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Lecture Notes, Summer School on Effective Theories and Fundamental Interac-
tions, Erice, 1996. I describe the construction of effective field theories for equilib-
rium high-temperature plasma of elementary particles.

1 Motivation

High-temperature and dense matter of elementary particles appears in several
areas of physics. The first and most familiar example is the Universe at the
early stages of its expansion. The Big Bang theory (for reviews see, e.g. 1,2)
states that the Universe was hot and dense in the past, with a temperature
ranging from a few eV up to the Planck scale ∼ MPl ∼ 1019 GeV. Another
place, where matter exists in extreme conditions of high densities, can be cre-
ated in the laboratory. Namely, in heavy-ion collisions extended dense fireballs
of nuclear matter are created, with the energy density exceeding the QCD scale
∼ 10 · (200MeV )4.

From a practical point of view, there is quite a wide area of applications of
finite-temperature field theory to cosmology and laboratory experiments. The
high-temperature phase transitions, typical for grand unified theories (GUTs),
may be important for cosmological inflation and primordial density fluctu-
ations. Topological defects (such as monopoles, strings, domain walls) can
naturally arise at the phase transitions and influence the properties of the
Universe we observe today. The first-order electroweak (EW) phase transition
is a crucial element for electroweak baryogenesis; it may also play a role in the
formation of the magnetic fields observed in the Universe. The QCD phase
transition and properties of the quark-gluon plasma are essential for the un-
derstanding of the physics of heavy-ion collisions. The QCD phase transition
in cosmology may influence the spectrum of the density fluctuations relevant
to structure formation.

In most cosmological applications, the deviations from thermal equilib-
rium play a most important role. For example, the concentration of primor-
dial monopoles depends a lot on the dynamics of the grand unified phase
transition; the baryonic asymmetry, produced in GUTs or in the EW theory,
depends on the rate of the Universe expansion or other time-dependent phe-
nomena. The signatures of the heavy-ion collisions are greatly influenced by
the non-equilibrium dynamics. The study of non-equilibrium properties of the
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plasma is very hard. To understand the thermal non-equilibrium better, the
systems in thermal equilibrium should be completely understood. Without
this understanding, we cannot even say what a deviation from thermal equi-
librium is. After the structure of the ground state is found, small deviations
from thermal equilibrium can be treated by this or that perturbative method.

The topic of my lecture here is the study of the equilibrium properties
of the plasma at high temperatures. As we will see, even this problem in
gauge theories is highly non-trivial and requires the use of effective field theory
methods.

The study of dense matter is interesting in itself from a theoretical point of
view. At very small temperatures and densities the plasma can be considered
as a collection of weakly interacting individual particles; its thermodynamical
properties are close to those of the ideal Bose or Fermi gas. When the tem-
perature or density increases, this is not true any longer, and the collective
properties of plasma become important. The change of temperature and/or
density of the system may induce phase transformations in the system. For
example, the Higgs phase of the electroweak theory, realized at small tempera-
tures, may be transformed into a “symmetric” phase3,4,5,6 (it is often said that
the symmetries are “restored” at high temperatures). Another example is the
theory of strong interactions. At small temperatures the confinement phase
of QCD is realized, while at higher temperatures the confinement is believed
to be absent 7,8, so that a better description of the system may be achieved
in terms of quarks and gluons. Thus, the study of finite-temperature field
theory can be considered as a theoretical laboratory to test our understanding
of the Higgs mechanism in the EW theory, confinement and chiral symmetry
breaking in QCD, etc.

The plan of the lecture is as follows. In section 2 we discuss the accuracy
of the equilibrium approximation in cosmology. In section 3 we introduce
the main definitions of finite-temperature field theory, and in section 4 we
explain why ordinary perturbation theory breaks down at high temperatures.
In section 5 we explain the main idea of an effective field theory approach and
in section 6 apply it to the different physical theories. In section 7 we discuss
phase transition in the EW theory. Section 8 is the conclusion. Our discussion
is carried out mainly on the qualitative level, many technical details can be
found in the original papers cited below.

2 Equilibrium approximation

In loose terms, the thermal equilibrium approximation may be valid if the
system is considered after some time substantially exceeding the typical equili-
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bration time. Let us see how this general rule works for the expanding Universe.

The measure of deviation from the thermal equilibrium is the ratio of two
time scales. The first one is the rate of the Universe expansion, given by the
inverse age of the Universe t−1

U : tU = M0

T 2 . Here M0 = MPl/1.66N
1

2 ∼ 1018

GeV, and N is the effective number of the massless degrees of freedom. The
expansion rate of the Universe is a unique non-equilibrium parameter of the
system (at least in the absence of different phase transitions). The second time
scale (different for different types of interaction) is a typical reaction time, given
by (τreaction)−1 ∼ 〈σnv〉, where σ is the corresponding cross-section, n is the
particle concentration and v is the relative velocity of the colliding particles.

As an example, let us consider the Universe at the electroweak epoch, at
temperatures T ∼ mW . The fastest reactions are those associated with strong
interactions (e.g. qq̄ → GG); their rate is of the order of (τstrong)

−1 ∼ α2
sT .

