of the amplitudes provide a detailed check of the claims presented here, namely that
the infinite number of conservation laws does not imply absence of particle production or
stability of the meson and zero decay amplitude.

As mesons are fermionic bound states, the relevance of the above conserved quanti-
ties to the decay of mesons can be conveniently studied by writing the β sector of the
theory, defined in (7), in terms of fermions. In the fermionisation procedure, the WZW
term is equivalent to an action for massless fermions and the interactions are treated in
perturbation theory by using the adiabatic principle of form invariance [15].

Using these techniques, we obtain the following fermionised form of the action:

S =

∫
d2x[ψ†i+i(δ

ji∂− − ieC
ij
− )ψj+ +

1

2
tr(∂+C−)2 + iψ†

i
−∂+ψ

i
−]. (10)

The ’t Hooft spectrum can be algebraically generated by using the spectrum-generating
algebra of gauge-invariant fermion bilinears. Since the β fields in (7), as well as their
fermionic replacements in (10), are gauge-invariant objects, the above action represents a
chiral theory which has to be quantised using anomalous Poisson brackets [16] (see also
chapters 13 and 14 of [15]). Indeed, the left-moving Noether currents,

I
f
− = ψ†ψ −

2

e
Π′− −

e

4π
C− + i[C−,Π−], (11)

generate a Kac-Moody algebra only if the anomalous Poisson Bracket (APB),

{Π−(x), ψ†ψ(y)}APB =
e

4π
δ(x − y), (12)

is used 3.
The operator (11) (or (8)) contains colour indices. However, in ’t Hooft’s formulation

one deals exclusively with colourless states and, therefore, it is natural to consider the
Sugawara operators

L(x) =: Iij(x)Iji(x) : , (13)

where the colour indices are contracted and the divergent terms in the Wilson expansion
(corresponding to the Kac-Moody algebra) are subtracted by means of a normal-ordering
prescription.

2A detailed discussion of the action of conserved currents on β field, and the consequences for β-scattering
have been discussed in ref. [13], where an exact S-matrix has been conjectured.

3The bosonic formulation is advantageous since it contains information of order h̄ already at the classical
level.
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3 Classification of the mesonic states

In this section, we review the action of the W∞ algebra on the spectrum. The
spectrum-generating algebra, as obtained in [17], arises from the bilinears Mαγ(x, y) =

ψ†α(x)eie
∫ y
x
Aµ(ξ)dξµψγ(y), where α and γ are the chirality indices (+,−). In the massive

case, these bilinears are related by the equations of motion. In the massless case, however,
the mixed term, M+−, corresponds to the integrable-β sector, while the right-right term,
M−−, corresponds to the usual meson bound states of ’t Hooft. Therefore, we take

M−−(x−, y−;x+) = ψi†−(x−, x+)ψi−(y−;x+) (14)

as the spectrum-generating current. In the momentum space of the x− variables, a clas-
sical solution of the equations of motion obeying the Gauss constraint is

(M−−(k−, k
′
−;x+))class = δ(k− − k

′
−)θ(k−). (15)

Expanding M−− around such a solution in the large N limit [17] and using

M−− = e
i√
N
W

(M−−)classe
− i√

N
W

(16)

one finds that the Fourier modes of W , which represent quantum fluctuation around
classical solution, obey the ’t Hooft equation. Thus, theW∞ algebra found for the bilinears
in [17] is a spectrum-generating algebra.

We emphasise that in the massive theory, the full content of the theory is preserved
in the individual chiral sectors, M++ and M−−, which are related to each other by the
fermion equation of motion. In the massless case, however, we study the bilinears con-
structed from ψ+. There is a mixing of the sectors and it does not suffice to study one
sector on its own.