The typical weak reactions, say eν → eν, occur at the rate (τweak)−1 ∼ α2
WT ,

and the slowest reactions are those involving chirality flips for the lightest
fermions, e.g. eRH → νW with the rate (τe)

−1 ∼ f2
eαWT , where fe is the

electron Yukawa coupling constant. Now, the ratio τi

tU
varies from 10−14 for

the fastest reactions to 10−2 for the slowest ones. This means that particle
distribution functions of quarks and gluons, intermediate vector bosons, Higgs
particle and left-handed charged leptons and neutrino are equal to the equi-
librium ones with an accuracy better than 10−13; the largest deviation from
thermal equilibrium (∼ 10−2) is being expected for the right-handed electron.

These estimates show that the equilibrium description of the Universe is
a very good approximation at the electroweak scale. At other temperatures
the situation may not be so optimistic. For instance, if the Universe was as
hot as, say, 1017 GeV, then the equilibrium description of the (grand unified)
interactions would be questionable, since the ratio τi

tU
would be of the order

of 1. By equating the rate of the Universe expansion with the rate of this
or that reaction, one can estimate a range of temperatures where the process
under consideration was in thermal equilibrium. For example, the rate of
the electromagnetic interactions exceeded the rate of the Universe expansion
at (few eV) < T < α2MPl ∼ 1015 GeV, weak interactions were in thermal
equilibrium at temperatures up to the nucleosynthesis temperature ∼ (few
keV), etc.

The same type of consideration can be carried out for the heavy-ion colli-
sions. Again, if the thermal equilibration time is much smaller than the time
the fireball exists, equilibrium thermodynamics can be applied to the descrip-
tion of the extreme state of matter appearing as an intermediate stage of the
collision process. Since strong dynamics is involved, the estimates of the cor-
responding time scales are much less certain, but quite encouraging 9,10,11 (for
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a review see, e.g. 12).
The general conclusion is that the equilibrium approximation is valid in

a wide range of physical situations in cosmology and, less certainly, in the
laboratory.

3 The basics of finite-temperature field theory

This section is a short introduction to finite-temperature field theory. More
details can be found in a number of excellent reviews and books, see, e.g. refs.
13,14,15.

If some system is described by the Hamiltonian H , and there are several
conserved charges Qi, [Qi, H ] = 0, then the thermal equilibrium state of the
system is described by the density matrix ρ,

ρ =
1

Z
exp

(

− 1

T
(H +

∑

i

µiQi)

)

, (1)

where µi is a set of chemical potentials. The parameter Z is nothing but the
statistical sum of the system:

Z = Tr

[

exp

(

− 1

T
(H +

∑

i

µiQi)

)]

. (2)

In what follows we constrain the general situation to the case when all chemical
potentials of the system are equal to zero. In this particular case the statistical
sum is related to the density of the free energy F of the system through

Z = exp

(

−FV
T

)

, (3)

where V is the volume of the system. The analogy of expression (1) with the
quantum-mechanical time evolution operator exp(−iHt) allows us to write
down a functional-integral representation for the statistical sum:

Z =

∫

DφDΨ exp(−SE), (4)

where the integral is taken over all bosonic (φ) and fermionic (Ψ) fields, and
SE is Euclidean action for the system, defined on a finite “time” interval 0 <
τ < β = 1

T
,

SE =

∫ β

0

dτ

∫

d3xL, (5)
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where L is the Euclidean Lagrangian density. The bosonic fields, entering the
functional integral, obey periodic boundary conditions with respect to imag-
inary time, φ(0, x) = φ(β, x), and fermionic fields are antiperiodic, Ψ(0, x) =
−Ψ(β, x). The case of gauge theories requires the ordinary gauge fixing and
introduction of ghost fields. In spite of the anticommuting character of the
ghost fields, they obey periodic boundary conditions.

The formal analogy with zero-temperature field theory allows the intro-
duction of an important notion of the so-called imaginary time (as opposed to
real time), or Matsubara Green’s functions. For example, the bosonic Green
functions are defined as

G(τ1, x1, ..., τn, xn) =
1

Z

∫

φ(τ1, x1)...φ(τn, xn)DφDΨ exp(−SE). (6)

Fermionic Green’s functions are derived by a simple replacement of the bosonic
fields by fermionic fields.

The construction described above is the basis of the statement that the
finite temperature equilibrium field theory is equivalent to the Euclidean field
theory defined on a finite “time” interval. Thus, many methods developed
for the description of zero-temperature quantum field theory (e.g. perturba-
tion theory, semi-classical analysis, lattice numerical simulations) can be easily
generalized to the non-zero temperature case.

For example, perturbation theory at finite temperatures looks precisely
like perturbation theory at T = 0 with substitutions of quantities associated
with the zero component of 4-momentum p, as follows:

p0 → iω,

∫

dp0 → 2πiT
∑

ω

, (7)

δ(p0) → (2πiT )−1δω,0,

where the discrete variable ω is 2πnT for the bosons and (2n + 1)πT for
fermions, with n being an integer number. The finiteness of the time inter-
val makes the energy variable discrete, since the Fourier integral used at zero
temperature is substituted by the Fourier sum.

The equilibrium properties of a plasma are completely defined by the statis-
tical sum and by the set of Green’s functions. Thus the problem of equilibrium
statistics is to compute these quantities reliably.
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Figure 1: Vacuum diagrams contributing to the free energy density in a scalar theory.