4 The combined algebra

In this section, we study the interplay between the W∞-spectrum-generating algebra
and the conserved current (13). We identify the bilinear ψ†+ψ+ as the pion and ψ†+D

nψ+

as the higher states obtained from the fermion bilinear M++.
The pion is an eigenstate of L(x) 4;

[L(x), ψ†(y)ψ(y)] =
e2

2(x− y)2
ψ†ψ(y) +

e2

2(x− y)
∂(ψ†ψ(y))

+ regular terms. (17)

The higher-state fermion bilinears, however, due to various anomalous terms, are not
eigenstates;

[L(x), ∂ψ†ψ(y) − ψ†(y)∂ψ(y)] =

−
e2

4
[

2

(x− y)2
(∂ψ†ψ(y)− ψ†∂ψ(y))

−
1

x− y
∂(∂ψ†ψ(y) − ψ†∂ψ(y)) −

2

(x− y)4
]

+ e2[
1

(x− y)2
(ψi†ψjψj†ψi)−

1

x− y
(ψi†ψj∂(ψj†ψi))]

4Recall that in the present fermionic formulation we have to use the anomalous Poisson bracket.
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+ [−
ie2

2
[ΠkjCki − CjkΠik]− 16

e3

π
Cji + e∂1Πij]×

[−
1

x− y
∂(ψj†ψi) +

1

(x− y)2
ψj†ψi]

+anomalous Poisson Brackets terms + regular terms. (18)

Using the above two equations, we can write down the general form of the algebra
obtained from the action of the Sugawara operator on the physical states, that is,

L ·Mn ≈
n+ 1

(x− y)2
Mn +

1

x− y
∂Mn + anomalous terms. (19)

Thus we see that, in the absence of anomalies, the nth state is an eigenstate of L with
eigenvalue n+ 1. Taking this into account, we find that the action of L on the in and out
states is given by

(n− n1 − n2 − 1)〈Mn1Mn2 |Mnj 〉 =

∫
dx〈|Lout − Lin|〉

=

∫
dx

∫ ∞
−∞

dt
d

dt
〈Mn1Mn2 |L|Mn〉 = anomalies, (20)

which shows the existence of an infinite number of conservation equations. In the absence
of the anomalous terms, the decay amplitudes vanish. However, when anomalous terms
are present unphysical (non–mesonic) operators are introduced in the right-hand side.
Therefore, the amplitude is non-vanishing. If one of the out states is a pion, then we will
have the following set of recursive relations:

(n− n1 − 1)〈M0Mn1 |Mn〉 =
∑
X

〈M0X|Mn〉

+
∑
Y

〈M0Mn1 |Y 〉 (21)

where X,Y are bound states of lower states and a pion state is always present on the
right-hand side. The solution to the above relations is found by using

〈M0M0|Y 〉 = 0, (22)

which is obtained from the 1/N expansion of the decay amplitude and is valid up to second
order. These solutions require the vanishing of the decays involving pions 5.

From eqn. (18), we see that there are further corrections which come from both higher
terms in the Wilson expansion and anomalous Poisson bracket quantization of the chiral
fermions. These terms cannot cancel one another, due to their different functional form
(as an example, higher Π derivatives never arise from anomalous Poisson Brackets). There
are further higher terms when one considers the gauge-covariantized current.

The decay amplitudes in the massless theory (which is integrable in the absence of
anomalies) are suppressed as compared to those of the massive theory (non-integrable).
This is entirely due to the quantum corrections. Since the anomalous terms are of order h̄,
they disappear for quasi-classical decays. In the massive theory, in addition to quantum
corrections, there are mass terms which spoil integrability. These terms do not vanish in
the quasi-classical approximation. In the massless theory, this approximation is reliable for
decays of highly-placed states (e.g. near the continuum limit ) to large-momentum states.

5It is worth mentioning that the algebra is independent of the number of colours, and the anomalous term
only makes a first-order contribution in the 1/N expansion.
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On the contrary, decays into small-momentum states, marked by interference terms, are
highly influenced by quantum corrections which spoil quasi-classical approximation.

On the basis of the preceding results, we predict the following features:
1. The pion decouples in the massless fermion theory. Such a decoupling is valid in

all orders of the 1/N expansion.
2. For massless fermions, the decay of large-mass states into states with large momenta

is severely suppressed.
3. The probabilities for further decays, although reduced, are not very small. For

small N , the amplitudes are much smaller than the corresponding ones in the massive
case, due to the enhanced significance of the larger-order terms in the 1/N expansion 6.

4. Finally, the decay amplitudes of very massive mesons vanish, unexceptionally, in
the massless fermion case.

5 Numerical back-up and large N behaviour

In this section, we verify these predictions by means of the numerical computation
of the amplitudes (for predictions 1,2 and 3), as well as, by using large N analysis (for
prediction 4).