4 The breakdown of perturbation theory

In this lecture we will constrain ourselves to the theories of the following type.
We will require that the running coupling constants of the theory, taken at the
scale of the order of temperature, are small. This class is sufficiently wide and
includes many interesting cases. The simplest example is a scalar theory

L =
1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

4
φ4 (8)

with λ ≪ 1. Since the scalar self-coupling is not asymptotically free, the
temperature of the system is assumed to be much smaller than the position of
the Landau pole. Another example is the electroweak theory, and another is
QCD at sufficiently large temperatures (T ≫ 100 MeV). Many GUTs also fall
in this class.

An aim of this section is to show that the straightforward or modified
perturbation theory fails in describing certain details of the properties of high-
temperature plasma. We will also discuss here difficulties in putting the whole
problem on the lattice. We will use here fairly loose terms, the precise meaning
of which, together with the true limitations of perturbation theory, will become
clear in the next section.

An attempt to compute perturbatively the statistical sum or Green’s func-
tions at sufficiently large temperatures immediately shows the trouble6. As the
simplest example let us take the theory (8) and compute its statistical sum. In
perturbation theory, it is given by a set of vacuum graphs, see Fig. 1. Consider
the temperatures T ≫ m. Then, with the use of Feynman rules defined above,
it is easy to see that in addition to an ordinary, zero-temperature expansion
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parameter, ∼ λ, a new expansion parameter appears,

∼ λT

m
. (9)

A most simple way to see this is to take the n = 0 contribution to the statistical
sum (as we will see later, these modes are crucial in constructing effective
field theories). The simple loop gives m3T , the “figure of eight” graph gives
λT 2m2, etc. Therefore, the straightforward perturbation theory breaks down
at T > m/λ. For the theories containing, in perturbation theory, massless
bosons (such as QCD) perturbation theory does not work for any temperature
16,17.

There is a deep physical reason why this happens. At zero temperature
we apply perturbation theory for consideration of processes where only a small
number of particles participate. Thus, the expansion parameter is λ. At
high temperatures, the number of particles, participating in collisions, may be
large. Moreover, for bosonic degrees of freedom there is a well-known Bose
amplification factor, associated with the bosonic distribution

nB(E) =
1

exp(E/T ) − 1
, (10)

where E =
√
k2 +m2 is the particle energy. So, the expansion parameter

becomes λn(E), coinciding with (9) at small momenta.
In fact, perturbation theory breaks down in the most interesting place,

namely at the temperatures where different phase transitions are expected.
One of the ways to deal with this problem is to rearrange the perturbative
series and make a resummation of the most divergent diagrams. Partially, this
helps in some cases. For example, for our pure scalar model the summation
of the bubble graphs is equivalent to the introduction of the temperature-
dependent scalar mass, which comes from one-loop corrections 5 (see fig. 2):

m2
eff (T ) = m2 +

λ

4
T 2, (11)

which is to be used in propagators. For positive m2 this procedure saves the
situation and allows the perturbative computation of all properties of the equi-
librium plasma in this theory. An interesting thing is that at high temperatures
the expansion parameter of the resummed perturbation theory is λT

meff
∼

√
λ

rather than λ. For negative values of m2, corresponding to the spontaneous
symmetry breaking at zero temperatures, even resummed perturbation theory
breaks down near the point m2

eff (T ) ≃ 0, failing do describe the details of the
symmetry-restoring phase transition which occurs there.
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Figure 2: One-loop correction to the scalar mass.

Take now realistic theories. The resummed perturbation theory does not
solve the problem, say, in QCD. The static gluon (n = 0 component of the
gauge field) mass remains zero in the one-loop approximation, so that infrared
divergence inherent in (9) is not cut. A typical energy scale E, at which
this happens is a E ∼ αsT

16,17 and is much smaller than the temperature
itself because, according to our assumption, the coupling constants are small
at the temperature under consideration. The same problem appears in the
description of the phase transitions in gauge theories with scalars (such as EW
theory and GUTs), where the gauge fields at high temperature are massless in
perturbation theory.

To summarize this discussion, even the resummed perturbation theory
breaks down at some infrared energy scale Einfrared ∼ αT , where α is a
typical coupling constant of the theory under consideration. Thus, a number
of properties in high-temperature plasma and different phenomena such as
phase transitions cannot be described by perturbation theory.

If perturbation theory breaks down a natural inclination would be the
use of direct numerical non-perturbative methods, such as lattice Monte Carlo
simulations. This approach does not work, however, for theories containing
chiral fermions, since we do not know how to put these on the lattice. Thus,
theories such as the EW theory or grand unified models cannot be studied
on the lattice with their complete particle content. This problem does not
appear in pure bosonic models or in theories containing vector-like fermions,
such as QCD. These models can be simulated on the lattice, but computations
are often very demanding. Quite ironically, the computations are more time
consuming for weaker coupling constants. This can be seen as follows. At
high temperatures, the average distance between particles is of the order of
T−1, and it is clear that the lattice spacing a must be much smaller than this
distance, a ≪ T−1. At the same time, the lattice size Na, where N is the
number of lattice sites in the spatial direction, must be much larger than the
infrared scale, described above, i.e. Na ≫ (αT )−1. Therefore, the lattice size

aThe origin of this scale will become more clear in the next section.
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is required to be rather large, N ≫ 1

α
, the larger the smaller the coupling

constant is.
The next section describes the formalism which allows one to deal with

these problems, at least when the effective coupling constants are small at the
temperature under consideration. Other limitations of the effective field theory
approach will be considered later.

5 Effective field theory approach

The main idea of the effective theory approach to high-temperature field the-
ory is the factorization of weakly coupled high-momentum modes, with en-
ergy E ≫ αT , and of strongly coupled infrared modes with energy E < αT ,
and the construction of an effective theory for infrared modes only. The con-
struction of the effective field theory is perturbative, while its analysis may
be non-perturbative. Different methods can be applied: ǫ expansion, exact
renormalization group, gap equations, Monte Carlo simulations, etc. Thus, a
combination of perturbative and non-perturbative methods is to be used to
solve the problem. The idea of this construction, known as dimensional reduc-
tion, goes back to the papers by Ginsparg 18, and by Appelquist and Pisarski
19. It was developed in refs. 20,21,22,23, in application to the phase transitions
and applied to hot QCD in refs. 24,25,26,27,28. Different aspects of dimensional
reduction were studied in refs. 29,30,31.

The Euclidean formulation of the finite temperature field theory, described
in section 2, provides a natural recipe for the construction of effective field
theory. We learned there that the finite-temperature equilibrium field theory
is equivalent to the Euclidean field theory defined on a finite time interval. Let
us expand the bosonic and fermionic fields into Fourier sums,

φ(x, τ) =

∞
∑

n=−∞

φn(x) exp(iωb
nτ), (12)

ψ(x, τ) =

∞
∑

n=−∞

ψn(x) exp(iωf
nτ), (13)

where ωb
n = 2nπT and ωf

n = (2n + 1)πT . After inserting these expressions
into the action, the integration over time can be performed explicitly. As
a result, we get a three-dimensional action, containing an infinite number of
fields, corresponding to different Matsubara frequencies. Symbolically,

∫

d4xL→
∑

∫

d3xL3d. (14)
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Therefore, a 4d finite-temperature field theory is equivalent to a 3d theory
with an infinite number of fields, and 3d boson and fermion masses are just
the frequencies ωb and ωf . One can easily recognize here a perfect analogy to
Kaluza–Klein theories with compact higher-dimensional space coordinates.

Now comes a crucial step. The 3d “superheavy” modes (fields with masses
∼ πT ) interact weakly with each other and with light modes (bosonic fields
corresponding to the zero Matsubara frequency). Therefore, they can be “inte-
grated out” with the use of perturbation theory, so that the 3d effective action,
containing zero modes of bosonic fields, can be constructed. Formally,

exp(−Seff ) =

∫

DΨDφn exp(−SE), (15)

where the product is taken over non-zero frequencies. The effective action
contains the bosonic fields only and can be written in the form

Seff = cV T 3 +

∫

d3x

[

Lb(T ) +

∞
∑

n=0

On

T n

]

, (16)

where Lb(T ) is a super-renormalizable 3d effective bosonic Lagrangian with
temperature-dependent constants, containing a scalar self-interaction up to
the fourth power, On are operators of dimensionality n + 3, suppressed by
powers of temperature at n ≥ 1, c is a perturbatively computable number
(contribution of n 6= 0 modes to the free energy density). The existence of the
effective action is closely related to the decoupling theorem 32,33.

A way to compute the effective action of the theory is by a matching
procedure, which has a lot in common with the corresponding method for heavy
quarks, described at this school by M. Neubert. Write the most general 3d
effective action, containing the light bosonic fields only, and fix its parameters
(coupling constants and counterterms) by requiring that 3d Green’s functions
at small spatial momenta k ≪ T , computed with an effective Lagrangian,
coincide with the initial 4d static Green’s functions up to some accuracy,

G3d(k1, ...kn) = G4d
ω=0(k1, ...kn)(1 +O(gm)). (17)

Depending on the level of required accuracy, different numbers of operators
On must be included in the effective theory. For a generic gauge theory with
λ ∼ g2, f ∼ g, where λ (f) is a typical scalar self-coupling (fermion Yukawa
coupling), m = 4 for a super-renormalizable part of the effective theory, i.e.
when all operators On are dropped.

The following, evident consistency check must be applied to the con-
structed effective field theory. The typical energy scales (masses of excitations
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in 3d theory meff ) must be small compared with the energy scale πT that we
have integrated out:

(meff

πT

)2

≪ 1. (18)

In fact, the 3d approximation generalizes the so-called high-temperature ex-
pansion often applied to the construction of the effective potential of the scalar
field at high temperatures.

After the effective field theory is constructed, the statistical sum is ex-
pressed through the functional integral over 3d bosonic fields only:

Z =

∫

Dφ(x) exp(−Seff ). (19)

In some cases this integral can be computed with the help of the perturba-
tion theory, but in general its evaluation requires different non-perturbative
methods.

The construction, described above, looks quite formal. Nevertheless, it has
a nice physical interpretation associated with the classical statistics of the field
theory. Indeed, consider the bosonic fields appearing in Lb(T ) as generalized
coordinates for some classical field theory with the Hamiltonian

H =

∫

d3x

[

1

2

∑

Pi(x)
2 + TLb(T )

]

, (20)

where Pi(x) is a set of generalized momenta. Now, the partition function for
this classical system is given by the functional integral

Z =

∫

DP (x)Dφ(x) exp

(

−H
T

)

, (21)

which coincides with eq. (19) after the integration over momenta. Thus, it is
often said that the high-temperature limit of the quantum field theory is given
by the classical statistics 7.

We will demonstrate how this general procedure works on specific examples
in the next section. As we will see, in several cases further simplification of
the effective theory is possible.