Amplitudes for meson decay were initially derived in the framework of 1/N -expansion
in [2], and in more detail, including higher order corrections, in [3]. The 1/N corrections
vanish in the massless case 7. This can be explained by studying the expression for the
decay amplitude [3],

A = (1− C)
1

1− ω

∫ ω

0
dxφn(x)φp(

x

ω
)Φq(

x− ω

1− ω
)

−(1− C)
1

ω
dx

∫ 1

ω
dxφn(x)φq(

x− ω

1− ω
)Φp(

x

ω
)

+
1

N
(1− C)

fq
1− ω

∫ ω

0
dxφn(x)φp(

x

ω
), (23)

where ω =
k
p
+

kn+
, Φn(x) =

∫ 1
0 dy φn(y)

(x−y)2 and C denotes the interchange of final states.

We observe that the higher-order corrections are always multiplied by the factor

fn =

∫ 1

0
dxφn(x), (24)

where φn(x) is ’t Hooft’s wave function of the decaying state. It can be verified using ’t
Hooft’s wave equation, that fn vanishes for massless fermions [2]. Moreover, the authors
of ref. [3] claim that, as higher-order corrections amount to a redefinition of constants
in the massless case, only the very first term in the 1/N series survives. Because this
does not hold in the massive case, corrections to all order exist. We restrict our analysis
to the large-N limit where amplitude for both massless and massive fermions may be
non-vanishing.

In order to fully understand the behaviour of the leading-order term (i.e. the first
term in expression (23)) we need to solve the ’t Hooft equation numerically. The solution
is then inserted back into (23) and the numerical integration is carried out. We are then
in a position to compare the results for the massless and the massive cases.

6We recall again that 1/N corrections are very important in the massive case which strengthens these
predictions for groups such as SU(2).

7The lowest-order term, however, seems to give a non-vanishing contribution. This is discussed later in this
section.
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The method which employs a MATHEMATICA program is unsatisfactory because of
its bad-convergence behaviour. The numerical results are unreliable although they are
compatible with the predicted vanishing decay rate in the massless case, and the non-
vanishing decay rate in the massive case. Therefore, a more sophisticated method of
numerical computation is needed 8 .

A more elaborate method [14] confirms that particles do not decay into states which
contain the pion whereas in the massive case, the decay amplitudes are shown to be
significantly large (see Figure 1).
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Figure 1: Decay rate of the 5th excited state into the 1st and ground (pion) states is plotted as
a function of the outgoing momenta. The first diagram corresponds to massless and the second
to massive fermions. The vertical bars mark the on-mass-shell values.

For the massless case, several decays of the type n→ 1 + 1, where 1 denotes the first-
excited level of ’t Hooft’s series, have been computed (see Figure 3). For higher values
of n the amplitude approaches zero rapidly. For the massive case, the amplitudes vary
randomly (see Figure 4).

The overall results can be summarised as follows :
(i). In the massless case, for a general decay k → l+ p the amplitude can start from a

high value (see specifically the example 14→ 3+3 in reference [14]) but decreases rapidly
with increasing k . These results are also compatible with the earlier results of reference
[3]. Although the results for the massless case are very precise, those for the massive case
require further refinement. However, all the results obtained are precise enough for the
conclusions drawn hitherto, and will be verified by other methods.

(ii). An exact computation of the decay rate of the higher-mass states guarantees the
correctness of the numerical results obtained so far. Indeed, using the large N techniques
of [2] or [20] one finds the required amplitude in the large k limit. In terms of the fermion
mass m, a parameter γ satisfying

πγcotπγ = 1−
πm2

e2N
(25)

is defined (the massless case corresponds to γ = 0). In the large n limit, the decay
amplitude is found to obey

A ∼ sinπγ, (26)

8For a survey of these methods using orthogonal eigenfunctions expansion we refer the reader to [3, 18, 19].
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which is valid up to constants describing the behaviour of the ’t Hooft wave functions at
the origin (see [20] for further details) and which shows a non-vanishing result only for
non-zero values of the parameter γ. The same computation may be explicitly carried out
in the massless case.