6 Examples

6.1 Pure scalar field theory

Let us first consider a simplest scalar theory with the 4d Lagrangian defined
by eq. (8). According to our rules, we must write down the most general 3d
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Lagrangian, consistent with the symmetries of the theory. It looks like:

Leff =
1

2
(∂iφ3)

2 +
1

2
m2

3φ
2
3 +

1

4
λ3φ

4
3 + ∆L, (22)

where ∆L represents the contribution of higher-order operators. In 3d, the di-
mensionality of the different coupling constants and scalar field are: φ3: GeV

1

2 ;
m2

3 : GeV2; λ3: GeV. The mapping procedure on the tree level (sometimes
called naive dimensional reduction) immediately gives the relation of 3d field
to 4d field: φ3 = φ/

√
T , and other 3d parameters are given by m2

3 = m2 and
λ3 = λT .

The structure of one-loop corrections to these relations can be easily found
on general grounds. An important fact is that the 3d theory is super-renorma-
lizable and contains a finite number of divergent diagrams only. The ultraviolet
renormalization of the coupling λ3 is absent in any order of perturbation theory,
while the mass term contains linear and logarithmic divergences on the one-
and two-loop levels respectively. At the same time, the 4d self-coupling λ and
mass m are scale-dependent. Thus, on the one-loop level the relation of the
3d parameters to the 4d ones must have the form:

m2
3 = m2(µ)

[

1 + βm log
µT

µ

]

+AλT 2,

λ3 = λ(µ)T

[

1 + βλ log
µT

µ

]

, (23)

where βm and βλ are the β-functions corresponding to the running mass and
self-coupling. The parameters A and µT cannot be fixed by the requirement of
renormalization group invariance and are to be found by explicit computation
of diagrams in Figs. 2 and 3. In the modified minimal subtraction scheme MS
they are:

µT = 4πTe−γ ≈ 7T, A =
1

4
. (24)

In eqs. (23) the parameter µ is arbitrary, and taking it to be µ = µT minimizes
the corrections. This allows us to rewrite these equations in a simpler form,
λ3 = λ(µT )T , m2

3 = 1

4
λ(µT )T 2+m2(µT ). The appearance of the running mass

and 4d coupling constant at scale ∼ T clarifies our requirement concerning the
amplitude of the coupling constant, needed for the perturbative construction
of the effective field theory. The higher-order corrections to relations (23) can
also be found.

The super-renormalizable theory gives the accuracy in Green’s function
∆G
G

∼ O(λ2) provided we have spatial momenta k ≪ T and a 3d mass |m2
3| ≪

12



Figure 3: One loop correction to the coupling constant.

T 2. A further increase in the accuracy may be achieved by adding higher-order
operators. The one with dimensionality three appears on the one-loop level
and is equal to hφ6

3, with

h =
9ζ(3)

256π4
λ3.

Just on dimensional grounds, the perturbative expansion parameter in the
effective 3d theory is λ3/m3. Thus, if the spontaneous symmetry breaking is
absent at zero temperature (m2 > 0), then the 3d theory is weakly coupled in
the whole range of temperatures (of course, below the Landau pole). Thus, all
equilibrium properties of a high-temperature state can be computed by first
constructing the effective field theory and then by perturbative computations
in the effective theory. In the opposite case, whenm2 is negative, the symmetry
φ→ −φ is broken at zero temperature, and the scalar field acquires a non-zero
vacuum expectation value:

v2 = −m
2

λ
. (25)

As seen from our effective Lagrangian (22), the 3d mass changes its sign at

T 2
c = −4m2

λ
, Tc = 2v, (26)

which is nothing but an estimate of the critical temperature of the phase
transition with restoration of the φ→ −φ symmetry. The mass squared of the
particle excitation in the tree approximation is given by m2

3 at T > Tc and
by −2m2

3 at T < Tc. The perturbative analysis of the effective theory near
T = Tc breaks down, since the expansion parameter λ3/|m3| diverges near this
point. Non-perturbative methods (such as ǫ-expansion or lattice simulations)
are needed in order to clarify the nature of the system here.

Let us consider the advantages we gain by the construction of the effective
field theory. The straightforward perturbative analysis of the original theory

is valid for λ ≪ 1 and T 2 ≪ |m2|
λ

. The construction of the effective field
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theory requires only λ ≪ 1 and |m2| ≪ (πT )2. In particular, it is applicable
near the temperature of the phase transition Tc. The original 4d theory at

T 2 > m2

λ
contains at least two important energy scales: an ultraviolet one

∼ T and the infrared one ∼ m3; the effective theory contains an infrared scale
only. Beyond the phase transition, the theory is perturbatively solvable, and
the effective field theory approach provides a convenient recipe for resumming
the perturbation theory.

6.2 QCD

The QCD Lagrangian for nf quark flavours is given by

L =
1

4
FµνFµν +

∑

ψ̄i(γνDν −mi)ψi. (27)

For simplicity, let us consider the limit T ≫ mi. The 3d effective Lagrangian
contains gauge fields Aa

i and a scalar octet Aa
0 , a = 1, ..., 8, where A0 is a tem-

poral component of the 4d gauge field. The most general super-renormalizable
3d Lagrangian, containing these fields, is

L3 =
1

4
FijFij +

1

2
(DiA

a
0)

2 +
1

2
m2

DA
a
0A

a
0 +

1

4
λA(Aa

0A
a
0)

2. (28)

Here Di is a covariant derivative in adjoint representation. Of course, on the
tree level m2

A = 0 and λA = 0 because of the structure of the 4d Lagrangian.
The one-loop relations in the MS scheme are 30,34,22:

g2
3 = g2(µ)T

[

1 +
g2

16π2

(

11Lb −
2nf

3
Lf + 1

)]

, (29)

m2
D = g2(µ)T 2

(

1 +
nf

6

)

, (30)

λA = =
3g4(µ)T

8π2

(

1 − nf

9

)

(31)

where

Lb = 2 log
µ

µT

, Lf = 2 log
4µ

µT

. (32)

The logarithmic corrections to m2
D and λA appear on two-loop level only. The

non-zero value ofmD (the Debye mass) ensures the screening of chromo-electric
fields in a high-temperature plasma and the absence of confinement.