In order to investigate the issue of pair production for large number of colours and
high mesonic states, we calculate the amplitude of the decay of a very massive meson of
mass mn into two mesons of masses mn1 and mn2. Such an amplitude, at lowest order in
the inverse number of colours and up to an overall constant, is given by the vertex

Vn1n2n = e2 p1

p2

∫ 1

0
dx

∫ 1

0
dy

1

(xp1

p2
)2

× φn1(x)φn2(y)[φn(
1− y

1 + p1/p2
)− φn(

1 + xp1/p2

1 + p1/p2
)], (27)

where pi is the plus–component of the momentum. For decay of very massive mesons,
mn →∞, energy-momentum conservation implies

m2
n = m2

2

p1

p2
. (28)

Thus the main contribution to the integral comes from x ∼ 0. Next, we make the following
substitutions

x = η(
m2

e
)2
, (29)

φi(x) ≈ Cix
γ , (30)

where γ is defined in (25) and x is small, and

φn(ξ(
e

mn
)2) ≈ φ(ξ) ≡ sin(

ξ

π
+ δ(ξ)), (31)

where δ(ξ) is a phase 9,in equation (27) to find

Vn1n2n = (
m2

mn
)2γ
C1

∫ ∞
0

dη

∫ 1

0
dx′ηγ

φ2(x′)

(η + x′)2
[φ((1− x′)

m2
2

e2
)− φ((1 + η)

m2
2

e2
)]

= (
mn

e
)−2γ

C1I2. (32)

Since the vertex is symmetric under the exchange 1 ↔ 2, the relation Ci/Ii = r must
be the same for i = 1, 2 and can be computed in a convenient limit. We thus compute
r for i = 2 and large values of m2. In this limit, the asymptotic behaviour of the wave
functions can be used to find the explicit values of C2 and I2, i.e.,

C2 ≈ (
m2

e
)−2γ , I2 ≈ (

m2

e
)2γπ sinπγ. (33)

Subsequently, the expression

Vn1n2n ≈ e
2(
mn

e
)2γ sinπγ (34)

is obtained which shows that the vertex vanishes for γ → 0.

9The validity of equation (31) is confirmed for massless fermions by using numerical simulations.
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For massless fermions, that is for γ = 0, the η integration in the first term of eqn. (32)
can be performed. Moreover, by using ’t Hooft’s equation in the same term (to replace
φ
x ) we obtain

Ĩ2 = −
∫ 1

0
dxφ2(x)

∫ ∞
0

dη
φ((1 + η)µ2)

(η + x)2
−
∫ 1

0
dxφ2(x)[µ2 +

1

1− x
]φ((1− x)µ2)

−
∫ ∞

0

dξ

µ2

∫ 1

0
dxφ(ξ)

φ2(x)

(x − 1 + ξ
µ2 )2

(35)

where µ = m2
mn

. The last two terms cancel [21] due to the identity∫ ∞
0

dζ
φ(ζ)

(ζ − η)2
= −(

1

η
+ 1)φ(η). (36)

In order to confirm these conclusions further, we make a detailed comparison between
the amplitudes obtained in the massive and massless cases. This can be conveniently done
by considering the table presented below.

Decay series A k A/k

8→ 1 + 1, m = 0 .25 .4 .65

8→ 1 + 1, m 6= 0 .5 .25 2

9→ 1 + 1, m = 0 .2 .4 .5

9→ 1 + 1, m 6= 0 .5 .28 1.8

10→ 1 + 1, m 6= 0 .8 .3 2.7

11→ 1 + 1, m = 0 〈.05 .45 〈.1

13→ 1 + 1, m = 0 ≈ 0 .45 ≈ 0

In this table, the second column represents the momenta of the outgoing particles and the
figures in the last column are proportional to the decay probabilities 10. These tabulated
results once again confirm the prediction that the ratio between massless and massive
fermion decay rates goes to zero–being smaller than 3% for the 11th state. For other
series of decays, this ratio approaches zero more slowly. Nevertheless, one clearly observes
that this ratio approaches zero, e.g., for massless series k → 2 + 2 (see F igure 2).