Because of asymptotic freedom, the effective theory is valid at sufficiently
high temperatures, when αs(µT )/π ≪ 1. In other words, it is applicable to
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the quark-gluon phase of QCD only and describes physics on the energy scales
k ≪ T , but k may be as large as gT .

The 3d Lagrangian (28) contains two essential mass scales. The largest one
is the Debye screening mass ∼ gT , and the smallest scale is associated with
the 3d gauge coupling constant α3 = αsT . The scale hierarchy α3 ≪ mD,
appearing when the effective field theory approach is valid, suggests that a
further simplification of the effective theory is possible. Namely, the “heavy”
scale ∼ gT (we used the term “superheavy” for the scale ∼ T ) can be integrated
out. The construction of the “second” level of effective field theory, containing
the chromo-magnetic gauge fields only, goes precisely along the lines described
above. The result is a pure SU(3) Yang–Mills theory, describing the interaction
of soft modes with momenta k ≪ gT , but k may be as large as g2T . The
Lagrangian is:

Leff =
1

4
FijFij . (33)

In the one-loop approximation the new gauge coupling is 35:

ḡ2
3 = g2

3

(

1 − g2
3

16πmD

)

, (34)

and the accuracy of an effective description by a pure gauge theory at momenta
k ≪ gT is ∆G

G
∼ O(g3) 22.

The 3d pure gauge theory which appeared as a final stage of dimensional
reduction contains just one scale, α3. It is strongly coupled at small energies
and is believed to be confining. No perturbative methods are available for its
study. Thus, high-temperature QCD, in spite of asymptotic freedom, contains
a piece of non-perturbative physics described by a pure Yang–Mills theory in
3d. A simple power counting allows one to find easily the limits of perturbation
theory for the study of high-temperature QCD. Let us take, for example, free
energy. From dimensional grounds, the contribution from the non-perturbative
pure 3d sector is of the order of α3

3T . Thus, the O(g6)T 4 correction to the
free energy cannot be computed perturbatively. Recently, the perturbative
computations were pushed to the very end: the O(g4) corrections to the free
energy were computed in refs. 36,37 and O(g5) in 38,27,28. In order to find the
O(g6) contribution, a non-perturbative method, such as lattice Monte Carlo
simulations, must be applied to solve the pure 3d model. In addition, a number
of 4-loop computations should be done.

6.3 Electroweak theory

Our experience with the pure scalar theory and QCD allows us an easy guess of
the effective 3d action for soft strongly interacting bosonic modes with k ≪ gT ,
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describing the high-temperature EW theory. This is just the 3d SU(2)× U(1)
gauge theory with the doublet of scalar fields with the Lagrangian

L =
1

4
Ga

ijG
a
ij +

1

4
FijFij + (DiΦ)†(DiΦ) + m̄2

3Φ
†Φ + λ̄3(Φ

†Φ)2, (35)

where Ga
ij and Fij are the SU(2) and U(1) field strengths, respectively, Φ is a

scalar doublet, and Di is a standard covariant derivative in the fundamental
representation. The four parameters of the 3d theory (scalar mass m̄2

3, scalar
self-coupling constant λ̄3, and two gauge couplings ḡ3 and ḡ′3) are some func-
tions of the initial parameters and temperature. They were computed in the
one- and partially in the two-loop approximation in refs. 20,22; we present here
just the tree relations for the coupling constants:

g2
3 = g2T, g′23 = g′2T, λ3 = λT, (36)

and the one-loop relation for the scalar mass:

m2
3(µ) = −1

2
m2

H + T 2

(

1

2
λ+

3

16
g2 +

1

16
g′2 +

1

4
g2

Y

)

. (37)

Here mH is the zero-temperature Higgs mass, gY is the Yukawa coupling con-
stant corresponding to the t-quark.

As usual, the effective action does not contain fermions since their 3d
masses are “superheavy”. It does not contain zero components of the gauge
fields – triplet and singlet of SU(2) – because these are “heavy” according to
our classification of scales.

The most interesting area of application of the effective action (35) is the
region of temperatures where the electroweak phase transition is expected to
occur. As in the case of the pure scalar theory, a rough estimate of the critical
temperature follows from the requirement that the 3d mass of the scalar field
is close to zero, m̄2

3 = 0. In the vicinity of this point the effective Lagrangian
(35) has a much wider area of application than the minimal Standard Model
(MSM). In fact, it plays the role of the universal theory which describes the
phase transition in a number of extensions of the Standard Model at least
in a part of their parameter space. The set of models includes the minimal
supersymmetric Standard Model (MSSM) and some extended versions of it,
an electroweak theory with two scalar doublets, etc. One may wonder where
are the other scalars, typical for the extensions of the Standard Model. The
answer is that all extra scalar degrees of freedom are naturally “heavy” (mass
∼ gT ) near the phase transition temperature and can be integrated out.

Indeed, let us take as an example the two-Higgs doublet model. The
integration over the “superheavy” modes gives a 3d SU(2)×U(1) theory with
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an extra Higgs doublet in addition to the theory considered above. Construct
now the one-loop scalar mass matrix for the doublets and find the temperatures
at which one of its eigenvalues is zero. Take the higher temperature; this is
the temperature near which the phase transition takes place. Determine the
mass of the other scalar at this temperature. Generally, it is of the order of
gT , and therefore, it is heavy. Integrate this heavy scalar out – the result is
eq. (35). In the case when both scalars are light near the critical temperature,
a more complicated model, containing two scalar doublets, should be studied.
It is clear, however, that this case requires fine tuning.

The same strategy is applicable to the MSSM. If there is no breaking of
colour and charge at high temperature (breaking is possible, in principle, since
the theory contains squarks), then all degrees of freedom, excluding those
belonging to the two-Higgs doublet model, can be integrated out. We then
return back to the case considered previously. The conclusion in this case is
similar to the previous one, namely that the phase transition in the MSSM can
be described by a 3d SU(2)×U(1) gauge–Higgs model, at least in a considerable
part of the parameter space. The explicit relations were worked out in refs.
39,40,41. What changes from going from one theory to another is the explicit
perturbative relations between initial 4d parameters and parameters of the
effective theory; if two different 4d theories have the same 3d couplings, the
electroweak phase transition occurs in them in a similar way. The effective
field theory approach again demonstrates its strength: instead of studying
many models with different particle content, it is sufficient to study just one
3d effective theory by non-perturbative means; the result of this study may be
used for many 4d models after perturbative computations of 4d → 3d mapping.

7 Electroweak phase transition

One of the most interesting areas of application of finite-temperature field the-
ory are phase transitions. Our interest in this section will be an EW theory.
The strength of the electroweak phase transition is important for a number of
cosmological applications. For example, all mechanisms of electroweak baryo-
genesis require that the phase transition should be strong enough, i.e. 42,43

v(Tc)/Tc > 1, (38)

where v(Tc) is the vacuum expectation value of the Higgs field at the critical
temperature.

As we have learned in the previous section, to study the electroweak phase
transition it is sufficient to study an SU(2)×U(1) gauge–Higgs theory in 3d.
Let us simplify even further and omit the U(1) factor. Numerically the U(1)
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coupling constant g′ is smaller than the SU(2) one g; thus the corrections are
expected to be small. In this case, the Lagrangian is

L =
1

4
Ga

ijG
a
ij + (DiΦ)†(DiΦ) + m̄2

3Φ
†Φ + λ̄3(Φ

†Φ)2. (39)

This 3d theory is defined by one dimensionful parameter g2
3 ∼ g2T and two

dimensionless ratios

x ≡ λ̄3

ḡ2
3

, y ≡ m̄2
3

ḡ4
3

. (40)

The dimensionful coupling constant can be chosen to fix the energy scale.
Therefore, the phase state of this theory is completely defined by the two
numbers x and y. For the MSM the dependence of the parameter x on the
mass of the Higgs boson near the critical temperature (near y = 0) is shown
in Fig. 4.

At first glance there are two phases in this theory. When the Higgs mass
is positive, y > 0, one would say that this theory is analogous to QCD with
scalar quarks. Thus, we are in the “confinement” phase (other names of this
phase are “symmetric” or “restored” phase) and the particle spectrum consists
of the bound states of the scalar quarks, such as

π = Φ†Φ, W 0
j = i(Φ†DjΦ − (DjΦ)†Φ),

W+
j = (W−

j )∗ = (Φ†DjΦ̃ − (DjΦ)†Φ̃). (41)

Here Φ̃ = iτ2Φ
∗.

On the contrary, if the scalar mass is negative, one would say that the
SU(2) gauge symmetry is broken, and the initially massless gauge bosons ac-
quire non-zero masses. This phase is usually called “broken” or Higgs. In the
usual folklore, the particle spectrum consists of fundamental massive gauge
bosons and the Higgs particle.

When the temperature changes, the sign of the effective mass term changes.
If the consideration presented above were true, one would expect to have a
first-order or second-order phase transition between the two phases. In fact,
the gauge symmetry is never “broken” – all physical observables by construc-
tion are gauge-invariant. Moreover, there is no gauge-invariant local order-
parameter that can distinguish between the “broken” (Higgs) and “restored”
(symmetric or confinement) phases 44,45. The bound states defined in (41) are
complementary to the “elementary” excitations in the Higgs phase. A simple
exercise shows that in the Higgs phase in unitary gauge the composite fields
defined by eq. (41) are proportional to the “elementary” fields corresponding
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Figure 4: The value x = λ3/g2
3

as a function of the physical Higgs mass mH and the top
quark mass mtop near the critical temperature defined from taking m2

3
= 0. In general, x

depends on the Higgs mass, the top mass, and logarithmically on the temperature. From
ref. 23.

to the Higgs particle and vector bosons. Thus, in a strict sense, there is no
gauge symmetry restoration at high temperaturesb, but there can be (but not
necessarily are) phase transitions.