6 Conclusion

Massless QCD contains higher-conservation laws which in general imply integrability.
These conservation laws have been derived in the massive (β) sector. The mesons in the
’t Hooft sector are built up of fermion bilinears which are dressed with bosonic fields of
the massless sector. We have shown here that the spectrum-generating algebra, which

10We have chosen the units such that the mass of the initial state is unity (the influence of the fermion mass
is small in the present cases).
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Figure 2: Decay rates of the 10th, 11th and 12th states into two mesons in the 2nd excited state
(for massless fermions) are plotted as functions of the outgoing momenta. The vertical bars
mark the on-mass-shell values.

defines the ’t Hooft sector, does not commute with the higher conservation laws due to
quantum corrections to the short-distance expansions. This implies the break down of
integrability in the meson sector. The quantum nature of these corrections means that
they are insignificant for quasi-classical decays. This renders the theory quasi-integrable
and accounts for the exact decoupling of the pion.

The theory has a complex structure of constraints. The mesonic states, although phys-
ical, are not eigenstates of the conserved charges obtained from the Sugawara operators.
This is because the massive and the massless sectors of the theory are connected by the
constraint equations. The massive sector alone (the β sector) is integrable but does not
generate the physical Hilbert space since it is not BRST invariant. The change of variables
made to decouple the dynamics of the massive and the massless sectors of the theory (see
equations (2), (5) and (6)) leads to non-trivial jacobian which breaks the BRST invariance
[11, 12].

Therefore, due to quantum corrections, the integrability and the BRST-invariance
properties of the theory fall into two different sectors; the former being valid in the
massive sector alone and the latter in the meson sector. This can be interpreted as the
stability of the unphysical β particles. We have verified this characteristic of the theory
in the quasi-classical approximation by numerical methods.

The theory simplifies in the large N limit, and meson wavefunctions and masses can
be computed. Large N corrections are well known in the literature, and the numerical
problem can be tackled.

Nevertheless, two dimensional QCD is far from trivial. In spite of the large N tech-
niques, the formal aspects of the theory have not been fully understood, and only recently
the vacuum structure has been studied, and separated from the description of the massive
excitations. Such structure are the core of the understanding of the Schwinger model,
and led to very profound consequences in that case. Our aim has been to deepen the
understanding of the theory, obtaining results similar to those known to two dimensional
QED, the Schwinger model.

However, it is clear that a development in that direction encounters a wall, since the
theory is not soluble. Nevertheless, the numerical methods used, permit to obtain new
structures otherwise unknown. Moreover, there are indications that the theory has an
unexpected simplification in the massless case.

The result of our paper is to show that in spite of the complexity of the situation, and
the fact the the model is used to study QCD mesons, the decaying amplitudes are simpler
than imagined before, and indicate further structures not known before. The zeroes of the

11



decaying amplitudes are a demonstration of that fact. The theory is not integrable, but
the decay amplitudes are nearly vanishing. Our numerical results are an ”experimental”
constatation of that fact, and in section () we give a field theoretic argument to support
that fact.

Finally, we wish to point out that the methods are not borrowed from techniques
invented for integrable systems, but rather well defined and established techniques based
on the computation of the exact fermionic determinant, leading to the bosonised version,
namely the gauge Wess Zumino Witten model and its gauge interaction.

It is of prime importance to generalise the concept of quasi-integrability to higher
dimensions. Indeed, Bardeen [22] has recently pointed out that helicity amplitudes in
high-energy QCD are very simple at tree level and are described by a self-dual Yang-
Mills theory. The classical solution of this theory strongly resembles the Bethe Ansatz
solution of integrable two-dimensional models. Moreover, the one-loop amplitudes are
reminiscent of those corresponding to anomalous conservation laws. It is known that the
self-dual Yang-Mills theory is an integrable theory and is described by very simple actions
[23]. On the other hand, integrable Lagrangians with either anomalies [24] or with non-
vanishing amplitudes for particle production[25] are known and are well documented in the
literature. It remains an interesting open problem to see whether the quasi-integrability
idea is the most efficient framework for the description of non-trivial dynamics in theories
with higher conservation laws, in general space-time dimensions, in spite of the Coleman-
Mandula no-go theorem [26] and its more general version [27].
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Figure 3: Decay rates of the 5th, 7th , 9th and 11th excited state into two mesons in the 1st excited
state are plotted as functions of the outgoing momenta for massless fermions. The vertical bars
mark the on-mass-shell values.
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Figure 4: Decay rates of the 7th, 8th, 9th and 10th states into two mesons in the 1st excited state
are plotted for massive fermions.
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