This general consideration suggests three possible phase diagrams for the
SU(2)–Higgs model (Fig. 5). First, because the qualitative difference between
symmetric and Higgs phases is absent, we can have only one phase (Higgs-
confinement phase) everywhere at the (x, y) plane (Fig. 5a). Of course, dif-
ferent points at this plane correspond to the theories which are quantitatively

bContrary to the gauge symmetry case, global symmetries may be broken or restored. In
the pure scalar model, considered in the previous section, the symmetry φ → −φ is global,
so that it is indeed restored at high temperatures, provided it was broken at T = 0.
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Figure 5: Three possible types of phase diagram for the SU(2) gauge–Higgs system.
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different; nevertheless one theory can be analytically transformed to another
one. In the latter case any high-temperature phase transition is absent. An-
other possibility is that there is a first-order transition line separating the
“symmetric” phase from the “broken” phase. In this case the first-order phase
transition occurs at any value of the scalar self-coupling constant (Fig. 5b).
An intermediate possibility is when a first order phase transition line has an
end-point somewhere on the phase plane (Fig. 5c). Then at x < xcrit the
phase transition is of the first kind, at x = xc the phase transition is of the
second kind, and at x > xc the phase transition is absent.

Of course, some computations are necessary in order to clarify the phase
structure. A simple one-loop perturbative analysis allows Fig. 5a to be ruled
out, but cannot distinguish between Fig. 5b and Fig. 5c.

Let us define the field-dependent vector boson mass as

mT =
1

2
g3φ, (42)

and scalar masses as

m2
1 = m2

3 + 3λ3φ
2, (43)

m2
2 = m2

3 + λ3φ
2.

Then the 1-loop effective potential for the scalar field is

V1(φ) =
1

2
m2

3φ
2 +

1

4
λ3φ

4 − 1

12π

(

6m3
T +m3

1 + 3m3
2

)

. (44)

This effective potential describes a first-order phase transition, since at the
critical value of m2

3 the jump of the order parameter φ is non-zero. Is the
conclusion about the first-order nature of the phase transition reliable? To
answer this question, one can estimate the value of the field φ at the maximum

of the effective potential. At sufficiently small values of λ3 it is of the order of

φmax ∼ g3

3

πλ3

. The dimensionless expansion parameter at this point is
g2

3

πmT
∼

λ3

g2

3

= x. Thus, the existence of the maximum of the effective potential is

reliable at small values of x (small Higgs masses in zero-temperature language).
Therefore, the “symmetric” and the “broken” phases are separated by a first-
order phase transition line, at least at small x. At larger x perturbation theory
is not to be trusted, and the nature of the phase transition can be clarified
only by some kind of non-perturbative analysis. An argument in favour of Fig.
5b follows from the ǫ-expansion 18,46 while an indication that the scenario of
Fig. 5c may be realized comes from the study of 1-loop gap equations 47.
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The 3d lattice MC simulations, done in 48, have established the absence
of first-and second-order phase transitions at x > 0.18 and singled out the
phase diagram of the type shown in Fig. 5c. The value of the end-point
of the first-order phase transition line is likely to be near x = 1

8
, i.e. there

is no phase transition at Higgs masses greater than 80 GeV in the minimal
Standard Model. In this case it is quite unlikely that there are any cosmo-
logical consequences coming from the EW epoch. The 4d lattice simulations
at sufficiently small Higgs masses of a pure bosonic model were carried out in
refs. 49,50,51,52,53. Whenever the comparison between 3d and 4d simulations is
possible, they are in agreement, indicating the correctness of the dimensional
reduction beyond perturbation theory.

The requirement of the EW baryogenesis provides an even stronger con-
straint on the strength of the EW phase transition. In fact, the constraint (38)
does not hold for any Higgs mass in the MSM (if the mass of the top quark
is 175 GeV) 23. It is possible to satisfy this constraint in a specific portion of
the parameter space of the MSSM 54: the Higgs mass is smaller than the Z
mass, the lightest stop mass is smaller than the top mass, and tanβ < 3. This
prediction can be tested at LEP2.

Near the critical point (the end-point of the first-order phase transition
line) the 3d gauge–Higgs system admits a further simplification at large dis-
tances ≫ 1

g2

3

. At the critical point the phase transition is of second order, thus

there is a massless scalar particle. The effective theory describing this nearly
massless state is a simple scalar theory of some field χ with the Lagrangian

L =
1

2
(∂iχ)2 +

1

2
m2χ2 + λχχ

4 + hχ. (45)

It is a challenge to define a mapping of the parameters of the gauge SU(2)
Higgs model to the parameters of the scalar theory, since the perturbative
methods fail in the strong coupling limit.

8 Conclusion

The effective field theory approach is a powerful method for studying high-
temperature equilibrium field theory. It has allowed to solve a number of long-
standing problems of high-temperature gauge theories. The list includes the
infrared problem of the thermodynamics of Yang–Mills fields and the problem
of the EW phase transition. The method allows reliable computations of the
properties of the high-temperature equilibrium plasma of elementary particles.

Of course, the method has a number of limitations. It cannot be used
in theories where coupling constants are large at the scale of the order of the
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temperature. It does not work at temperatures below the relevant mass scales.
It is not applicable to time-dependent phenomena and cannot be used for
computation of transport coefficients such as viscosity, etc. However, it allows
a description of the ground state of the system at high temperatures, therefore
providing a starting point for the study of non-equilibrium phenomena.

I am grateful to Mikko Laine and Keijo Kajantie for reading of the manuscript
and helpful comments.
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